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INTRODUCTION 
 

AD is a progressive, irreversible neurodegenerative 

disease that accounts for more than half of the 44 

million cases of dementia globally [1]. AD can be either 

sporadic or familial (inherited). The greatest risk factor 

for the onset of AD is ageing, and the World Health 

Organization predicts that by 2050 the number of 

people over the age of 60 will have increased to 2 

billion [2]. With that, the number of people living with 

AD will increase as well as the economic costs of 

supporting and treating AD patients.  

 

Symptomatically, AD is initially recognised by mild 

cognitive impairment (MCI) and problems with short- 

and long-term memory. As the disease progresses 

neuropsychiatric symptoms can develop including 

affective, psychomotor, psychotic and manic syndromes 

[3]. There are two distinct biomolecular markers within  

 

 

the brain that have long been known to characterise AD, 

amyloid plaques composed of the amyloid-β (Aβ) 

peptide and neurofibrillary tangles (NFTs) composed of 

hyperphosphorylated tau proteins [4]. However, due to 

their location AD can only be diagnosed using these 

markers post-mortem.  

 

Mitochondria are also widely observed as dysfunctional 

in AD, which has resulted in the development of the 

mitochondrial cascade hypothesis [5, 6]. The 

dysfunction of mitochondria, and in particular the ETC, 

has been coupled with the oxidative stress observed in 

AD [7, 8]. It has been widely debated as to whether 

amyloid plaques, NFTs or dysfunctional mitochondria 

play the primary role in the aetiology of AD. We now 

understand that interactions actually take place between 

these different biomolecular markers contributing to 

disease progression [9, 10]. 
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ABSTRACT 
 

It is estimated that over 44 million people across the globe have dementia, and half of these cases are 
believed to be Alzheimer’s disease (AD). As the proportion of the global population which is over the age 60 
increases so will the number of individuals living with AD. This will result in ever-increasing demands on 
healthcare systems and the economy. AD can be either sporadic or familial, but both present with similar 
pathobiology and symptoms. Three prominent theories about the cause of AD are the amyloid, tau and 
mitochondrial hypotheses. The mitochondrial hypothesis focuses on mitochondrial dysfunction in AD, 
however little attention has been given to the potential dysfunction of the mitochondrial ATP synthase in 
AD. ATP synthase is a proton pump which harnesses the chemical potential energy of the proton gradient 
across the inner mitochondrial membrane (IMM), generated by the electron transport chain (ETC), in order to 
produce the cellular energy currency ATP. This review presents the evidence accumulated so far that 
demonstrates dysfunction of ATP synthase in AD, before highlighting two potential pharmacological 
interventions which may modulate ATP synthase. 
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When considering the role of mitochondria in AD, ATP 

synthase has not been widely discussed. ATPases are 

present across eukaryotes, prokaryotes and archaea. They 

can be placed into one of three different classes: F-type, 

V-type or A-type, similar in structure but differing in 

function [11, 12]. Mitochondrial ATP synthase is an F-

type ATPase and is the final ETC complex of the IMM. 

It is responsible for the pumping of protons from the 

inter-membrane space into the matrix while harnessing 

the chemical energy from this process. The chemical 

energy is converted into mechanical energy that allows 

the complex to behave as a molecular motor. Rotation of 

the motor triggers conformational changes in the catalytic 

domain of the enzyme that enables the production of 

ATP, the cellular energy currency of which an estimated 

50kg a day is required by the body, from ADP and Pi[13]. 

In medical research, ATP synthase has been more widely 

studied in classic mitochondria disorders such as Leigh 

Syndrome [14, 15].  

 

This review is a synthesis of the data which implicate 

ATP synthase in the pathology of AD. It then considers 

ways in which ATP synthase can be therapeutically 

targeted in order to try and prevent disease onset or to 

alleviate symptoms.  

 

ATP synthase 
 

What is ATP synthase 

 

F-type ATP synthase is the fifth and final ETC complex of 

the IMM. It has a large structure with a molecular weight 

of around 600 kDa and is composed of up to 20 different 

subunits in mammals [16]. ATP synthase is responsible for 

the production of the cellular energy carrier ATP from 

ADP and Pi. This process is driven by the chemiosmotic 

potential across the IMM first described by Peter Mitchell 

in the 1960s [17–19]. While F-type ATP synthase is 

predominantly housed within mitochondria, data have 

shown that F-type ATP synthase is present at plasma 

membranes of different cell types both physiologically and 

pathophysiologically [20, 21]. 

 

After ATP synthase’s function was described in vitro, 

landmark measurements including the kinetic 

parameters of its three-site cooperative-binding catalytic 

mechanism and the discovery that protein con-

formational changes would facilitate the release of 

tightly bound ATP were reported [22, 23]. The atomic 

structure of the complex was resolved to 2.8 Å in 1994, 

revealing a structure which supported the mechanism of 

rotary catalysis [24]. Since 1994, multiple atomic 

structures of both eukaryotic and prokaryotic ATP 

synthase structures have been published, with a recent 

cryo-EM structure of ATP synthase from S. scrofa 

shown in Figure 1 [25–28]. ATP synthase consists of 

two distinct components; a membrane bound FO 

component and a matrix exposed F1 component. They 

function cooperatively through a central rotor stalk and 

a peripheral stator stalk.  

 

FO 

 

The FO component of ATP synthase is an insoluble 

structure that is primarily composed of a ring of varying 

numbers of c-subunits called the c-ring and has a size 

that appears to be species dependent [29]. Other FO 

proteins include subunit a and subunit b as well as 

others with less well understood roles including 

subunits d, e, f, g, F6 and 8 (A6L). DAPIT and 6.8PL 

are present in vertebrates and assist in the assembly of 

the FO component of ATP synthase [30, 31]. An 

additional subunit called the oligomycin sensitivity 

conferring protein (OSCP) is located at the top of the F1 

component of ATP synthase. It couples the FO 

component with the F1 component through its 

interaction with the peripheral stalk of FO and central 

stalk of F1 [32]. Protons from the intermembrane space 

of the mitochondria travel through an aqueous half-

channel in subunit a to the c-ring of the FO complex 

where they bind to conserved acidic c-ring residues, 

aspartate or glutamate, in the second transmembrane 

helix of subunit-c [13, 33–35]. These charged proton 

binding sites are then suggested to be concealed by 

rotation of α-helices in c subunits which leads to c-ring 

to rotation along with the central rotary stalk γ-subunit 

[36, 37]. The rotating FO component transports protons 

into the matrix through a second aqueous half channel 

on the matrix side of the membrane and the asymmetric 

rotor stalk causes conformational changes in F1 which 

drive the catalytic activity of the β subunits [13].  

 

The role of OSCP 
 

The oligomycin sensitivity conferring protein (OSCP) is 

part of the peripheral stalk of the FO component of ATP 

synthase and physically couples the two enzyme 

components together through its interaction with the 

central stalk of the F1 component. It is encoded by the 

ATP5O gene on the long arm of the nuclear chromosome 

21. Structurally, OSCP has an N-terminal domain which 

contains six α-helices and a C-terminal domain consisting 

of a β-hairpin and two α-helices [32, 38]. While 

oligomycin does not bind to OSCP, OSCP confers the 

enzyme’s sensitivity to the antibiotic as it is OSCP that 

couples the F1 component to the FO component that is 

bound and inhibited by oligomycin [39]. 

 
F1 

 

The F1 component is solvent exposed and far more 

about its activity and structure is understood than its FO 
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counterpart. Its subunit composition is α3β3γδε, with its 

structure being a six part barrel of alternating α and β 

subunits, a central asymmetric γ subunit (the afore-

mentioned rotor stalk) protruding through the centre of 

the barrel while the δ and ε subunits are found at the 

matrix exposed surface of the FO c-ring [24]. The site of 

catalysis is located at the interface of the α and β 

subunits, both of which have nucleotide binding sites 

and multiple studies of atomic structures have shown 

nucleotides bound at this interface [40–42]. 

Interestingly, both α and β subunits possess the same 

folds despite only sharing around 20% sequence 

homology [16]. The structural similarities are presented 

in Figure 2 using the atomic structures of ATP synthase 

in S. scrofa [27, 43]. Despite the similarity, only the β-

subunit possesses catalytic activity due to its ability to 

form an open conformation as well as possessing a 

catalytic base for the reverse ATP hydrolysis reaction 

[44, 45]. 

 

The role of the α-subunit 
 

The α-subunit of the F-type ATP synthase is located in 

the F1 solvent exposed component of ATP synthase, 

facing the mitochondrial matrix [24]. It functions as part 

of a six-part barrel structure (α3β3), and the catalytic 

nucleotide binding site is located at its interface with the 

β-subunit [40]. However, the α-subunit displays 

regulatory activity when compared with the β-subunit 

which exhibits the catalytic activity of the enzyme [44, 

45]. Like its β-subunit counterpart, the α-subunit can be 

divided into three different domains: a small N-terminal 

domain, a nucleotide binding domain and a helical C-

terminal domain. 

 

The role of the β-subunit 
 

The β-subunit is also located in the solvent exposed F1 

component of ATP synthase and it has a largely similar 

structure to the α-subunit. Its interface with the α-

subunit forms the nucleotide binding site and it is the β-

subunit that possesses the catalytic activity required for 

both the synthesis and hydrolysis of ATP. The β-subunit 

is able to undergo conformational changes to form three 

distinct conformations in response to the rotation of the 

γ-subunit in 120° increments [46]. This, coupled with 

critical arginine, lysine and glutamate residues is what 

enables β-subunit to catalyse the synthesis and 

hydrolysis of ATP [47]. For well-illustrated figures of 

this mechanism, see Feniouk et al., 2008 and Okuno et 

al., 2011 [48, 49].  

 

ATP synthase in Alzheimer’s Disease (AD) 
 

Mitochondria are known to be dysfunctional in AD 

patients and this has resulted in the development of the 

mitochondrial cascade hypothesis [5]. This hypothesis 

has been developed and revisited several times across

 

 

 

Figure 1. Atomic structure and labelled space fill model of ATP Synthase (S. scrofa). FO and F1 components of the complex both 
labelled. Individual subunits labelled on the space fill model. This figure was created using image 6J5J from PDB (http://doi.org/10.2210/ 
pdb6J5J/pdb   https://www.rcsb.org/structure/6J5J)  and processed using  http://www.sbg.bio.ic.ac.uk/ezmol/. 

http://doi.org/10.2210/pdb6J5J/pdb
http://doi.org/10.2210/pdb6J5J/pdb
https://www.rcsb.org/structure/6J5J
http://www.sbg.bio.ic.ac.uk/ezmol/
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the last two decades, serving as a viable alternative to 

the predominant amyloid hypothesis [6, 50–52]. Much 

of the focus of the research has been based on the 

oxidation levels found in the brains of AD patients, and 

how this observation can be synthesised with the 

mitochondrial theory of ageing [4, 53]. Despite its 

physiological relevance to both mitochondrial activity 

and structure, little attention has been paid to ATP 

synthase in the formation and development of this 

theory [54].  

 

The first study implicating ATP synthase in AD 

aetiology found, through BN-PAGE analysis, decreased 

expression of the whole complex in the hippocampal 

tissue of AD patients [55]. Since then, multiple studies 

have pointed to a decrease in the expression of ATP 

synthase subunits and they are addressed in this review. 

There was decreased expression in several of the 

nuclear encoded ATP synthase genes in the posterior 

cingulate cortex (11), hippocampal field CA1 (10), 

middle temporal gyrus (9) and entorhinal cortex (5) 

[56]. Adult neurogenesis defects are common in AD 

and it has been suggested that this arises from impaired 

function of hippocampal neuronal stem cells (NSCs). A 

study using iPSC-derived NSCs, with familial AD 

(FAD) associated PS1 mutation M146L, observed a 

decreased expression of the ATP synthase complex 

while PS1 expression was kept at physiological levels 

[57]. In a study with implications for sporadic AD, N2a 

neuroblastoma cells expressing the ApoE4 allele of the 

 

 
 

Figure 2. (A) Structural alignment of the alpha (red) and beta (blue) subunits of mitochondrial ATP synthase in S. scrofa. Both subunits are 
reproduced from image 6J5J in PDB (https://www.rcsb.org/structure/3ZIA http://doi.org/10.2210/pdb3ZIA/pdb) and processed using 
http://www.cgl.ucsf.edu/chimera/. (B) BLAST alignment of the primary amino acid sequences of H. sapiens alpha (UniProt P25705) and beta 
(UniProt P06576) subunits performed using https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins. 

https://www.rcsb.org/structure/3ZIA
http://doi.org/10.2210/pdb3ZIA/pdb
http://www.cgl.ucsf.edu/chimera/
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
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ApoE gene, the major genetic risk factor for sporadic 

AD, showed a reduction in the levels of all ATP 

synthase subunits they detected in comparison to 

ApoE3 controls [58]. 

 

Considering ATP synthase activity instead of protein 

expression, an early study investigating AD and ATP 

synthase found no significant decrease in the enzyme’s 

catalytic activity when studying the isolated 

mitochondria from AD patient hippocampal tissue, 

motor cortex and platelets [59]. However, since this 

study was published there have been data published that 

are contradictory to this observation and these are 

discussed in the following sections of this review. 

 

The α-subunit in AD 
 

ATP synthase subunit α, Amyloid β and NFTs 
 

Transgenic Swedish APP mice (Tg2576) had increased 

levels of amyloid plaque formation in the brain as they 

aged, compared with controls. Proteomic analysis of the 

brains from the Tg2576 mice found that the increase in 

amyloid plaque deposition with age correlated with an 

increase in the expression of the α-subunit [60]. 

 

An N-glycosylated form of the α-subunit has been 

shown to act as a binding partner of the extracellular 

domain of APP and Aβ, with Aβ being the primary 

component of the AD hallmark amyloid plaques. The α-

subunit reaches the membrane via the secretory 

pathway and it is during this process that it becomes N-

glycosylated. Schmidt et al. also demonstrated the 

localisation of the whole ATP synthase complex at the 

neuronal membrane and that its extracellular ATPase 

activity is inhibited by both APP and Aβ. This is 

especially noteworthy as APP and Aβ share sequence 

homology with the native ATPase inhibitory factor IF1 

[61]. The inhibition was shown to downregulate long-

term potentiation (LTP) at the synapses, that Aβ 

oligomers have since been shown to inhibit alongside 

the upregulation of long-term depression (LTD) via the 

NMDA receptors [62]. 

 

A study that builds upon the work of Schmidt et al. 

found that in the cortex and hippocampus of Tg APP 

PS1 mice, the α-subunit co-localises with insoluble 

plaques of Aβ – not just the soluble monomeric form of 

the peptide [63]. Moreover, the authors showed that this 

interaction occurs at the plasma membrane of neuronal 

cells, causes inhibition of enzymatic activity and a 

decrease in the levels of extracellular ATP. These 

decreases of extracellular ATP may be critical in the 

cognitive defects which arise in AD due to disruptions 

in synaptic plasticity, given the important role 

extracellular ATP plays in LTP [64, 65]. 

The α-subunit has been observed as part of the NFTs in 

human AD patient brain samples, one of the 

characteristic observations in AD patient brains. 

Monoclonal antibodies that target the insoluble brain 

lesions in AD found that the α-subunit acted as an 

antigen to one of the antibodies (AD46). 

Immunohistochemistry and electron microscopy 

confirmed the co-localisation of the α-subunit with the 

NFTs in the cytosol of a degenerating AD neuron [66].  

 

ATP synthase subunit α and oxidative stress 
 

Oxidative stress is a frequently observed phenomenon 

of AD. C. elegans that over-expressed green fluorescent 

protein (GFP) as a means of studying the oxidative 

stress caused by protein aggregation presented 

carbonylation of the α-subunit [67]. In the hippocampus 

of AD patients the α-subunit was also shown to be 

excessively nitrated in comparison to age-matched 

control brains, as well as having significantly increased 

protein levels [68]. 

 

Another marker of oxidative stress is the level of lipid 

peroxidation, that arises from the reaction of oxygen 

radicals with lipids to produce reactive aldehydes. One 

such example of this is 4-hydroxy-2-nonenal (4-HNE), 

that covalently attaches to proteins in a Michael 

addition reaction [69]. The α-subunit of ATP synthase 

was shown to be HNE modified in the hippocampal 

tissue of individuals with mild cognitive impairment 

(MCI), which is symptomatic of early stage AD [70, 

71]. The same study also showed that, in the same tissue 

from MCI patients, ATP synthase had a 35% decrease 

in activity compared to age-matched controls when 

measured as a function of ADP production.  

 

A study investigating oxidative stress in the early stages 

of AD (Braak stages I and II, prior to the onset of MCI) 

found that the α-subunit of mitochondrial ATP synthase 

is HNE modified in the entorhinal cortex and that ATP 

synthase has a decrease in activity of around 30% [72, 

73]. The authors chose to use the entorhinal cortex tissue 

for this study as it is the location of NFTs used to track 

AD progression during Braak stages I and II. When these 

data are taken with those from Reed et al. showing 4-

HNE modification of the α-subunit and decreased ATP 

synthase activity, there appears to be correlation between 

disease progression as measured by the presence of NFTs 

and the lipoxidation of the α-subunit resulting in reduced 

ATP synthase activity. Further, the presence of oxidative 

stress and diminished ATP synthase activity from the 

earliest stages of AD onset may prove critical to the 

pathology of the disease. If this oxidative stress precedes 

the presence of Aβ in the affected tissue, it raises 

additional questions about the primacy of the amyloid 

pathology in the aetiology of AD. 
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Whether or not the α-subunit is oxidised may be 

dependent upon the tissue that it is found in and the 

stage of AD pathology in which it is being considered. 

A line of transgenic mice (J20 Tg) expressing a mutant 

form of APP that corresponds to the Swedish and 

Indiana familial forms of AD had a 12.2-fold increase in 

the expression of the α-subunit in a whole mouse brain 

homogenate compared with non-Tg mouse brain 

homogenate [74]. However, there was no indication of 

oxidation when measured as a function of 3-

nitrotyrosine (3-NT) modification of the protein. The 

authors suggest that this significant increase in the 

expression of the protein could be a related to cellular 

stress responses by the brain to maintain energy 

production. Future studies should look to measure the α-

subunit expression of early, middle and late Braak 

stages of AD in brain tissues shown to have reduced 

ATP synthase activity as a way to try and validate their 

suggestion. 

 

Post-translational modification of the α-subunit 
 

Glycosylation of proteins with O-linked β-N-

acetylglucosamine (O-GlcNAc) is a widely observed 

post-translational modification that regulates intra-

cellular events [75]. The α-subunit can be O-

GlcNAcylated on the Thr432 residue. However, this 

modification is reduced in the brains of AD patients, Tg 

AD mice and in Aβ treated mammalian cell cultures – 

which resulted in reduced ATP levels [76]. Molecular 

modelling and co-IP experiments with deletion mutants 

of the α- and β-subunits with no pocket site showed that 

Aβ directly blocks the O-GlcNAcylation of the Thr432 

residue by mitochondrial O-GlcNAc transferase. 

Interestingly, the O-GlcNAcylation of Thr432 that had 

been inhibited by Aβ was rescued by treatment with O-

GlcNAcase inhibitor. These findings are particularly 

noteworthy as they demonstrate a chemical mechanism 

for the interaction of the Aβ peptide with mitochondrial 

ATP synthase, and as a result could offer a potential 

therapeutic target for AD. 

 

The β-subunit in AD 
 

Downregulation of the β-subunit 

 

Several studies have found changes in the expression of 

the β-subunit of ATP synthase in AD tissue samples and 

models of AD, and in particular reductions in its 

expression. Table 1 lists changes in protein expression 

of ATP synthase subunits, including the β-subunit, that 

are presented in this review.  An early observed instance 

of reduced expression is the reduction of β-subunit 

mRNA levels by over 50% in the midtemporal cortex of 

AD patient brains compared with age-matched controls 

[77]. In another study, that linked Aβ peptides with 

ATP synthase in AD, rats that received a bilateral 

intrahippocampal injection of Aβ showed a significant 

decrease in the levels of β-subunit compared with 

controls [78]. Gene expression analysis of the entorhinal 

cortex of AD patient brains showed reduced expression 

of ATP5C1 (γ-subunit), ATP5D (δ-subunit), ATP5G1 

(subunit c) and ATP5B (β-subunit) [79]. This 

strengthens the argument that ATP synthase dysfunction 

plays a role in the disrupted glycometabolism of AD. It 

must be noted that these studies do not provide a 

mechanism of how the expression of the β-subunit is 

downregulated, but early gene mapping studies of the β-

subunit reported that ETS domain transcription factors 

and redox sensitive OXBOX and REBOX transcription 

factors regulate gene expression [80–82].  

 

Autoimmune response to the β-subunit 
 

Autoimmunity is now thought to play a role in the onset 

of AD [83, 84]. While this hypothesis has not been 

developed to the same extent as the amyloid, tau and 

mitochondrial hypotheses, the idea is grounded in the 

fact that anti-neuronal antibodies have been found in the 

sera of AD patients. Notably, it was found that the brain 

of AD patients contains antibodies which target the c-

terminal domain of the β-subunit [85]. In neuroblastoma 

cell lines these antibodies caused a dose dependent 

decrease in the activity of the ATP synthase complex, 

and then most strikingly, apoptosis. The apoptotic event 

was preceded by IMM hyperpolarization and then 

depolarization.  

 

A study that followed this showed that mice injected 

into their right cerebral ventricle with anti-β-subunit 

antibodies isolated from AD patient sera had reduced 

memory retention [86]. Additionally, an increased rate 

of apoptosis was detected in the dorsal hippocampal 

regions of their brains, post-mortem. Taken together, 

these two studies show a mechanism for the antibodies 

detected in the brain sera of AD patients to cause 

neuronal apoptosis and cognitive impairment, both of 

which are classical symptoms of AD.  

 

Excitotoxicity and cyclin-B1 accumulation 

 

Excitotoxicity is common to neurons in AD and may be 

mediated by the action of glutamate on the NMDA 

receptors of excitatory post-synaptic neurons [87]. 

Interestingly, a mechanism of ATP synthase inhibition 

via action on the β-subunit has been elucidated in rat 

cortical neurons and HEK293T cells using glutamate 

induced excitotoxicity [88]. Cell cultures of rat cortical 

neurons were treated with glutamate which resulted in 

an accumulation of cyclin-B1, the cyclin-B1 was shown 

to form complexes with Cdk1 which accumulated in 

mitochondria resulting in superoxide production. 
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Table 1. Regulation of individual ATP synthase subunit protein expression levels across different tissue samples from 
different AD models, summarising data presented in this review. 

 

HEK293T cells were then used in the study to 

demonstrate that the cyclin-B1-Cdk1 complex 

phosphorylates Bcl-xL causing its dissociation from the 

β-subunit of the ATP synthase, a reduction in the 

enzyme’s catalytic activity and increased oxidative 

stress. Bcl-xL is a transmembrane mitochondrial protein 

that acts as a regulator of cell death through its action 

on proapoptotic factors [89]. Bcl-xL has also been 

shown to improve the efficiency of neuronal 

metabolism through its interaction with ATP synthase 

which decreases membrane-ion leakage [90]. From 

these data it is clear that a disruption of the interaction 

between the β-subunit and Bcl-xL could contribute to 

AD pathology.  

 

OSCP in AD 
 

OSCP downregulation in AD 
 

In 2016 a comprehensive study was published 

investigating changes in expression of OSCP in the 

brains of human AD patients, MCI patients and Tg AD 

mice brains (5xFAD mice) [91]. OSCP was shown to be 

significantly downregulated in the temporal lobe of AD 

patients compared to controls. There was also a 

significant decrease in OSCP expression between the 

synaptic mitochondria of young and old 5xFAD mice 

compared with controls as well as in the non-synaptic 

mitochondria of old 5xFAD mice. Primary cultured 

mice neurons with downregulated OSCP showed 

decreased membrane potential, reduced ATP synthesis 

and elevated levels of superoxide. Beck et al. also 

demonstrated that there is a physical interaction 

between Aβ and the OSCP in brain mitochondria which 

reduced ATP synthase activity, which is supported by 

evidence of Aβ localising to brain mitochondria [92, 

93]. This study is notable as it provides mechanistic 

detail and also presents another case of Aβ peptides 

interacting with ATP synthase subunits in a detrimental 

fashion, as is the case with the α-subunit. 

 

Interaction with Cyclophilin D (Ppif) 
 

Cyclophilin D (CypD) is one of the only proteins which 

appears to be essential to the elusive molecular make-up 

of the mitochondrial permeability transition pore 

(mPTP) [94]. CypD has also been demonstrated to 

interact with ATP synthase, regulating the formation of 

the respiratory efficiency enhancing synthasome [95]. 

Of note, it was also shown that synthasome assembly 

and mPTP formation are inversely proportional. A study 

of mice in 2017 found that CypD levels increased with 

ageing, as did the physical interaction between OSCP 

and CypD, despite a decrease in the expression levels of 

OSCP [96]. These changes resulted in decreased ATP 

synthase activity and an increase in mitochondrial 

dysfunction, including a decreased ATP:oxygen ratio. A 

follow up study found that the temporal lobe of AD 

Model Tissue α-subunit β-subunit OSCP Subunit d  δ-subunit Reference 

Aβ injected rat Hippocampus  Down    Shi, X. et al., 

2011 

SweAPP Tg 

mice 

Whole brain 

homogenate 

Up     Carrette, O. et al., 

2006 

4 months old 

5xFAD mice 

Synaptic 

mitochondria 

  Down   Beck, S. J. et al., 

2016 

Synaptic 

mitochondria 

  Down   Beck, S. J. et al., 

2016 

Non-synaptic 

mitochondria 

  Down   Beck, S. J. et al., 

2016 

3x Tg AD 

mouse 

Hippocampus    Down  Yu, H. et al., 

2018 

Temporal lobe   Down   Beck, S. J. et al., 

2016 

Medial frontal 

gyrus 

   Down  Adav, S. S. et al., 

2019 

Temporal cortex    Down  Mukherjee, S. et 

al., 2017 

Frontal cortex     Up Manczak, M. et 

al., 2004 
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patient brains and 5xFAD mice had increased formation 

of CypD-OSCP complexes, and that the presence of Aβ 

substantially decreased the KD of this interaction [97]. 

The authors also showed that in 5xFAD mice CypD 

promotes the OSCP-Aβ interaction as well as the 

ubiquitin mediated degradation of OSCP. However, 

CypD deficient 5xFAD mice had improved cognitive 

function and attenuated ATP synthase deregulation 

compared to their 5xFAD littermates.  

 

Subunit d in AD 
 

Decreased expression and gene locus risk factor 

 

Subunit d of mitochondrial ATP synthase is a 

component of the FO peripheral stalk which is encoded 

by the ATP5H (ATP5PD) gene, located on the long arm 

of nuclear chromosome 17. A genome wide association 

study (GWAS) found that the shared locus of ATP5H 

and KCTD2 could be a genetic risk factor for AD, 

where until a few years ago APOE4 was thought to be 

the only instance of this [98]. A study of 3x Tg AD 

mice found significantly decreased expression of 

ATP5H in hippocampal tissue [99]. An LC-MS/MS-

based iTRAQ quantitative proteomics study also 

demonstrated that multiple proteins from the 

mitochondrial proteome are under-expressed in the 

medial frontal gyrus of AD human patients including 

ATP5H, ATP5B, ATP5I and ATP5J compared with age-

matched controls [100]. Perhaps most interestingly, 

another GWAS found the ATP5H gene to be a 

candidate gene of interest in late-onset AD (LOAD) and 

that its expression was decreased in the temporal cortex 

of AD patients [101]. An RNAi knockdown of C. 
elegans Tg for Aβ peptide proved to be protective 

against Aβ toxicity. From these data we can see that the 

ATP5H gene appears to be associated with LOAD, but 

any kind of molecular mechanism for this association is 

yet to be elucidated. 

 

The δ-subunit in AD 
 

Upregulation in AD 
 

The δ-subunit of mitochondrial ATP synthase is part of 

the F1 component and associates with the γ-subunit of the 

rotary stalk, in proximity of the F0 c-ring. It is encoded by 

the ATP5D gene located on the short arm of nuclear 

chromosome 19. In 2004 a study from Manczak et al. 

showed increased mRNA levels for ATP6 and ATP8 

genes in AD patient brains, while immunofluorescence 

analysis of the frontal cortex of AD patients found 

increased levels of the δ-subunit of ATP synthase [102]. 

While isolated, these data show yet another example of 

altered patterns of subunit expression across different 

tissues of the human AD brain.  

ATP synthase therapeutics in AD 
 

J147 

 

J147 was identified in 2011 through a drug discovery 

scheme that sought to target age associated pathologies, 

as opposed to amyloid plaques, due to age being the 

greatest risk-factor in AD onset [103]. J147 is a 

neurotrophic compound that has proven safe to use in 

animal studies and has been shown to rescue cognitive 

defects in aged mouse models of AD [104]. The 

cognitive rescue effects seen in this study are shown to 

correlate with the induction of the neurotrophic factors 

NGF (nerve growth factor) and BDNF (brain derived 

neurotrophic factor). A later study from the same group 

demonstrated that the α-subunit is a molecular target of 

J147 and that J147 modulates ATP synthase activity 

[105]. The mild inhibition of ATP synthase by J147 

may be neuroprotective. J147 also activates the 

canonical longevity pathway of AMPK/mTOR via 

CamKK2 and its administration was shown to extend 

the lifespan of Drosophila. This is noteworthy due to 

the fact that ageing is the biggest risk factor for the 

onset of AD.  

 

Following this, a computational modelling paper of 

mitochondrial αβγ was published which demonstrated a 

mechanism of how J147 could bind to the α-subunit and 

modulate enzymatic activity [106]. Soliman et al. then 

used their per-residue energy decomposition (PRED) 

protocol to identify three compounds from a molecular 

library which could modulate ATP synthase activity in a 

similar manner to J147 [107]. The compounds which 

they identified had a higher binding propensity for the 

α-subunit than J147 and specifically targeted Arg1112 

and Gln426 for binding.  

 

While J147 may have potential as an effective treatment 

for AD, it is noteworthy that the mechanism of action is 

through an inhibition of ATP synthase activity given 

that ATP synthase activity inhibition has been observed 

as part of the pathophysiology of AD. It may be that 

there are subtle but significant differences in the 

decreased levels of enzymatic activity between those 

induced by J147 and those observed in studies of AD. 

We suggest that the stage of disease progression should 

also be considered with J147 administration, as it may 

be the case that the positive outcomes of J147 treatment 

may not be observed once pathological ATP synthase 

activity inhibition crosses a certain threshold.  

 

Taken together, these data present J147 as a potentially 

suitable AD drug which alleviates cognitive symptoms 

after they have presented with a known mechanism of 

action. Currently J147 is undergoing clinical trials to 

assess its safety and efficacy as a treatment for AD.  
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Salvianolic acid B (SalB) 
 

Salvianolic acid B (SalB) is a polyphenolic compound 

which possesses therapeutic potential as a treatment of 

AD. SalB has been suggested to act on multiple different 

pathologies present in various neurodegenerative diseases, 

and in particular mitochondrial dysfunction [108]. In both 

cellular and mouse models of AD it has been reported that 

SalB can inhibit Aβ generation and may help to prevent 

neuroinflammation [109–111]. Alongside mitochondrial 

dysfunction, these two phenomena are pathologies 

classically associated with AD. 

 

With regards to ATP synthase and SalB, a study in 2018 

showed that in mouse neuronal cell cultures treated with 

Aβ SalB was able suppress superoxide production, 

preserve mitochondrial dynamics and mitigate the 

decrease in ATP synthase activity [112]. While no 

mechanism is offered by the authors of the paper, this is 

a line of investigation that we believe should be further 

pursued.  

 

CONCLUSION 
 

AD is widely studied due to the hugely debilitating 

effects it exhibits on the individual, as well as its 

prevalence in countries with ageing populations. The 

dysfunction of mitochondria is heavily implicated in 

the aetiology of the sporadic and familial forms of AD. 

There is some debate about whether mitochondrial 

dysfunction is the primary lesion in the disease onset. 

Likely mitochondrial dysfunction is a convergence 

point for several concurrent lesions resulting in disease 

pathology and progression. However, little attention 

has so far been paid to the role that ATP synthase may 

play in AD. The data presented in this review suggest 

that this is an oversight and that the dysfunction of 

ATP synthase and its constituent components not only 

leads to disease onset, but that the enzyme complex 

can be targeted pharmacologically to treat the disease. 

In J147 there is a candidate drug currently undergoing 

clinical trials, and we follow these developments with 

cautious optimism. While only one study so far has 

investigated the efficacy of SalB as a potential 

therapeutic agent for AD, the data produced is 

encouraging and we hope to see this investigated 

further. Due to both the structural and functional 

complexity of ATP synthase, we see that its 

contribution to both disease pathology and its potential 

therapeutic targeting should be considered with 

enthusiasm and studied with intellectual nuance. 
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