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INTRODUCTION 
 

Recent developments in neuroscience have allowed us to 

apply neuroimaging techniques in clinical medicine [1, 2]. 

Clinical neuroimaging techniques fall into two categories: 

structural and functional neuroimaging. The indications of 

the former, such as magnetic resonance imaging (MRI), 

and computer tomography (CT) are already well 

established and widely used for trauma and organic 

diseases, such as neurovascular diseases [3], and tumors 

[4]. In contrast, the clinical indications of functional 

neuroimaging techniques, such as functional magnetic 

resonance imaging (fMRI), electroencephalography 

(EEG), and magnetoencephalography (MEG) have 

gradually come into use, for disorders such as epilepsy 

[5], and pre-surgical evaluation of the eloquent cortex [6, 

7] of patients undergoing neurosurgical treatments. The 

measurement methods of functional neuroimaging are 

subdivided into two categories: event-related (i.e., 

evoked) and resting-state (i.e., spontaneous) recordings  

 

[8]. Although the former is useful and important for pre-

surgical mapping of the eloquent cortex [6, 7], it can be 

used only for patients who are able to understand given 

tasks. In clinical setting, the latter task-free resting-state 

measurement is a valuable examination, since patients in 

any state (e.g., coma, disoriented, and irritated) can be 

scanned safely and efficiently. As such, it is used for 

diagnosing various diseases, such as dementia/ 

neurodegenerative diseases [9], brain tumors [10], and 

other neurological disorders [11–13]. There are two major 

types of functional neuroimaging methods used to 

measure the resting-state condition: EEG/MEG, which 

measures the electrophysiological oscillation of neurons 

[14], and fMRI, which is a neurovascular coupling-based 

method [15]. EEG/MEG captures more dynamic neural 

activities than does fMRI (EEG/MEG has a better 

temporal resolution and can provide oscillatory power 

information in wider range with better sensitivity). 

Furthermore, from a clinical perspective, EEG/MEG has 

two advantages over fMRI; (1) MRI scans have potential 
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ABSTRACT 
 

Aging and gender influence regional brain activities. Although these biases should be considered during the 
clinical examinations using magnetoencephalography, they have yet to be standardized. In the present study, 
resting-state magnetoencephalography data were recorded from 54 healthy females and 48 males aged 22 to 
75 years, who were controlled for cognitive performance. The regional oscillatory power was estimated for 
each frequency band (delta, theta, alpha, beta, low-gamma, and high-gamma) using the sLORETA-like algorithm 
and the biases of age and gender were evaluated, respectively. The results showed that faster oscillatory 
powers increased with age in the rostral regions and decreased in the caudal regions, while few slower 
oscillatory powers changed with age. Gender differences in oscillatory powers were found in a broad frequency 
range, mostly in the caudal brain regions. The present study characterized the effects of healthy aging and 
gender asymmetricity on the regional resting-state brain activity, with the aim to facilitate the accurate and 
efficient use of magnetoencephalography in clinical practice. 
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risks. Patients may occasionally bring metallic items into 

the scanner unintentionally which is highly dangerous in 

the strong magnetic field produced by the MRI scanners. 

In case of emergency, it takes up to 10 seconds to abort 

MRI scan to remove the patient if needed. Moreover, 

patients often dislike MRI scans as the device generates 

loud noises [16]. Conversely, EEG/MEG lacks all this 

potential risks and drawbacks. (2) fMRI is based on 

blood-oxygen-level-dependent (BOLD) signal changes, 

which is affected by various factors, such as medications 

and cardiovascular diseases [17, 18]. Older individuals 

often suffer from certain conditions where prescribed 

medications are required (e.g., calcium channel blockers 

for hypertension) which can affect fMRI data. Although 

BOLD signal change based on the assumption of 

neurovascular coupling [19], it remains unclear whether 

the technique can capture age-related changes [17]. In 

contrast, EEG/MEG measures neural activity directly, 

thus it is independent of these assumptions.  

 

EEG and MEG have comparable spatial resolution [20], 

however, some studies have reported that MEG spatial 

resolution is superior to that EEG [21, 22]. One major 

bias towards on-scalp EEG signals is skull‟s electrical 

conductivity [22, 23] which differs between skull layers 

[24]. Although there are spatial filtering algorithms 

which take into account the conductivity bias of EEG 

source modelling [23], MEG is more advantageous as it 

is free from such biases. In particular, MEG can provide 

straightforward results when the study involves 

participants from various backgrounds (e.g., different 

age and genders), which in turn, the skull conductivities 

would vary based on the participants. Another 

advantage of MEG is that it is electrode- and gel-free 

and has short preparation period. Taken together, for the 

purpose of clinical assessment / screening, resting-state 

functional neuroimaging using MEG is both effective 

and sensitive to detect pathological characteristics of 

brain activities. Resting-state MEG recording is used 

during daily examination in our institution; over 700 

scans were performed at our two MEG sites in 2018. 

 

Resting-state EEG/MEG represents brain activities in 

terms of the amplitude or the power of neural oscillations. 

The power changes with physiological aging, and there is 

an asymmetricity between females and males. The review 

[25] summarized the effect of age on EEG signals as (1) 

an increase in the fast oscillatory powers (beta and 

gamma) mainly in the rostral region, and (2) a decrease in 

the slow oscillatory powers (delta, theta, and alpha) 

mainly in the caudal region (please see [25–27], for 

reviews). More recently, multiple studies have refined 

these findings, and it is now generally agreed that 

physiological aging causes changes to spectral power 

profiles; a pronounced power decrease of alpha (8–13 

Hz), and a global “slowing”, with increases in power in 

delta (2–4 Hz) and theta (4–8 Hz) ranges and changes of 

the topographic locations of these frequency bands [28–

33]. Compared to the effects of aging, fewer studies have 

addressed the effects of gender in this topic. To the best of 

our knowledge, only one study has directly compared the 

resting-state EEG spectral profiles between genders [34]; 

it found that females have a significant increase in their 

parasagittal mean frequency compared to males. Although 

these studies revealed the effects of age and gender on 

EEG/MEG 'signals' (i.e., sensor-level data), their effects 

on regional brain activities (i.e., source-level data), which 

are important for clinical use, are not well studied. 

 

Changes in the resting-state spectral power profiles 

reflect two types of changes in the brain: network-based 

changes, such as thalamo-cortical network, or functional 

changes of local neural activities. Slower oscillatory 

powers are primarily produced by the thalamo-cortical 

network, while faster oscillatory powers depend on 

local activities [31, 35–41]. This indicates that 

deviations of resting-state spectral power profiles from 

controls reflect malfunctions of brain functions, which 

can be used as EEG/MEG biomarkers for age-

associated (and/or gender-related) functional disorders 

[42]. For example, using resting-state MEG data and 

their spectral profiles, patients with dementia (e.g., 

Alzheimer‟s disease and vascular dementia) and mild 

cognitive impairments (MCI) can be screened [9, 42–

45]. However, for assessing disorders with such 

biomarkers, clinical references (i.e., control values) are 

needed. There are various studies regarding resting-state 

EEG/MEG data of healthy controls, however, the 

associated references are fewer and the evidence are 

weaker than what is observed with other neuroimaging 

modalities, such as MRI and CT. The central purpose 

and motivation of the present study is to add references 

to resting-state MEG control data and empower 

evidence level of the reference data. 

 

Resting-state brain activities can be measure in two 

different status; with participants‟ eyes closed (EC) or 

open (EO). Previous studies have used either condition, 

depending on their recording / experimental 

environments and study purposes [46]. Some studies 

have assessed the difference of the spectral profiles 

between EC and EO conditions directly, using MEG 

recordings of patients or healthy participants with drug 

intake [47, 48], and EEG recordings of healthy controls 

[26, 49–52]. As one review described [46], both 

conditions have methodological pros and cons. For 

example, more eye blinks (artefacts) are expected in EO 

condition, whereas eyes‟ rolling (also artefacts) are 

observed in EC condition. While EC data are stable 

over sessions, participants can easily drift into 

drowsiness while keeping their eyes closed. EC and EO 

conditions generate distinctive neural activities [50]. 
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The control data from one condition is not comparable 

to that of other condition. For providing control data for 

both recording conditions, we collected data in both 

conditions. However, we did not assess the quantitative 

difference between EC and EO conditions. 

 

The primary objective of the present study is to 

accumulate references to resting-state MEG control data 

by providing control information (e.g., influence of 

healthy aging to MEG data) which can be contrasted into 

clinical data (e.g., influence of unhealthy aging to MEG 

data). Previous studies lack source-level reference data. 

Herein, we provide the source-level reference data by 

studying the effects of healthy aging and gender on single 

dataset in both EC and EO conditions, to the best of our 

knowledge, for the first time. For this purpose, we 

recorded resting-state brain activity using MEG from 54 

females and 48 males ranging from 22 to 75 years old, 

who were cognitively healthy, and evaluated the effects of 

age and gender on the regional brain activities. The result 

of the present study makes the resting-state functional 

neuroimaging robust and reliable in the clinical setting. 

 

RESULTS 
 

MMSE-J 

 

To ensure that participants‟ cognitive performance was 

intact, they completed a Mini-Mental State Examination 

Japanese version (MMSE-J) [53, 54]. The MMSE-J 

scores ranged between 26 and 30 (30 is the full score). 

According to the MMSE-J cut-off criteria (usually 23), 

none of the participants had neurological disorders or 

cognitive impairment. The details of the scoring 

parameters are shown in Table 1. All participants got the 

full score in „Orientation to place‟, „Language‟, 

„Repetition‟, „Reading‟ and „Copying‟ sections; however, 

23 participants answered incorrectly in the „Attention and 

calculation‟ section and 22 in the „Recall‟ section. Twenty 

participants also answered incorrectly in the „Writing‟ 

section, where they wrote a greeting message or a single 

word despite being instructed to write a sentence. Very 

few participants lost scores in other sections; four 

participants lost scores in the „Orientation to time‟ section, 

three in the „Three-stage command‟ section and one in the 

„Registration‟ section. 

 

Correlations between age and regional MEG 

oscillatory power 

 

Resting-state MEG data were acquired for 300 s, for 

eyes-closed (EC) and eyes-open (EO) conditions. By 

applying the source-inversion techniques to the MEG 

data (please see Materials and Methods section for the 

details), oscillatory powers of the resting-state cortical 

activities were projected on the source space, for six 

frequency bands (delta, theta, alpha, beta, low gamma, 

and high gamma) separately. The correlations between 

regional oscillatory power and age are shown in Figures 

1 and 2, and Table 2. For EC condition, aging 

significantly reduced caudal theta (r = -0.30, p = .002) 

and high-gamma power (r = -0.37, p < .001), while it 

significantly increased rostral alpha (r = 0.28, p = .005) 

and beta powers (r = 0.22, p = .025). In EO condition, 

aging significantly reduced caudal alpha (r = -0.44, p < 

.001) and high-gamma powers (r = -0.28, p = .005), 

while it significantly increased rostral alpha (r = 0.38, p 

< .001) power. Overall, the results for the EC (Figure 1) 

and EO (Figure 2) conditions were similar. When the 

correlations were strong, the direction of the 

relationship was the same, positive or negative, for both 

conditions (see r in Table 2). The relative powers in the 

rostral region showed positive relationships with age, 

whereas the caudal regions showed negative 

relationships. Please note that the significant 

relationships were present when using nonparametric 

statistical approaches (please see Supplementary Table 

1 in Supplementary Material for details). 

 

Effect of age on MEG oscillatory power on source 

space 
 

The effect of age on oscillatory power in source space is 

visualized in Figure 3 and their peak information is 

described in Table 3. The results are comparable to those 

of the correlation analysis. For the EC condition (Figure 

3A and Table 3A), theta, alpha, and high-gamma powers 

were positively related to age in the right fronto-temporal 

areas (peak locations were in the right orbitofrontal cortex 

for theta, right temporal pole / auditory cortex for alpha, 

and right frontopolar area for high-gamma power), 

whereas alpha, beta, and gamma powers were negatively 

related to age in the right occipital/posterior temporal 

areas (peak locations were in right V4 / V3 for alpha, right 

V1 /V2 for beta, right V1 / V2 for low-gamma, and right 

fusiform gyrus for high-gamma power). The EO (Figure 

3B and Table 3B) condition showed similar trends to 

those observed in the EC condition, but coarser; alpha and 

high-gamma powers were positively related to age in a 

broad area spreading from the frontal to the temporal 

cortices (peak locations were in left temporal pole for 

alpha and right frontopolar area for high-gamma power), 

whereas alpha and beta powers were negatively related to 

age in a large area covering the occipital cortex (peak 

locations were in right V1 / V2 for both of alpha and beta 

powers). 

 

Effect of gender on MEG oscillatory power in source 

space 

 

The gender-specific oscillatory powers are mapped on 

the source space (Figure 4 and Table 4). Gender
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Table 1. Descriptive statistics of MMSE-J scores.  

MMSE-J section M SD Max Min #Full (102) 

Orientation to time (5) 4.96 0.20 5 4 98 

Orientation to place (5) 5.00 - 5 5 102 

Registration (3) 2.99 0.10 3 2 101 

Attention and calculation (5) 4.67 0.72 5 2 79 

Recall (3) 2.75 0.52 3 0 80 

Language (2) 2.00 - 2 2 102 

Repetition (1) 1.00 - 1 1 102 

Three-stage command (3) 2.97 0.17 3 2 99 

Reading (1) 1.00 - 1 1 102 

Writing (1) 0.80 0.40 1 0 82 

Copying (1) 1.00 - 1 1 102 

Total score (30) 29.15 1.04 30 26 49 

Numbers in brackets indicate a full score of the section. All participants got the same score (full score) for subsections of 
“Orientation to place”, “Language”, “Repetition”, “Reading”, and “Copying”; SDs are not reported for these subsections. M, 
Mean; SD, Standard deviation; Max, Maximum score in the section; Minimum score in the section; #Full, number of 
participants who got a full score in the section. 

 

differences were found in limited areas. In the EC 

condition (Figure 4A and Table 4A), the occipital beta 

power was higher in males than in females (peak 

location was in bilateral V1 / V2). In the EO condition 

(Figure 4B and Table 4B), the right parietal alpha (peak 

location was in right intraparietal sulcus), parietal low-

gamma (peak location was in right superior parietal 

cortex) and left temporal high-gamma powers (peak 

location was in left middle temporal gyrus) were higher 

in females than in males; the left parietal delta power 

(peak location was in left superior parietal cortex) was 

higher in males than in females. 

 

DISCUSSION 
 

Resting-state functional neuroimaging has gradually 

come into clinical use. To fully benefit from this 

technique, it is important to know how healthy aging 

and gender differences affect the resting-state regional 

brain activities. To achieve these goals, we collected 

MEG data from 54 females and 48 males, who were 

cognitively healthy, and assessed the relationship 

between regional oscillatory power and age and gender 

profiles. In the present study, we showed that (1) few 

slower oscillatory powers changed with age, (2) faster 

oscillatory powers increased with age in the rostral 

region of the brain, whereas they decreased in the 

caudal region, (3) age-dependent oscillatory power 

changes were more focal in the eye-closed condition 

than in the eye-open condition, (4) gender differences in 

oscillatory powers were observed in a broad frequency 

range (from delta to high gamma), and (5) the gender 

differences were mostly observed in the caudal brain 

regions. Males exhibited stronger power in lower 

frequency in the left hemisphere and females exhibited 

stronger power in higher frequency in the right 

hemisphere. These findings corroborated previous 

results using EEG/MEG and the present study provides 

additional region-specific information, which is 

essential for clinical use. 

 

Age-dependent changes of cortical oscillatory 

powers 

 

According to previous studies using EEG, there are two 

major age-dependent changes in neural oscillatory 

powers, (1) a decrease in slow oscillatory powers (delta, 

theta, and alpha) mainly in the caudal region (2) an 

increase in the fast oscillatory powers (beta and gamma) 

mainly in the rostral region [25–27, 55]. Changes in the 

resting-state spectral power profiles reflect two types of 

changes in the brain: network-based changes, or 

functional changes of local neural activities. Slower 

oscillatory powers are primarily produced by non-local 

neural network, such as thalamo-cortical network, while 

faster oscillatory powers depend on local activities [31, 

35–41]. In the following sections, we will discuss these 

separately. 

 

Age-dependent changes in low frequencies 

 

Low frequency neural oscillatory powers are primarily 

produced by non-local neural networks, such as 

subcortical-cortical and cortico-cortical networks [31, 

35–41]. Alpha oscillation is modulated by thalamo–

cortical and cortico–cortical interactions, which 

facilitate/inhibit the transmission of sensorimotor 

information and the retrieval of semantic information 
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from cortical storage [56–58]. The system is sustained 

by excitatory activity in the cholinergic brainstem 

pathway: its function becomes gradually weaker with 

age, leading to the reduction of alpha power [59, 60]. 

Theta oscillation is produced by networks between the 

cortex and subcortical regions such as the hypothalamic 

and septal regions, and the hippocampus [31, 38].  

For slower oscillations, the theta power in the EC 

condition decreased in the caudal region with age 

(Figure 1B). The alpha power in the EO condition 

decreased in the caudal region but increased in the 

rostral region with age (Figure 2C), which indicates that 

distinctive systems modulate alpha power in the rostral 

and caudal regions. Previous studies have consistently 

 

 
 

Figure 1. Relationships between age and regional source power for EC condition. The scatterplots visualize the relationships 

between age (x-axis) and regional source power (y-axis) in each frequency band (A: Delta, B: Theta, C: Alpha, D: Beta, E: Low-gamma, and F: 
High-gamma band) for EC condition. The lines represent linear-fitted (in a least-squares sense) data. Double asterisks (**) indicate significant 
correlations (please see Table 2 for statistical values). 
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found that alpha power is weaker in older individuals 

[26, 61, 62]. Another study using EEG showed at least 

two different types of regional alpha oscillatory powers; 

occipito-parietal and occipito-temporal alphas [63]. This 

suggests that there are multiple sources of alpha 

oscillatory powers, which have distinctive age-

dependent behaviors [63, 64], which supports our 

interpretation that age-dependent alpha power changes 

were distinctive between the rostral and caudal regions. 

Alpha oscillation plays an important role in processing 

sensory signals [65], and, since sensory areas are 

located in the caudal region, decreasing sensory inputs 

 

 
 

Figure 2. Relationships between age and regional source power for EO condition. The scatterplots visualize the relationships 

between age (x-axis) and regional source power (y-axis) in each frequency band (A: Delta, B: Theta, C: Alpha, D: Beta, E: Low-gamma, and F: 
High-gamma band) for EO condition. The lines represent linear-fitted (in a least-squares sense) data. Double asterisks (**) indicate significant 
correlations (please see Table 2 for statistical values). 
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Table 2. Correlations between age and regional source powers.  

  Delta Theta Alpha Beta Low-gamma High-gamma 

r p r p r p r p r p r p 

(A) EC Rostral 0.03 0.764 0.12 0.231 0.28* 0.005 0.22* 0.025 0.20 0.045 0.00 0.976 

 Caudal 0.05 0.640 -0.30* 0.002 -0.14 0.151 -0.10 0.330 -0.07 0.512 -0.37* 0.000 

(B) EO Rostral -0.12 0.211 -0.14 0.173 0.38* < .001 0.11 0.289 0.17 0.097 0.05 0.650 

 Caudal -0.06 0.544 -0.13 0.190 -0.44* < .001 -0.17 0.090 -0.11 0.261 -0.28* 0.005 

Pearson’s correlation coefficients (r) between age and mean source power in each region (Rostral and Caudal), shown for 
each condition (Eyes-closes and Eyes-open) and frequency band (Delta, Theta, Alpha, Beta, Low-gamma and High-gamma). 
The p-values (p) are for testing the hypothesis that there is no significant relationship (null-hypothesis), which were 
controlled for multiple comparison using FDR method. Asterisks indicate the coefficient is statistically significant after 
applying FDR correction. r, Pearson’s correlation coefficient; p, p-value; EC, eyes-closed; EO, eyes-open. 
 

 
 

Figure 3. Cortical regions where the oscillatory powers were significantly predicted by age. Colored areas represent the clusters 
where the oscillatory powers were significantly predicted by age, either in positive- or negative-fashion (p < 0.05, FWE-corrected). The results 
were thresholded at alpha level then superimposed on the brains, thus the intensities of color do not mean anything. (A) Results for EC 
condition (B) Results for EO condition. M, Males; F, Females. 
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Table 3. Summary of the age-related MEG source peak co-ordinates (MNI) and their statitcal significance.  

Condition Age predictor Frequency band LR Cortical area X Y Z t p (FWE) 
(A) EC Positive Theta R Fo3 

(orbitofrontal cortex) 
24 44 -16 3.81 .031 

  Alpha R Temporal pole 50  18 -22 3.95 .018 
   R Te1.0 

(auditory cortex) 
50 -14 10 3.93 .018 

  High-gamma  Fp1  
(frontopolar area) 

14 68 22 3.75 .040 

 Negative Alpha R V4 / V3 26 -82 -6 4.42 .004 
  Beta R V1 / V2 4 -68 6 4.57 .002 
  Low-gamma  V1 / V2 16 -66 0 3.81 .030 
  High-gamma  Fusiform gyrus 32 -56 -4 4.31 .008 
(B) EO Positive Alpha L Temporal pole -50 10 -14 5.46 < .001 
  High-gamma R Fp1 

(frontopolar area) 
12 64 20 3.76 .041 

 Negative Alpha R V1 / V2 26 -68 6 5.95 < .001 
  Beta R V1 / V2 14 -64 2 5.11 < .001 

The name of cortical area, MNI coordinates, and relevant statistical values at a peak voxel of SPM (corresponding to Figure 3). 
(A) Results for EC condition (B) Results for EO condition. The p-values were corrected for multiple comparisons by the FWE. 
LR, Left or Right; X, X-coordinate; Y, Y-coordinate; Z, Z-coordinate; t, t-value; p, p-value; FEW: Family-wise-error correction; 
EC, eyes-closed; EO, eyes-open. 
 

 

could be one of the reasons why caudal alpha powers 

were reduced with age. This hypothesis was supported 

by the fact that age-dependent alpha decrease was 

significant in the EO condition in which visual system 

is active and visual input affected brain activities. 

 

Regarding the theta power, it has been demonstrated 

that older healthy controls (70 ± 7.8 years) exhibit 

reduced global theta power when compared with 

younger participants (23 ± 4.8 years) especially in the 

posterior, midline, and right hemisphere [61]. Another 

study showed that theta power changed in a quadratic 

fashion; it decreased marginally between 20 and 40 

years of age and then increased slightly after 50 years 

[66]. A MEG study with 220 participants showed a 

quadratic change of delta and theta powers in 

 

 
 

Figure 4. Cortical regions where the oscillatory powers were significantly different between gender. Colored areas represent 

the clusters where the oscillatory powers were significantly different between gender (p < 0.05, FWE-corrected). The results were 
thresholded at alpha level then superimposed on the brains, thus the intensities of color do not mean anything. (A) Results for EC condition 
(B) Results for EO condition. M, Males; F, Females. 
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Table 4. Summary of the gender-related MEG source peak co-ordinates (MNI) and their statistical significance. 

The name of cortical area, MNI coordinates, and relevant statistical values at a peak voxel of SPM (corresponding to Figure 4). 
(A) Results for EC condition (B) Results for EO condition. The p-values were corrected for multiple comparisons by the FWE. 
LR, Left or Right; X, X-coordinate; Y, Y-coordinate; Z, Z-coordinate; t, t-value; p, p-value; FWE, Family-wise-error correction; 
EC, eyes-closed; EO, eyes-open. 
 

healthy aging participants [67]. Our results were 

largely consistent with these previous studies. Theta 

power in the EC condition decreased with age in the 

caudal region (Figures 1B and 2B), while increased 

with age in the orbitofrontal cortex (Figure 3A and 

Table 3). The reduction of hippocampal volume (and / 

or age-related cognitive impairment) which we have 

shown in thickness analysis of the MRI data 

(Supplementary Materials) potentially explains the 

reduced theta oscillation. However, a previous study 

has shown that theta power decreased in older healthy 

controls in comparison with younger participants even 

with having similar hippocampal volume and cognitive 

performance [68]. We interpreted that theta power 

reduction could correspond to the levels of 

neurogenesis rate. Older adults have fewer new 

neurons since they recruit new ones with long intervals 

[69]. The longer interval of neurogenesis in the 

hippocampus may explain the global theta power 

reduction. The increased theta oscillatory power in the 

orbitofrontal cortex among the elderly was consistent 

with a previous study that showed that a higher theta 

power at rest in the frontal and parietal regions in 

healthy older adults is associated with better cognitive 

function, and is a sign of healthy neurocognitive aging 

[70]. This would be a good explanation for the results 

of this study. 

 

Previous studies have found that delta power is weaker 

among older individuals [55]. A MEG study with 220 

participants showed a quadratic change of delta powers 

in healthy aging participants [67]. The present study did 

not reveal any age-dependent changes in delta power 

(Figures 1–3). This could be explained by the fact that 

delta oscillatory power is mainly related with 

pathological conditions [71], such as stroke [72, 73] and 

Alzheimer's disease [74]; therefore, we did not find 

specific regions which showed age-dependent changes 

in delta oscillatory power in our healthy volunteers. 

That enhanced slow oscillatory power could be 

explained by pathological conditions rather than 

physiological aging is a useful information for clinical 

practice.  

 

Age-dependent changes in high frequencies 

 

Higher frequency oscillations are mainly produced by 

local neural activities [37, 75–77]. In our study, higher 

frequency oscillatory powers showed clear age-

dependency, which was less evident in lower frequency 

oscillations (see Figure 1 and 2). Our results showed: 

(1) age-dependent increases of beta power in the rostral 

region, (2) age-dependent high-gamma power increases 

in the orbitofrontal cortex, and (3) age-dependent 

decreases of all higher oscillatory powers in the caudal 

region. 

 

Previous studies have shown that beta and gamma fast 

oscillatory powers increase with age until sixty in 

cognitively healthy participants [26, 52, 55, 61, 62, 78, 

79], which appears to be a favorable sign for preserved 

intellect among the elderly [25]. In turn, a reduced high 

frequency power is a not good sign for health; reduced 

beta power has been shown to be associated with 

reduced general health among the elderly [25], and a 

reduction of gamma power has been shown to 

correspond to a decrease of cortical thickness of the 

occipital cortex in the elderly [79]. An MEG study with 

220 recordings showed a linear increase of high 

frequency power (mainly beta-1 and beta-2) from 

childhood until the age of 60 years [67]. 

 

In the caudal brain, higher oscillatory powers decreased 

with age. Gamma oscillatory powers depend on 

synaptic inhibition mediated by γ-aminobutyric acid 

(GABA)-containing interneurons [80], and contribute to 

the visual function [81]. Thus, it is reasonable that fast 

oscillation and visual function become weaker with 

healthy aging [82–84]. The GABAergic system plays an 

important role as an inhibitory control system in the 

central nervous system. This inhibitory system becomes 

weaker with age in sensory systems and the 

Condition Contrast  Frequency band LR Cortical area X Y Z t p (FWE) 
(A) EC Male > Female Beta LR V1 / V2 0 -88 6 3.71 .032 
(B) EO Female > Male Alpha R Intraparietal sulcus 26 -54 36 3.71 .041 
  Low-gamma R Area 7A / 7P 

(Superior parietal cortex) 
12 -64 58 4.83 .001 

  High-gamma L Middle temporal gyrus -64 -16 -24 3.89 .029 
 Male > Female Delta L Area 7A / 7P 

(Superior parietal cortex) 
-14 -64 52 4.35 .009 
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hippocampus, while it becomes stronger in prefrontal 

regions [85–87]. In the rostral brain, higher oscillatory 

powers increased with age. The increased 

electrophysiological activities in prefrontal regions is 

explained by compensation to age-related brain changes 

[25]. The GABA system is modulated by the 

dopaminergic (DA) system, which mainly controls the 

rostral part of the brain [88], and becomes weaker with 

aging [89–92]. Taken together, it is reasonable that the 

rostral and caudal brain regions showed different age-

dependent gamma frequency profiles. The 

neurochemical background of beta oscillatory power is 

controversial, however, it is also related to the DA and 

GABA systems [93–95], which would account for the 

observed age-dependent decrease in beta power in 

parallel with gamma power. 

 

Gender-specific differences 

 

Both the structure and function of the brain are different 

between males and females [96, 97]. One prominent 

structural gender difference is the cortical thickness: 

globally, females have thicker cortices than males, and 

females and males have thicker cortices in the left and 

right hemispheres, respectively [96]. These differences 

lead to gender differences in neural oscillations. An 

EEG study showed that females exhibit stronger fast 

oscillatory powers (i.e., beta 1 and beta 2), while males 

exhibit stronger slow oscillatory powers (i.e., alpha 2 

and theta) [34]. A MEG study has shown that females 

have a faster alpha frequency, higher beta power, and 

higher spectral entropy than males [98], and an EEG 

study has shown that the prefrontal absolute power is 

higher in females than males [99]. The present study 

provides more region-specific information about these 

differences. Most of the differences were observed as 

laterality in the caudal brain regions. Males showed 

stronger power in lower frequencies in the left caudal 

region and females showed stronger power in higher 

frequencies in the right caudal region. The gender 

difference in cortical thickness is prominent in the 

posterior temporal and inferior parietal regions [96]; 

these regions are functionally connected to occipital 

areas, where gender differences are reported regarding 

visual processing [100, 101]. Visual processing and 

gamma oscillation are linked by the so called „visual 

induced gamma oscillation‟ [102], which has been 

shown to be stronger in females than in males [103]. 

Cortical thickness is related to gamma power [103] and 

anatomical differences mainly cause differences in 

oscillatory power in caudal regions of the brain. 

Moreover, there are interactions between low (delta, 

theta, and alpha) and high (beta and gamma) powers 

[104]. Taken together, this may explain why the 

oscillatory differences were mainly a laterality in caudal 

regions of the brain between females and males. 

We showed that gender difference was more obvious in 

EO condition than EC condition (Figure 4). It is known 

that gender affects information processing through 

differences in neurotransmitters [105], and that 

distinctive information processing are working between 

EC and EO conditions. Information processing in the 

brain falls into two categories: with and without outside 

sensory input. Information processing driven by sensory 

inputs is referred to as 'bottom up' and that without 

input as 'top-down' processes. Since visual inputs are 

suppressed during EC condition, the dominance of 

bottom-up processing is varied between EC and EO 

conditions. Bottom-up and top-down processing are 

represented differently in neural oscillatory signals. 

Bottom-up process is represented by high frequency 

while the top-down by low frequency, which is 

dominated by different neurotransmitters: GABAergic 

neuron serves high (i.e., bottom-up process) and 

cholinergic neuron serves low frequencies (i.e., top-

down process). There are also gender differences in 

concentrations of GABAergic neurons in some regions, 

including temporal area [106]. Females show higher 

frontal cortex cholinergic activity whereas males have 

higher activity in hippocampus [107]. Taken together, it 

is possible that EC and EO conditions generated 

different patterns of gender-specific oscillatory signals, 

in the caudal part of the brain, which primarily 

contribute to sensory processing (i.e., bottom-up 

processing). However, these differences interplay with 

other factors, such as vigilance, arousal, and attention, 

whose levels are thought to be different between EC 

and EO conditions. 

 

Limitations 

 

The present study provided significant results since it 

demonstrated the MEG source power at the cortical 

level with a relatively large population size (102 

participants), wide age distribution (age range, 22–75 

years) and controlled health status. However, given that 

the present study aimed to provide a normalized dataset 

available for clinical research and practice, five 

limitations can be raised. 

 

First, we recruited the participants from a limited 

population; our hospital staff members, or their family 

members, relatives, or friends; thus, some variables, 

such as economic status and educational levels, will be 

less varied than the populational level. In this sense, the 

study was not a true “population study”. However, this 

limitation brings an advantage to the present study; we 

could easily confirm that all participants were healthy. 

This was validated not only in the experimental 

environment (by using MMSE-J) but also in their life 

history. As an objective assessment, only MMSE-J was 

used for controlling participants‟ cognitive functions, 
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which is another limitation (e.g., single 

neuropsychological test cannot ensure that the 

participants were healthy). Had we recruited 

participants from the general population and screened 

them according to the MMSE-J score alone, we would 

have had faced a risk of recruiting people who were not 

healthy. We prioritized recruiting 'truly healthy' people 

to create a reliable reference dataset. 

 

Second, the results should be validated using different 

source inversion algorithms, such as the minimum norm 

algorithm (IID in SPM-12; [108]) and the multiple 

sparse prior algorithm (MSP algorithm in SPM-12; 

[109]). The goal of the present study is to provide a 

reference dataset for clinical practice, thus we only used 

the COH (i.e. sLORETA) algorithm, which is relatively 

simple, widely recognized, conventional, and non-time-

consuming. However, different source inversion 

algorithms may generate distinctive source patterns 

[110]. Therefore, the present results should be 

compared to those of other algorithms for a broader 

insight regarding the source level effects. 

 

Third, the present study examined the linear effect of 

age on the source power alone, but its non-linear trends 

were not considered. Some previous studies have 

suggested that aging has both linear and non-linear 

correlations to neuroscientific signals [55, 78]. The non-

linear (e.g. quadratic) functions may explain the 

relationship between age and source power better than 

the linear function in some conditions. 

 

Fourth, inter-regional relationships, such as connectivity 

and networks, have not been assessed in this study. This 

study was motivated by the requirements from clinical 

examinations: a simpler analysis is favored in daily 

clinical practice. Thus, we have only studied source-

level results of the preprocessed MEG sensor data. 

Using our method, it takes less than an hour to complete 

the analysis, and the results are comprehensible for 

clinicians. However, the cortical network behind the 

present findings could be useful for future clinical 

medicine, which should be addressed in the future 

studies. 

 

Fifth, the quantitative differences between the EC and 

EO conditions were not examined in the present study. 

We have reported the results for both conditions, which 

appear to be distinct. However, it is noteworthy that the 

displayed differences between the EC and EO 

conditions (i.e., difference between Figure 1 vs. Figure 

2; and Figure 3A vs Figure 3B) are not informative, 

because the data scales are relative power, and were not 

statistically compared between EC and EO. Studying 

the difference between the EC and EO conditions 

should be assessed in future studies.  

CONCLUSIONS 
 

The present study examined the effects of age and 

gender on the regional brain activities reflected as the 

source intensities of resting-state MEG signals. We 

demonstrated that only some slower oscillatory powers 

change with age; and that faster oscillatory powers 

increase in the rostral regions of the brain with age, but 

decrease in the caudal regions. We found age-dependent 

oscillatory power changes to be more focal when 

participants had their eyes open, and that gender 

differences in oscillatory powers occurred over a broad 

frequency range. Finally, we observed that gender 

differences were mostly in the caudal brain region. The 

scanning and analysis procedures are compatible with a 

real clinical setting, and the findings helps us to 

interpret the information of the regional brain activities 

more effectively and accurately in clinical practice. 

 

MATERIALS AND METHODS 
 

Participants 

 

Healthy volunteers were recruited based on the 

following three criterions. First, all candidates were 

either staff members of a hospital affiliated with one of 

the authors, or were their family members, relatives, or 

friends, who were personally guaranteed by the hospital 

staff as being healthy and having no disabilities that 

prevent them from living an ordinary life. Secondly, all 

candidates were interviewed by a registered clinician to 

confirm their physical and mental health conditions 

were within normal range. Third, all participants 

completed MMSE-J; the cut-off score was defined as 

>26 (the normal cut-off threshold is 23; [53]). The 

„serial sevens‟ version of the MMSE-J was used in the 

present study. Finally, 102 volunteers (54 females; age 

range, 22–75 years; mean and SD of age, 44±14.2 

years) were enrolled in the study. The breakdowns of 

participants are described in Table 5. Not all the 

participants were completely healthy, but were healthy 

at a passable level; the participants with normal levels 

of disabilities or diseases, such as mild visual/hearing 

impairments and hypertension, were included since the 

present study was aimed at providing a normative 

dataset that will be used for future clinical 

examinations. The present study conformed to the 

ethical principles of the Declaration of Helsinki and was 

approved by the Ethics Committee of Hokuto Hospital 

(approval number: 1001). Written informed consent was 

obtained from each participant during enrolment. 

 

Scanning details 

 

Resting-state brain activities were acquired using a 160-

channel whole head-type gradiometer (MEG vision 
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Table 5. Distributions of participants.  

Age range Number of Females Number of Males Total 

20-29 12 10 22 

30-39 11 9 20 

40-49 13 8 21 

50-59 10 12 22 

60-69 5 6 11 

70-79 3 3 6 

Total 54 48 102 

 

PQ1160C, Yokogawa, Kanazawa, Japan) in a 

magnetically shielded room. The MEG system had a 

magnetic field resolution of 3 fT/√Hz in the white noise 

region. The sensing and reference coils in this system 

are both 15.5 mm in diameter, with a 50 mm baseline 

and 23 mm of separation between each pair of sensing 

coils. The recording sampling rate was 1,000 Hz with 

200 or 500 Hz low pass filter. Participants were invited 

to the MEG scan during the daytime (9:00-18:00) which 

is comparable to the time for normal clinical 

examination (i.e., hospital hours). They were asked to 

lie down in supine position with their eyes closed (EC 

condition; scanning session 1) and eyes open (EO 

condition; scanning session 2). The data were acquired 

for 300 s for each condition (i.e., session). They were 

asked to remain still and stay awake as much as possible 

during the scans. The participants‟ state of vigilance 

was monitored using a camera in a shielded room, 

which was double-checked by self-report following the 

scan (no participants showed / reported obvious changes 

in their state of vigilance). A screen was placed 30 cm 

in front of the participants, and a black round fixation 

point (0.2° diameter of visual angle) was projected from 

the outside of the magnetically shielded room using a 

projector (PROPIxx, VPixx Technologies, Saint-Bruno, 

Canada) through a mirror. Participants watched the 

fixation point to reduce ocular artefacts during the EO 

session. Three magnetic marker coils were attached to 

the skin of the participant‟s head (the first two were 

located at 10 mm in front of the left and right tragus and 

the third at 35 mm above the nasion) to localize their 

head positions inside the MEG dewar. Anatomical T1-

weighted MRI images were acquired for all participants 

using a 3.0-T scanner (SIGMA Excite 3.0T, GE 

Healthcare, Milwaukee, WI) with a standard head coil 

with three fiducial markers (Medtronic Surgical 

Navigation Technologies Inc., Broomfield, CO, USA) 

positioned at the same position of the magnetic marker 

coils.  

 

MEG data analysis 
 

To improve the versatility and applicability of the 

analysis method in the clinical environment, we limited 

ourselves to try to use as typical and simple analysis 

methods as we could. Data were analyzed offline using 

SPM-12 (Wellcome Trust Centre for Neuroimaging, 

London, UK) and MEAW-system (http://www. 

hokuto7.or.jp). The data from two scanning sessions (EC 

and EO) were independently analyzed. For the ease of 

analysis, continuous MEG signals were divided into 10-s 

segments. Epochs in which the magnetic signal exceeded 

6000 fT were discarded. Data cleaning or artifact 

corrections (e.g., SSP, PCA, ICA) were not applied to 

correct for artifacts such as eye-movement, cardiogram, 

and head motion, since they are not very convenient in 

the clinical setting; noise reduction procedures usually 

require longer preparation and data processing times, 

which increase the physical burden of the patients and the 

tasks of clinicians, respectively. Additionally, eye-

movements were minimized by presenting a fixation 

point in the EO condition in the present study. A head 

motion tracking system was unavailable in the MEG 

system used in the present study. Therefore, we decided 

not to apply any noise reduction (potential artefacts‟ 

influences on the present results are examined in the 

Supplementary Materials). Since the experimental 

environment generated (1) projector artefacts at 120 Hz 

(due to the minor voltage fluctuations in the projector 

system) and (2) utility frequency at 50 Hz, a 115-Hz low-

pass filter and a 50-Hz band-stop filter (5
th

 order, 

Butterworth) were applied to the epoched data. 

 

The filtered data were directly used for source-level 

analyses. To identify the locations of the brain 

producing the resting-state-induced component, the data 

was inverted for delta (0–3 Hz), theta (4–7 Hz), alpha 

(8–12 Hz), beta (13–25 Hz), and gamma (low gamma: 

26–40 Hz and high gamma: 41–80 Hz) components. 

Individual anatomical MRI images were segmented 

using the unified segmentation algorithm described in 

[111], which is the default method available in SPM-12. 

A cortical mesh with 8196 vertices was created using 

the „normal‟ mode of the mesh generation function in 

SPM-12. The coregistration of normalized MRI images 

and MEG sensor locations was performed using an 

iterative closest point algorithm [112]. Forward 

modelling was performed for the whole brain using a 

http://www.hokuto7.or.jp/
http://www.hokuto7.or.jp/
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single shell model with normalized individual 

anatomical MRI images. The source inversion was 

performed using a maximal smoothness algorithm with 

a spatially coherent sources model (i.e. COH algorithms 

implemented in SPM-12; [109]), which is similar to 

sLORETA [113]. The COH algorithm is a commonly 

used source inversion algorithm and is often used in the 

clinical environment [114, 115]. Inversion was 

performed for the bandpass-filtered signal for each 

frequency band (from delta to high-gamma) without any 

source priors. A series of Morlet wavelet projectors 

(i.e., oscillatory powers) were generated summarizing 

the inverted intensity (i.e., energy) in each trial and each 

band of interest (from delta to high-gamma). The results 

were then averaged over trials, which enabled the 

localization of induced activity that has no phase-

locking to the stimulus. The averaged power was 

projected on the source space then normalized into MNI 

space, which generated the resulting source images. The 

source images were smoothed (20 × 20 × 20 mm) and 

taken to the two types of group-level analysis. 

 

(1) To examine the relationships between cortical 

oscillatory power and age, mean regional powers were 

calculated for each frequency band. As previous studies 

have reported that rostral and caudal regions exhibit 

distinctive power spectral profiles [25–27] and have 

different neurophysiological bases [88], the relationships 

were assessed for the rostral and caudal regions 

separately. We defined the rostral region as a cortical area 

covering the frontal and temporal cortex, and the caudal 

region as a cortical area covering the parietal and occipital 

regions. The extents of the cortices were determined using 

the WFU PickAtlas (http://fmri.wfubmc.edu/software/ 

pickatlas). The mean power was plotted against the 

participants‟ age for visual inspection, subsequently, 

Pearson‟s correlation coefficient was calculated for each 

frequency band and each region. The coefficients were 

tested against the null-hypothesis that there is no 

significant relationship. Since the plots implied that 

calculating Pearson‟s correlations and following 

parametric tests may not be the best statistical approach 

for assessing the data, we have validated the relationships 

by using non-parametric Spearman's rank correlation 

coefficient and bootstrap statistics (please see 

Supplementary Material for the details). The false 

detection rate (FDR) was controlled using Benjamini and 

Hochberg method [116]. 

 

(2) To study the effects of age and gender on the 

oscillatory power, the source images were compared 

between genders using a two-sample t-test for each 

frequency band, with the null-hypothesis that there were 

no-gender differences. The participants‟ age was used 

as a covariate, and its interaction with the gender factor 

was also included in the model. Both positive and 

negative effects of age on the source powers were 

evaluated by building t-contrasts with +1 and −1 to the 

age factor. We did not set any region of interest (ROI) 

in this analysis; the statistical tests were performed 

using the source images containing whole-brain data. 

For each statistical test, the p-values were corrected 

using voxel-wise FWE correction, then the cluster was 

identified at the extent threshold of k > 10 (i.e., a cluster 

was defined as an area containing more than 10 voxels; 

Lieberman and Cunningham, 2009). Cortical areas at 

which the peaks of the t-values are located were 

identified using the SPM Anatomy toolbox [117] 

(http://www.fz-juelich.de/inm/inm-1/DE/Forschung/_ 

docs/SPMAnatomyToolbox/SPMAnatomyToolbox_nod

e.html). The result was not reported regarding the 

interaction (age × gender) since no significant clusters 

were found for the interaction for all frequency bands 

and conditions (EC and EO). 

 

Abbreviations 
 

EEG: electroencephalography; MEG: magneto 

encephalography; MRI: magnetic resonance imaging; 

fMRI: functional magnetic resonance imaging; MMSE-J: 

mini-mental state examination Japanese version; EC: 

eyes-closed; EO: eyes-open; ROI: region of interest; 

PCA: principal component analysis; ICA: independent 

component analysis; FEW: family-wise-error. 
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SUPPLEMENTARY MATERIALS 
 

 

Supplementary Methods 

 
Effect of noise rejection for sample data 
 

In the present study, MEG data were not cleaned using 

conventional artefact correction procedures. Here, we 

examined the potential bias of the artefacts on the results 

of source inversion by comparing the original (used in the 

main manuscript) and artefact-cleaned data of a few 

example participants. We have applied the automated 

artefact rejection using independent component analysis 

(ICA) to the MEG data from 10 participants (out of the 

102 participants used in the main analysis). The epoched 

MEG data were decomposed by ICA using FastICA on 

Fieldtrip [1, 2]. Components correlated with EOG and 

ECG channels with more than 0.2 in linear correlation 

coefficient were rejected. The cleaned data were 

processed with identical procedure described in the main 

manuscript (see Materials and Methods section). The 

source images (output from original and artefact-cleaned 

procedures) were rendered on the template anatomical 

brain using MRIcroGL software (https://www. 

mccauslandcenter.sc.edu/mricrogl/) and differences were 

visually inspected. 

 

 ICA results showed that the number of rejected 

components differed between datafiles (i.e., 

participants). Out of 10 datafiles, 2 components were 

rejected in 4 datafiles, while 1 was rejected in other 4 

datafiles and there were no rejected in the remaining 2 

datafiles. Since rejection of more components bring 

larger changes on the MEG data, 2 samples (dataset 

#0005 and #0007) were selected from 4 datasets in 

which 2 components were rejected. The results were 

visually inspected for the selected two datasets.  

 

For datafile #0005 (Supplementary Figure 1), the source 

signals for original and artefact-cleaned source images 

were mostly overlapped (most regions were colored in 

yellow). However, artefact-free data estimated source 

signals in orbitofrontal regions in high-gamma band 

(green-colored regions in Supplementary Figure 1F), 

which were not obvious in the original dataset. The 

results of datafile #0007 showed similar trends 

(Supplementary Figure 2); the source signals were 

overlapped mostly between original and cleaned data, 

except for the high-gamma signals in the orbitofrontal 

regions (green-colored regions in Supplementary Figure 

2F). The results indicated that automated removal of 

EOG and ECG artefacts had minor influence on the 

source signals. 

 

Thickness analysis of MRI data 
 

The individual T1-weighted MRI images obtained by 

3.0-T scanner (please see Materials and Method section, 

for details) were used for cortical thickness analysis. 

ROI-based cortical thicknesses were estimated using 

Computational Anatomy Toolbox (CAT; http://www. 

neuro.uni-jena.de/cat/). The mean cortical thicknesses 

were estimated for caudal and rostral regions (defined 

by Desikan-Killiany Atlas; [3]). The mean cortical 

thickness was plotted against the participants‟ age for 

visual inspection, subsequently, Pearson‟s correlation 

coefficient was calculated between age and each 

regional cortical thickness. The thickness data were also 

compared between gender using two-sample t-test. 

Results showed that the ageing reduced cortical 

thickness in both rostral (r = -0.43, p < .001) and caudal 

regions (r = -0.62, p < .001). See Supplementary Figure 

3 for visualization. There was gender difference in 

rostral cortical thickness (mean thicknesses were 2.73 

mm for females and 2.78 mm for males, r = -2.18, p 

= .031), but not in caudal thickness (mean thicknesses 

were 2.27 mm for females and 2.27 mm for males, r = 

0.21, p = .834).  
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Supplementary Figures  

 

 
 

Supplementary Figure 1. Before and after artefact cleaning for data #0005. For each frequency band (A–F), the source images 

generated from original (red) and artefact-cleaned (green) procedures are rendered on the template anatomical brain. In the yellow-colored 
regions, the source signals of the original and artefact-cleaned results are overlapped. The locations of axial slices are indicated by horizontal 
lines of 3D brain in the right lower position of each panel.   



 

www.aging-us.com 21635 AGING 

 
 

Supplementary Figure 2. Before and after artefact cleaning for data #0007. For each frequency band (A–F), the source images 
generated from original (red) and artefact-cleaned (green) procedures are rendered on the template anatomical brain. In the yellow-colored 
regions, the source signals of the original and artefact-cleaned results are overlapped. The locations of axial slices are indicated by horizontal 
lines of 3D brain in the right lower position of each panel.  
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Supplementary Figure 3. Relationships between age and cortical thickness. Circle markers and solid line represent the data for the 

rostral region, and cross markers and dotted line represent the data for the caudal region. 
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Supplementary Table 
 

 

 

Supplementary Table 1. Nonparametric correlations between age and regional source powers. 

Spearman's rank correlation coefficient (r) between age and mean source power, results (p-value) of the test for no-
correlation, and bootstrap confidence interval (CI, upper and lower limits are shown for top and bottom row of each cell), 
shown for each region (rostral and caudal), each condition (Eyes-closes and Eyes-open) and frequency band (Delta, Theta, 
Alpha, Beta, Low-gamma and High-gamma). In the bootstrap procedure, all participants were resampled with replacement 
10,000 times and Spearman's rank correlation coefficient was calculated for each iteration. Confidence interval was 
calculated using basic percentile method. Asterisks indicate the coefficient is statistically significant after applying FDR 
correction. r, Spearman's rank correlation coefficient; p, p-value; CI, bootstrap confidence interval; EC, eyes-closed; EO, eyes-
open. 

  Delta Theta Alpha 

 
 r p CI r p CI r p CI 

(A) EC Rostral 0.05 0.603 -0.14 0.15 0.131 -0.04 0.30* 0.002 0.11 

    0.24   0.33   0.49 

 Caudal 0.03 0.742 -0.16 -0.30* 0.002 -0.44 -0.11 0.269 -0.30 

    0.24   -0.14   0.09 

(B) EO Rostral -0.13 0.188 -0.31 -0.18 0.063 -0.36 0.43* < .001 0.27 

    0.06   0.01   0.57 

 Caudal -0.10 0.328 -0.29 -0.12 0.219 -0.30 -0.44* < .001 -0.58 

    0.11   0.06   -0.29 

  Beta Low gamma High gamma 

 
 r p CI r p CI r p CI 

(A) EC Rostral 0.25* 0.013 0.05 0.25* 0.010 0.06 -0.02 0.819 -0.22 

    0.42   0.43   0.17 

 Caudal -0.07 0.478 -0.25 -0.03 0.796 -0.21 -0.39* < .001 -0.55 

    0.11   0.16   -0.20 

(B) EO Rostral 0.10 0.306 -0.10 0.23* 0.019 0.04 0.03 0.777 -0.16 

    0.29   0.41   0.22 

 Caudal -0.15 0.142 -0.32 -0.06 0.533 -0.26 -0.28* 0.005 -0.45 

    0.04   0.13   -0.09 


