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INTRODUCTION 
 

With over a million deaths reported worldwide annually, 

lung cancer ranks among the top causes of cancer-related 

mortality [1]. According to a study, non-small cell lung 

cancer (NSCLC) accounts for approximately 85% of all 

lung cancers [2]. Radiotherapy has remained an effective 

treatment throughout the continuum of NSCLC care. 

Despite remarkable advances in the treatment of NSCLC 

using a combination of surgical techniques and systemic 

chemotherapy or radiotherapy, it has a dismal prognosis 

due to resistance to the therapy and local recurrence. 

Consequently, NSCLC has a median survival of less 

than a year and a 2-year survival rate of less than  

20% [3]. 

 

Radiotherapy uses high-energy waves to kill tumor  

cells and shrink the gross tumor mass. However,  

the surviving tumor cells can repopulate because they 

can proliferate during the intervals between the 

radiotherapy sessions [4, 5]. The possible factors 

underlying this phenomenon include tumor hypoxia  
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ABSTRACT 
 

Radiotherapy is an effective treatment for non-small cell lung cancer (NSCLC). However, irradiated, dying tumor 
cells generate potent growth stimulatory signals during radiotherapy that promote the repopulation of 
adjacent surviving tumor cells to cause tumor recurrence. We investigated the function of caspase-3 in NSCLC 
repopulation after radiotherapy. We found that radiotherapy induced a DNA damage response (DDR), activated 
caspase-3, and promoted tumor repopulation in NSCLC cells. Unexpectedly, caspase-3 knockout attenuated the 
ataxia-telangiectasia mutated (ATM)/p53-initiated DDR by decreasing nuclear migration of endonuclease G 
(EndoG), thereby reducing the growth-promoting effect of irradiated, dying tumor cells. We also identified p53 
as a regulator of the Cox-2/PGE2 axis and its involvement in caspase-3-induced tumor repopulation after 
radiotherapy. In addition, injection of caspase-3 knockout NSCLC cells impaired tumor growth in a nude mouse 
model. Our findings reveal that caspase-3 promotes tumor repopulation in NSCLC cells by activating DDR and 
the downstream Cox-2/PGE2 axis. Thus, caspase-3-induced ATM/p53/Cox-2/PGE2 signaling pathway could 
provide potential therapeutic targets to reduce NSCLC recurrence after radiotherapy. 
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[6], inflammation [7], angiogenesis [8], and tumor 

stemness [9]. 

 

In our previous studies, we demonstrated the 

involvement of apoptosis in tumor repopulation during 

radiotherapy [10, 11]. Activated caspase-3 not only 

executes apoptosis but also promotes the release of 

several growth factors from irradiated, dying tumor cells 

that stimulate the proliferation of adjacent living tumor 

cells [10]. We found that activated caspase-3 cleaved 

cytosolic calcium-independent phospholipase A2 

(iPLA2) and subsequently increased the production of 

arachidonic acid (AA), a known precursor of 

prostaglandin E2 (PGE2). PGE2 is a potent mitotic factor 

and involved in acute inflammatory responses [12]. We 

named this counterintuitive caspase-induced tumor 

repopulation mechanism as the “Phoenix Rising” 

pathway. Caspase-3 is increasingly becoming recognized 

as a stimulator of cellular proliferation and 

carcinogenesis. For instance, we previously reported that 

caspase-3 in dying glioma cells promoted endothelial 

cell mitosis by activating the NF-κB/Cox-2/PGE2 axis to 

establish a pro-angiogenic microenvironment that 

promoted tumor repopulation [11]. Similarly, another 

study demonstrated that activated caspase-3/7 

contributed to self-inflicted DNA double-strand breaks 

(DSBs), elevating the expression of CD133 in glioma 

cancer stem cells (CSCs) [13]. 

 

Because radiations kill tumor cells by inducing DNA 

lesions, we investigated if the DNA damage repair 

pathway participated in tumor repopulation. DNA DSBs 

can arise from exogenous or endogenous stressors. To 

repair DNA lesions, cells have evolved a complex 

network called DNA damage response (DDR). DDR 

pathways consist of numerous proteins that function as 

part of cell cycle checkpoints and DNA damage repair. 

The ataxia-telangiectasia mutated (ATM)/p53 cascade 

participates in DNA damage repair and is the most 

commonly activated DDR pathway in response to DSBs 

or errors occurring during the cell cycle [14, 15]. The 

sensor kinase ATM is recruited to the damaged sites 

and autophosphorylated at Ser-1981. Next, the activated 

ATM directly phosphorylates checkpoint kinase 2 

(Chk2) on Thr-68 and p53 on Ser-15. The 

phosphorylated p53 is resistant to ubiquitination and 

induces cell cycle arrest, apoptosis, or senescence [15–

17]. Irradiated cells use the DDR to repair DNA lesions 

and recover. Radiotherapy works on the principle that 

irreparable DNA damage may trigger cell death. 

Moreover, defects in DDR have been reported to cause 

genetic instability and drive carcinogenesis [18]. 

 

We conducted experiments to study the hypothesis that 

caspase-3 coordinates with the DDR to induce tumor 

repopulation during radiotherapy in NSCLC. We found 

that treatment with ionizing radiations induced DDR 

and apoptosis by activating apoptotic caspase-3 and the 

ATM/p53 axis. Unexpectedly, activated p53 increased 

the production of Cox-2/PGE2 in the presence of 

activated caspase-3 in irradiated NSCLC cells. Further, 

the production of Cox-2/PGE2 was remarkably 

suppressed in caspase-3 knockout (Casp3 KO) NSCLC 

cells despite the elevated expression of p53. Overall, 

our findings reveal that the caspase-3-induced 

ATM/p53/Cox-2/PGE2 signaling pathway participates 

in tumor repopulation in NSCLC. These results suggest 

that this pathway could be exploited to develop novel 

therapeutic strategies to counteract tumor recurrence 

during radiotherapy. 

 

RESULTS 
 

Radiations induce DNA damage, caspase-3 activation, 

and tumor repopulation in NSCLC cells 
 

We first performed a colony formation assay to find the 

optimal X-ray dose that induced tumor cell death. As 

shown in Supplementary Figure 1, the surviving 

fractions of A549 and H460 cells irradiated with 8 Gy 

X-ray were 0.043% ± 0.014% and 0.355% ± 0.018%, 

respectively. Thus, we selected 8 Gy dose to generate 

dying NSCLC cells. Phosphorylated histone H2AX 

(γH2AX) is a well-characterized marker of DSBs [19]. 

As shown in Figure 1A, compared with the control 

cells, the levels of γH2AX foci greatly increased in the 

8 Gy-irradiated cells at 48 h after irradiation. Cell death 

was measured using Annexin V-fluorescein 

isothiocyanate (FITC) and propidium iodide (PI) double 

staining by flow cytometry. Compared with the control 

group, the percentage of early apoptotic cells (Annexin 

V-FITC positive and PI negative) and total dead cells 

(Annexin V-FITC positive) increased in both the 8 Gy-

irradiated A549 and H460 groups on day 3 (Figure 1B, 

1C). Because caspase-3 functions in the execution phase 

of apoptosis, we next used western blotting to determine 

whether it was activated following irradiation. We 

observed that 8 Gy irradiation generated cleaved 

caspase-3 (CC3) in a time-dependent manner in both 

A549 and H460 cells (Figure 1D). Moreover, 

immunofluorescence analysis revealed markedly 

enhanced expression of CC3 after 8 Gy irradiation 

(Figure 1E). These results demonstrate that 8 Gy 

irradiation induced DNA damage accompanied by cell 

death in NSCLC cells. 

 

To investigate the effect of irradiated, dying NSCLC 

cells on living tumor cells, we conducted an in vitro 

repopulation experiment. The firefly luciferase (Fluc)-

green fluorescent protein (GFP)-labeled cells were 

named Fluc cells (reporter cells). We observed that the 

luciferase activity of A549 Fluc or H460 Fluc cells 
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Figure 1. Radiations induce DNA damage, caspase-3 activation, and tumor repopulation in NSCLC cells. (A) Confocal images of 

immunostained A549 and H460 cells showing γH2AX foci following 8 Gy irradiation at 48 h. Scale bars: 25 μm. (B, C) The left panel shows flow 
cytometry analysis of A549 (B) and H460 (C) cell death after 0 Gy or 8 Gy irradiation on day 3. Apoptosis was monitored by Annexin 
V/propidium iodide (PI) double staining. The right panel shows quantitative analysis of early apoptosis and total cell death in 0 Gy- or 8 Gy-
irradiated A549 (B) and H460 (C) cells (***p<0.001, Student’s t test, n = 3). (D) Cleaved caspase-3 induced by 8 Gy radiations was assayed by 
western blotting, and β-tubulin and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) served as loading controls. (E) Representative 
confocal images of immunostained A549 and H460 cells showing cleaved caspase-3 following exposure to 8 Gy radiations on day 3. Scale 
bars: 25 μm. (F) The 8 Gy-irradiated NSCLC cells promoted the growth of living NSCLC reporter cells. The upper panel depicts luciferase 
activities showing the growth of A549 Fluc and H460 Fluc cells that were seeded alone or with 0 Gy- or 8 Gy-irradiated NSCLC cells. The lower 
panel shows the representative bioluminescence images (**p<0.01, ***p<0.001, one-way analysis of variance [ANOVA], n = 4). 
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linearly correlated with the cell numbers (Supplementary 

Figure 2); thus, we used luciferase assay to measure the 

proliferation of Fluc-GFP-labeled cells. Subsequent 

results demonstrated that 8 Gy-irradiated A549 feeder 

cells promoted the proliferation of A549 Fluc reporter 

cells as compared with A549 Fluc reporter cells growing 

on sham-irradiated feeder cells or no feeder cells (Figure 

1F). Similarly, 8 Gy-irradiated H460 feeder cells exerted 

potent growth-stimulating effects on H460 Fluc reporter 

cells (Figure 1F). 

 

Casp3 KO attenuates the growth-promoting effect of 

dying NSCLC cells in vitro 

 

We have previously reported a critical function of 

caspase-3 in breast and melanoma tumor cell 

repopulation [10, 20]. In the present study, we 

investigated whether caspase-3 exerted a growth-

promoting effect of dying NSCLC cells. Using 

CRISPR/Cas9 technology, we generated A549 and H460 

cells with genetic ablation of caspase-3 (Casp3 KO 

cells). First, we performed immunoblotting assays to 

assess the efficiency of Casp3 KO cells in different 

mutant single-cell clones (data not shown) and 

subsequently selected a clone with a sufficient Casp3 

KO effect. As shown in Figure 2A, compared with the 

control A549 or H460 cells (wild-type), the levels of 

caspase-3 were reduced in selected Casp3 KO clones. 

Furthermore, we found that compared with the control 

group, the percentage of early apoptotic cells and total 

dead cells decreased in both 8 Gy-irradiated A549/Casp3 

KO and H460/Casp3 KO groups on day 3 (Figure 2B, 

2C). Using the in vitro repopulation model, we observed 

that 8 Gy-irradiated Casp3 KO feeder cells diminished 

the growth-stimulating effect of caspase-3 on both A549 

and H460 living reporter cells (Figure 2D). 

 

Activated Cox-2/PGE2 signaling in dying cells 

promotes adjacent living tumor cell growth 

 

Because Cox-2 is involved in the production of 

bioactive lipid PGE2, and we previously identified PGE2 

as a downstream effector of caspase-3 in tissue 

regeneration [21], angiogenesis [11], and breast tumor 

repopulation [10], we hypothesized that caspase-3 could 

promote PGE2 production by increasing Cox-2 

expression in dying NSCLC cells. Western blotting and 

quantitative real-time polymerase chain reaction 

(qPCR) showed elevated expression and transcription of 

Cox-2 in both A549 and H460 cells after exposure to 8 

Gy radiations in a time-dependent manner (Figure 3A, 

3B). However, the expression and transcription of Cox-

2 were markedly inhibited in Casp3 KO cells following 

8 Gy irradiation (Figure 3A, 3B). We next analyzed the 

production of PGE2 in supernatants obtained from 

irradiated A549 and A549/Casp3 KO cells using 

enzyme-linked immunosorbent assay (ELISA). As 

shown in Figure 3C, the levels of PGE2 in 8 Gy-

irradiated A549 cells on day 2 increased approximately 

fourfold as compared with those in non-irradiated A549 

cells. However, the secretion of PGE2 was considerably 

lower in Casp3 KO cells with or without 8 Gy 

irradiation. Moreover, similar results were obtained in 

H460 and H460/Casp3 KO cells. To determine the 

function of PGE2 in regulating the growth-stimulating 

effect of dying NSCLC cells in vitro, we next studied 

whether the growth of living NSCLC cells was inhibited 

with the downregulation of Cox-2. Treatment with 

celecoxib (1 μM or 5 μM), a selective Cox-2 inhibitor, 

dramatically decreased the growth-stimulating effect of 

dying A549 or H460 feeder cells on A549 Fluc or H460 

Fluc reporter cells in a dose-dependent manner (Figure 

3D). In summary, these results demonstrate that PGE2 is 

involved in caspase-3-induced NSCLC cell 

repopulation after irradiation. 

 

Casp3 KO attenuates DDR, ATM/p53 signaling, and 

p53-induced Cox-2 expression in dying NSCLC cells 

 

We next studied the mechanisms by which caspase-3 

enhanced the expression of Cox-2. During apoptosis, the 

mitochondrial protein endonuclease G (EndoG) migrates 

to the nucleus and cleaves the DNA [22]. The 

distribution of EndoG was determined through an 

immunofluorescence assay. As shown in Figure 4A, 

compared with the poor staining observed in the 

cytoplasmic regions of non-irradiated cells, radiotherapy 

increased the nuclear EndoG staining in NSCLC cells. 

Interestingly, caspase-3 activity regulates the 

cytoplasmic to nuclear migration of EndoG. The EndoG 

nuclear migration was suppressed in irradiated Casp3 

KO cells, as evident from poor nuclear EndoG staining. 

Moreover, we found that irradiated wild-type cells with 

nuclear EndoG staining showed higher formation of 

γH2AX foci. However, the nuclear EndoG and γH2AX 

foci double staining was mostly absent in irradiated 

Casp3 KO cells. Next, we performed western blotting to 

examine the location of EndoG before and after 

irradiation of NSCLC cells (Figure 4B). 

 

As ATM is a major sensor of DSBs [23], we assessed 

the protein levels of pATM (S1981) following 

irradiation. We observed robust ATM phosphorylation 

in parental A549 and H460 cells after irradiation. 

Interestingly, Casp3 KO reduced the levels of pATM 

and total ATM after irradiation (Figure 4C). Activated 

ATM phosphorylates several substrates, such as Chk2 

and p53, thereby propagating the damage signal to 

numerous cellular pathways [23]. We next investigated 

whether activated ATM in A549 cells triggered the 

activation of Chk2 and p53. The levels of pChk2 (T68), 

p53, and pp53 (S15) were considerably higher after 
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Figure 2. Casp3 KO attenuates radiation-induced apoptosis and growth-promoting effect of dying NSCLC cells. (A) Western 

blot analysis of the expression of caspase-3 in Casp3 KO A549 and H460 cells generated using the CRISPR/Cas9 system. β-tubulin was used 
as the loading control (***p<0.001, Student’s t test, n = 3). (B, C) The left panel shows the flow cytometry analysis of cell death in A549 and 
A549/Casp3 KO (B) and H460 and H460/Casp3 KO (C) cells following irradiation. Apoptotic cells were analyzed by Annexin V/propidium 
iodide (PI) double staining. The right panel shows the quantitative analysis of early apoptosis and total cell death in 0 Gy- or 8 Gy-irradiated 
control and A549/Casp3 KO (B) and H460/Casp3 KO (C) cells (***p<0.001, NS = not significant, Student’s t test, n = 3). (D) Casp3 KO 
significantly decreased the growth-promoting effect of 8 Gy-irradiated NSCLC cells on living NSCLC reporter cells. The upper panel depicts 
the luciferase activities showing the growth of A549 Fluc or H460 Fluc cells that were seeded with 8 Gy-irradiated wild-type or Casp3 KO 
cells or alone. The lower panel shows the representative bioluminescence images (***p<0.001, NS = not significant, one-way analysis of 
variance [ANOVA], n = 4). 
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Figure 3. Caspase-3-dependent PGE2 production in dying NSCLC cells induces tumor repopulation. (A) Western blot analysis of 
Cox-2 levels at various time intervals after 8 Gy irradiation of wild-type and Casp3 KO NSCLC cells (***p<0.001, one-way analysis of variance 
[ANOVA], n = 3). (B) Quantitative polymerase chain reaction (qPCR) analysis of Cox-2 in wild-type and Casp3 KO NSCLC cells at indicated times 
after 8 Gy irradiation (*p<0.05, **p<0.01, ***p<0.001, one-way ANOVA, n = 3). (C) Levels of prostaglandin E2 (PGE2) in culture supernatants 
of wild-type and Casp3 KO NSCLC cells at 48 h after 8 Gy irradiation were measured using enzyme-linked immunosorbent assay (ELISA) 
(***p<0.001, one-way ANOVA, n = 3). (D) A selective Cox-2 inhibitor, celecoxib, abrogated the pro-proliferation effects of dying NSCLC cells 
on Fluc cells in a dose-dependent manner (*p<0.05, ***p<0.001, NS = not significant, one-way ANOVA, n = 4). 
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Figure 4. Casp3 KO attenuates the DDR via ATM/p53 signaling in irradiated NSCLC cells. (A) Immunofluorescence analysis of 8 Gy-
irradiated wild-type and Casp3 KO NSCLC cells co-stained for EndoG and γH2AX foci at 48 h. Scale bars: 25 μm. (B) Western blot analysis of 
EndoG in the cytoplasmic and nuclear fractions of 8 Gy-irradiated wild-type and Casp3 KO NSCLC cells at 48 h. β-tubulin and Histone H3 were 
used as cytoplasmic and nuclear loading controls, respectively. (C) Levels of DNA damage response (DDR)-related proteins ATM, pATM 
(S1981), Chk2, pChk2 (T68), p53, and pp53 (S15) were measured by western blotting at indicated times after 8 Gy irradiation of wild-type and 
Casp3 KO NSCLC cells. GAPDH was used as the loading control. 
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irradiation than in the control cells, whereas Casp3 KO 

reduced the levels of these proteins (Figure 4C). In 

addition, H460 cells showed similar results with or 

without Casp3 KO after irradiation (Figure 4C). These 

results suggest that caspase-3 induces DDR via 

ATM/p53 signaling. 

 

It was previously demonstrated that the tumor 

suppressor p53 induced the expression of Cox-2 in 

response to DNA damage [24]. To elucidate whether 

p53 regulated the transcription of the PTGS2 gene 

(encodes Cox-2), we first searched the JASPAR 

database (http://jaspar.genereg.net) to predict p53 

binding sites in the PTGS2 promoter (Supplementary 

Figure 3). Next, we constructed a luciferase reporter 

plasmid encoding the PTGS2 promoter sequence 

(PTGS2-WT) or mutant sequence (PTGS2-Mut) in a 

region between −1251 bp and −1238 bp (Figure 5A). As 

shown in Figure 5B, p53-overexpressing cells exhibited 

higher luciferase activity in the PTGS2-WT group than 

in the control group. However, in the PTGS2-Mut 

group, the overexpression of p53 did not result in a 

major difference as compared with the controls. Next, 

we examined the transcript levels of Cox-2 following 

the overexpression of p53. As shown in Figure 5C, 24 h 

after transfection in A549 and H460 cells, the levels of 

Cox-2 transcript increased by more than 10-fold. We 

found a markedly less p53-induced expression of Cox-2 

in Casp3 KO cell lines (Figure 5C). Further, western 

blotting results showed that the expression of Cox-2 in 

p53-overexpressing A549 and H460 cells was 

considerably higher than in p53-overexpressing Casp3 

 

 
 

Figure 5. p53 induces Cox-2 in NSCLC cells. (A) Schematic representation of the luciferase reporter plasmid with the wild-type PTGS2 

promoter sequence (PTGS2-WT) or mutant sequence (PTGS2-Mut). (B) A p53-dependent stimulation of PTGS2 promoter activity was 
demonstrated by luciferase assay. The 293T cells were co-transfected with p53 overexpression plasmid and PTGS2-WT plasmid, PTGS2-Mut 
plasmid, or vector alone. The pGMR-TK reporter was used as an internal transfection standard (***p<0.001, one-way analysis of variance 
[ANOVA], n = 3). (C, D) Quantitative polymerase chain reaction (qPCR) and western blot analysis showed that the mRNA and protein levels of 
Cox-2 were elevated by overexpression of p53 in wild-type and Casp3 KO NSCLC cells. Total RNA and proteins were extracted after 
transfection for 24 h and 48 h, respectively (***p<0.001, Student’s t test, n = 3). 

http://jaspar.genereg.net/
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KO cells (Figure 5D). Based on these results, we 

conclude that p53, as a transcription factor, activates the 

expression of PTGS2 in NSCLC. 

 

Caspase-3 knockout decreases tumorigenicity, and 

radiations activate the ATM/p53/Cox-2 axis in vivo 

 

To determine the effect of Casp3 KO on tumorigenicity 

in vivo, we subcutaneously inoculated wild-type and 

Casp3 KO H460 cells into nude mice. After 22 days, the 

volumes of the implanted tumors reached approximately 

2000 mm
3
 in mice in the wild-type group (left armpit, 

7/7). However, no tumor formation was observed in 

mice in the Casp3 KO group (right armpit, 0/7) (Figure 

6A–6C). These data suggested that the knockout of 

caspase-3 inhibited tumorigenicity in vivo. Next, mice 

were randomly divided into two groups and exposed to 

either 0 Gy or 8 Gy radiations. Consistent with the in 

vitro results, immunohistochemistry showed enhanced 

levels of CC3 48 h after irradiation (Figure 6D). 

Moreover, a high number of pATM (S1981)-, pChk2 

(T68)-, p53-, pp53 (S15)-, and Cox-2-positive cells 

were observed in mice in the 8 Gy radiation group 

(Figure 6D). The mRNA levels of p53 and Cox-2 were 

elevated in tumor tissues after irradiation 

(Supplementary Figure 4). Altogether, these results 

imply that the activation of caspase-3 and the ATM/p53 

signaling pathway following irradiation induces the 

expression of Cox-2 (Figure 7). 

 

DISCUSSION 
 

Radiotherapy treats cancer by triggering tumor cell 

death via apoptosis and/or necrosis [25, 26]. Caspase-3 

is one of the core effector caspases responsible for 

apoptosis [27], and caspase-3 activity is widely used to 

evaluate the efficacy of anticancer therapeutics  

[28, 29]. In the present study, we demonstrated  

that caspase-3 coupled with DDR stimulated the 

proliferation of living tumor cells present adjacent to 

dying NSCLC cells, suggesting its involvement in 

tumor relapse following radiotherapy. A comparison 

of Casp3 KO cells with wild-type cells demonstrated 

that apoptotic caspase-3 induced tumor repopulation in 

NSCLC by 1) inducing DDR via activation of the 

ATM/p53 signaling pathway and by 2) activating the 

Cox-2/PGE2 axis via p53. 

 

DDR is essential for the maintenance of genome 

integrity, and any defect in this repair process increases 

the predisposition to cancer [30]. DNA damage repair 

system comprises two main pathways: homologous 

recombination (HR) [31] and non-homologous end 

joining (NHEJ) [32]. In HR, cells use a homologous 

DNA sequence to guide accurate repair, whereas NHEJ 

involves ligating the broken ends after removing the 

damaged nucleotides at the end of DNA break sites. As 

a master regulator of DDR, ATM activates both HR- 

and NHEJ-mediated DNA repair pathways. Mutations 

in ATM have been implicated in NSCLC [33], and its 

loss has been reported as an early event in NSCLC 

carcinogenesis [34]. In addition, an ongoing phase I 

clinical trial (NCT03225105) is evaluating the 

efficiency of ATM inhibitor M3541 in combination 

with radiotherapy in patients with solid tumors [35]. 

Moreover, other DDR inhibitors in preclinical and 

clinical studies have been shown to improve antitumor 

activity in HR-deficient (HRD) tumors [36]. For 

example, olaparib, a pharmaceutical inhibitor of poly 

(ADP-ribose) polymerase (PARP), has been used 

successfully to treat BRCA-mutant ovarian [37], breast 

[38], prostate [39], and pancreatic cancers [40]. 

Although PARP inhibitors as single agents have been 

unsuccessful in treating BRCA-proficient cancers, 

including NSCLC [41], a recent study has reported that 

a combination of DNA methyltransferase inhibitors and 

PARP inhibitors enhanced the sensitivity of NSCLC 

cells to radiations [42]. 

 

Because DNA damage inducers, such as radiations, 

trigger apoptosis, the finding that apoptotic caspase-3 

reversely promoted DSBs following irradiation in 

NSCLC cells was surprising [43]. The results of our 

study revealed a novel function of activated caspase-3, 

i.e., activation of DDR by promoting nuclear 

translocation of EndoG following irradiation. Our 

results are consistent with those of other studies. For 

instance, Liu et al. reported that a moderate radiation 

dose (≤ 6 Gy) sublethally activated caspase-3, causing 

DNA damage [44]. Similarly, Liu et al. found that 

activation of caspase-3 and nucleases resulted from 

spontaneous cytochrome C leakage, causing DNA 

damage and ATM activation, and leading to cancer 

stemness and tumorigenicity [13]. Another study 

reported that lethally activated caspase-3, in etoposide- 

or tumor necrosis factor (TNF)α-treated Hela cells, 

cleaved Cdc6 at D
290

/S and D
442

/G sites to activate 

ATM/ATR kinase and apoptosis [45]. Our findings 

demonstrated that lethally activated caspase-3 induced 

DDR following irradiation in an ATM/p53 pathway-

dependent manner in NSCLC. 

 

The Cox-2/PGE2 axis is involved in tumor initiation, 

progression, and recurrence [46]. In our study, 

compared with irradiated wild-type cells, caspase-3 

knockout impaired the expression of Cox-2/PGE2 with a 

concurrent decrease in tumor repopulation. However, 

studies have reported controversial findings regarding 

the relationship between p53 and Cox-2 [24, 47–49]. In 

this study, the overexpression of p53 induced Cox-2, as 

revealed by a luciferase reporter assay, suggesting that 

Cox-2 acted as a transcriptional target of p53 in 
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Figure 6. Casp3 KO inhibits tumor formation, and radiations activate the ATM/p53/Cox-2 axis in vivo. (A) Treatment scheme for 

nude mice. (B) Images of tumors obtained on day 22. (C) The tumor volume of xenografts was measured with calipers every 2 or 3 days 
(**p<0.01, ***p<0.001, Student’s t test, n = 7). (D) Representative photomicrographs of hematoxylin and eosin (H&E) and 
immunohistochemical staining of caspase-3, cleaved caspase-3, ATM, pATM (S1981), Chk2, pChk2 (T68), p53, pp53 (S15), and Cox-2 in tumor 
tissues. Scale bars: 50 μm. 
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NSCLC. Our data showed that the absence of caspase-3 

suppressed the expression of Cox-2, indicating a critical 

function of caspase-3 in the Cox-2 regulation. In 

addition, the protein levels of CC3 did not change after 

p53 overexpression in A549 and H460 cells (Figure 

5D). This was consistent with the findings of previous 

studies, which demonstrated that the restoration of p53 

in solid organ tumors primarily caused cell senescence 

than apoptosis [50, 51]. These results suggest that the 

Cox-2/PGE2 axis is a downstream target of the caspase-

3-centered DDR pathway, which participates in 

radiation-induced tumor repopulation. 

Although our study focuses on Cox-2/PGE2 as the 

downstream effector of caspase-3, radiation-induced 

dying NSCLC cells may also secrete additional growth-

stimulating factors, such as vascular endothelial growth 

factor A (VEGF-A), to contribute to tumor relapse  

after radiotherapy [11, 52]. In addition, caspase-3  

may modulate Cox-2 expression through other pathways 

[10, 11]. 

 

In summary, caspase-3 functions with DDR to induce 

tumor repopulation after radiotherapy in NSCLC, and 

the Cox-2/PGE2 axis controls the progression of 

 

 
 

Figure 7. Schematic illustration of the proposed mechanism of radiation-induced tumor repopulation in NSCLC. Radiation-

induced DNA double-strand breaks (DSBs) activate the DNA damage response (DDR) and caspase-3. Activated caspase-3 regulates the EndoG 
nuclear translocation and thus participates in the DDR by regulating ATM/p53 signaling, which activates the Cox-2/PGE2 axis in dying NSCLC 
cells, consequently enhancing the proliferation of living tumor cells. 
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NSCLC after radiotherapy. These molecules could 

provide promising therapeutic targets for NSCLC. 

 

MATERIALS AND METHODS 
 

Cell culture and irradiation 
 

Human 293T cells and NSCLC cell lines H460 and 

A549 were purchased from the American Type Culture 

Collection. The 293T cells were cultured in Dulbecco’s 

Modified Eagle’s medium (DMEM), and H460 and 

A549 cells were cultured in Roswell Park Memorial 

Institute (RPMI) 1640 medium supplemented with 10% 

fetal bovine serum (FBS), and 100 units/mL penicillin 

and 100 μg/mL streptomycin (both from Thermo Fisher 

Scientific) at 37°C in a humidified incubator with 5% 

CO2. Cells or mice were irradiated in a cabinet X-ray 

generator (Faxitron) operated at 180 kVp and 10 mA 

with a dose rate of 3.0 Gy/min for the time required to 

apply a prescribed dose at room temperature. 

 

Lentivirus packaging and transduction 
 

To construct lentivirus particles, the pLEX lentiviral 

system (Open BioSystems) was used to transduce genes 

into the target cells. The Fluc and GFP fusion gene was 

kindly provided by Prof. Chuan-Yuan Li. Fluc- and 

GFP-labeled cells were generated via lentivirus 

infection, as previously described [10]. Subsequently, 

the cells were cultured in RPMI 1640 medium 

supplemented with 10% FBS, and transfected cells were 

selected using 1 μg/mL puromycin for 2 weeks. 

 

Establishment of caspase-3 knockout cells 

 

Casp3 KO A549 and H460 cells were established using 

the CRISPR/Cas9 genome editing system. The Casp3 

KO lentivirus-based CRISPR plasmid [13, 53] 

(designated as the Casp3 KO plasmid) was also a kind 

gift from Prof. Li. The single guide RNA (sgRNA) 

sequence used to disrupt the CASP3 gene was 5’-

TAGTTAATAAAGGTATCCA-3’. This plasmid was 

packaged according to an established protocol [54]. A549 

and H460 cells were seeded into a 6-well plate at a 

density of 5 × 10
5 

cells, and subsequently infected with 

the Casp3 KO plasmid-encoding lentivirus for 24 h and 

cultured in RPMI 1640 medium supplemented with 10% 

FBS. Forty-eight hours after infection, cells were selected 

in a culture medium containing 1 μg/mL puromycin for 2 

weeks. Surviving cells were then trypsinized (Gibco) to 

obtain single cells that were seeded into 96-well plates at 

1 cell per well. Clones derived from single cells were 

selected, and western blotting was used to identify the 

efficiency of genome editing after a clone expansion 

period. Clones with no detectable caspase-3 signal were 

selected for further study. 

Clonogenic assay 

 

Cells were counted and seeded into 6-well plates. Next, 

the cells were exposed to different radiation doses (0, 2, 

4, 6, or 8 Gy with 100 to 10,000 cells per well). After 

10 to 14 days, cells were fixed with 4% 

paraformaldehyde (Sangon Biotech) and stained with 

crystal violet (Beyotime). Colonies containing more 

than 50 cells were scored under a Leica light 

microscope. The assay was performed in triplicate. The 

surviving fraction was calculated as previously 

described [55]. 

 

Flow cytometry 

 

Cells were treated with 8 Gy radiations for 72 h and 

subsequently stained with fluorescein isothiocyanate 

(FITC)–Annexin V and propidium iodide (PI) using a 

FITC Annexin V Apoptosis Detection Kit (BD 

Biosciences) following the manufacturer’s instructions. 

Apoptosis was measured on a BD Accuri C6 flow 

cytometer. 

 

Western blotting 

 

Whole cell lysates were prepared in 

radioimmunoprecipitation assay (RIPA) buffer with 

protease and phosphatase inhibitors (Roche) at 4°C. 

Protein concentrations were determined using a 

bicinchoninic acid (BCA) protein assay kit (Thermo 

Scientific). Western blotting was performed as 

previously described [56]. Primary antibodies  

against β-tubulin, glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH), caspase-3, CC3, Cox-2, 

ATM, pATM-S1981, pChk2-T68, pp53-S15 (#2128, 

#5174, #9662, #9664, #12282, #2873, #5883, #2197, 

#9286, respectively, Cell Signaling Technology), p53, 

EndoG, Histone H3 (#ab1101, #ab9647, #ab1791, 

respectively, Abcam), and Chk2 (#A19543, ABclonal) 

were used. 

 

Tumor repopulation model and bioluminescence 

imaging 

 

In our in vitro repopulation model, 1 to 2.5 × 10
5
 

irradiated cells (feeder cells) were co-cultured with a 

small number (200 or 500) of non-irradiated Fluc cells 

(reporter cells). During co-culturing, the culture 

medium was replaced with fresh RPMI 1640 medium 

containing 2% FBS every 2 days. After 6 to 10 days, 

the growth of Fluc cells was measured by 

bioluminescence imaging. D-Luciferin potassium  

salt (0.15 mg/mL; Synchem) was used as the 

bioluminescent substrate, and the bioluminescence was 

measured using the IVIS Lumin Series III imaging 

system (PerkinElmer). 
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Quantitative real-time polymerase chain reaction 

 

Total RNA was extracted from the cells using the RNA 

extracting reagent RNAiso Plus (#9109, Takara) and 

reverse transcribed into cDNA using the PrimeScrip RT 

Master Mix Kit (#RR036A, Takara). Quantitative real-

time polymerase chain reaction (qPCR) was performed 

using the TB Green Premix Ex Taq Kit (#RR420A, 

Takara) according to the manufacturer’s instructions. 

The primers for Cox-2 were 5’-GAAGTCCCTGAGC 

ATCTACGG-3’ (forward) and 5’-CCTATCAGTATTA 

GCCTGCTTGTCT-3’ (reverse). The primers for  

p53 were 5’-ACCTATGGAAACTACTTCCTGAAA-3’ 

(forward) and 5’-CTGGCATTCTGGGAGCTTCA-3’ 

(reverse). The primers for GAPDH were 5’-CCGGGA 

AACTGTGGCGTGATGG-3’ (forward) and 5’-AG 

GTGGAGGAGTGGGTGTCGCTGTT-3’ (reverse). 

GAPDH was used as the loading control. The qPCR 

procedure was performed under the following 

conditions: 30 s at 95°C, followed by 40 cycles of 5 s at 

95°C and 30 s at 60°C. The results were obtained from 

three independent experiments. Differences in the 

relative expression were calculated using the 2
-ΔΔCT

 

method. 

 

Transient transfection 

 

For p53 overexpression, we transiently transfected the 

pcDNA3-p53 (WT) plasmid into cells using 

Lipofectamine 2000 reagent (Life Technologies) 

following the recommended protocol. The pcDNA3-p53 

(WT) plasmid was synthesized by HarO Life, and the 

empty pcDNA3 plasmid (Invitrogen) was used as the 

control. Cells were incubated with Opti-MEM (Gibco) 

without FBS during transfections, and the transfection 

medium was replaced with RPMI 1640 medium after 6 h. 

 

PGE2 enzyme-linked immunosorbent assay 
 

Cells were cultured in RPMI 1640 medium 

supplemented with 10% FBS and treated with 8 Gy 

radiations. Culture media were removed and replaced 

with fresh media containing 2% FBS for 16 h before the 

collection of supernatants at 48 h following irradiation. 

The levels of PGE2 in the supernatants were measured 

using the Prostaglandin E2 Express ELISA Kit (Cayman 

Chemical) according to the manufacturer’s instructions. 

 

Reagents 
 

Celecoxib was purchased from Selleck (#S1261). 

 

Immunofluorescence staining 

 

Cells were incubated with antibodies against γH2AX 

(#80312, Cell Signaling Technology), caspase-3 (#9662, 

Cell Signaling Technology), or EndoG (#ab9647, 

Abcam) overnight at 4°C, followed by incubation with an 

Alexa Fluor 488- or 594-conjugated secondary antibody 

(Proteintech) for 1 h at room temperature. Nuclei were 

counterstained with DAPI (Yeasen). Images were 

captured using a confocal laser scanning microscope 

(Leica Microsystems). 

 

Luciferase reporter assay 

 

The upstream 2 kb promoter region of PTGS2 (Cox-2) 

containing the potential p53 binding site was cloned 

into the GV238 (GeneChem) luciferase reporter vector 

(PTGS2-WT). Further, this region with a mutated p53 

binding site was cloned into the same luciferase reporter 

vector (PTGS2-Mut). Next, 293T cells were co-

transfected with the p53 overexpression (pcDNA3-p53) 

plasmid and PTGS2-WT plasmid, PTGS2-Mut plasmid, 

or empty vector for 24 h. Luciferase activity was 

determined using the dual luciferase reporter assay 

system (Promega), and the firefly luciferase activity was 

normalized to that of Renilla luciferase activity. 

 

Xenograft tumor model 

 

All animal protocols were approved by the Shanghai 

General Hospital Institutional Animal Care and Use 

Committee and were conducted in accordance with the 

guidelines from the Directive 2010/63/EU of the 

European Parliament on the protection of animals used 

for scientific purposes. Five-week-old BALB/c mice 

were housed in specific pathogen-free (SPF) facilities 

with free access to normal chow and water. Wild-type or 

Casp3 KO H460 cells (5 × 10
6
 cells) were injected 

subcutaneously into the left and right armpit regions, 

respectively, of seven nude mice. The tumor volume 

(volume = length × width
2
/2) was determined using 

calipers every 2 to 3 days. When the mean tumor 

volumes reached approximately 2000 mm
3
, the mice 

were randomly divided into two groups: 0 Gy radiation 

(n = 3) and 8 Gy radiation (n = 4). Forty-eight hours 

after radiation treatment, all experimental mice were 

sacrificed, and tumor sections were collected for further 

pathologic examination. 

 

Hematoxylin and eosin staining and 

immunohistochemistry 

 

Hematoxylin and eosin (H&E) staining and 

immunohistochemistry (IHC) were performed as 

previously described [57, 58]. Primary antibodies against 

caspase-3, CC3, Cox-2, ATM, pATM-S1981, pChk2-

T68, pp53-S15 (#9662, #9664, #12282, #2873, #5883, 

#2197, #9286, respectively, Cell Signaling Technology), 

p53 (#ab1101, Abcam), and Chk2 (#A19543, ABclonal) 

were used. The sections were incubated with horseradish 
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peroxidase-conjugated secondary antibody (EnVision III 

Detection System; GK500705; GeneTech), and 

counterstained with hematoxylin before visualized using 

a Leica light microscope. 

 

Statistical analysis 

 

All data are expressed as mean ± standard error (SE). 

Statistical analysis was performed using unpaired 

Student’s t test or one-way analysis of variance 

(ANOVA) with SPSS version 18.0. A P-value < 0.05 

was considered significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Clonogenic cell survival assays in A549 and H460 cell lines after exposure to ionizing radiations.  
(A, B) The corresponding images of surviving colonies (>50 cells per colony) in A549 and H460 cells. (C, D) Surviving fractions of irradiated 
A549 and H460 cells, n = 3. 
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Supplementary Figure 2. A linear correlation was observed between the luciferase activity of A549 Fluc or H460 Fluc cells 
with seeded cell numbers. (A, B) Upper panel shows luciferase activities of different numbers of A549 Fluc and H460 Fluc cells. Lower 

panel shows the representative bioluminescence images, n = 4. 
 

 
 

Supplementary Figure 3. The JASPAR database shows the potential p53 binding sites in the promoter region of PTGS2. 
 

 
 

Supplementary Figure 4. The mRNA levels of p53 and Cox-2 in a xenograft mouse model after exposure to 8 Gy radiations 
(***p<0.001, Student’s t test, n = 3). 


