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INTRODUCTION 
 

Lung cancer incidence rate and the associated mortality 

are among the highest in cancer. Global data shows that 

every year about 1.5 million deaths happen due to lung 

cancer, which is a mortality rate of above 25% [1]. 

Lung cancer is categorized into non-small cell 

(NSCLC) and small cell lung cancer (SCLC) based on 

their pathology, where NSCLC contributes to 85% of 

the cases [2]. LADC is becoming the predominant 

subtype of NSCLC, with the incidence rates increasing 

in recent years [3, 4]. Due to the resistance against 

radiation therapy, surgery remains the main treatment of 

LADC, but the five-year survival rate is low [5]. About 

one-third of the patients have a recurrence within five 

years of surgery, and the prognosis is not satisfactory 

[6]. LADC is clinicopathologically and molecularly 

heterogeneous, i.e., it responds differently to chemo-

therapy within the molecular subtypes leading to 

various prognostic values. Thus, it is of paramount 

importance to predict the outcome of a patient 

accurately [7, 8]. 

 

New evidence suggests that the associated effects of 

both genetics and epigenetics alternations have to be 

considered in tumorigenesis [9]. The oncogene mutation 
is no longer just an inherited or an epigenetic  

change. DNA methylation is a significant form of 

epigenetic alteration that is crucial for the  

expression of genes and often occurs on CpG islands, 
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ABSTRACT 
 

Background: The heterogeneity of lung adenocarcinoma (LADC) makes the early diagnosis and treatment of the 
disease difficult. Gene silencing of DNA methylation is an important mechanism of tumorigenesis. A 
combination of methylation and clinical features can improve the classification of LADC heterogeneity. 
Results: We investigated the prognostic significance of 335 specimen subgroups of Lung adenocarcinoma based 
on the DNA methylation level. The differences in DNA methylation levels were related to the TNM stage 
classification, age, gender, and prognostic values. Seven subtypes were determined using 774 CpG sites that 
significantly affected the survival rate based on the consensus clustering. Finally, we constructed a prognostic 
model that performed well and further verified it in our test group. 
Conclusions: This study shows that classification based on DNA methylation might aid in demonstrating 
heterogeneity within formerly characterized LADC molecular subtypes, assisting in the development of 
efficient, personalized therapy. 
Methods: Methylation data of lung adenocarcinoma were downloaded from the University of California Santa 
Cruz (UCSC) cancer browser, and the clinical patient information and RNA-seq archives were acquired from the 
Cancer Genome Atlas (TCGA). CpG sites were identified based on the significant correlation with the prognosis 
and used further to cluster the cases uniformly into several subtypes. 
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causing changes at the level of gene transcription  

[10–12]. Mounting evidence demonstrates that DNA 

methylation is the secondary “motive” for tumor 

occurrence following the genetic mutations, which 

proves that it is an important biomarker  

for early detection of tumors [13, 14]. Toyooka et al. 

[15] showed that DNA methylation is ubiquitous  

in all the stages of lung cancer initiation and 

progression with a negative regulatory effect on both 

oncogenic and tumor-suppressive gene expressions. 

Previous studies have shown that some gene 

methylation changes in LADC affect the gene 

expression and its prognosis [16, 17]. Thus, many 

researchers are now exploring methylation related 

biomarkers. Sandoval et al. [18] proposed a signature 

pattern with prognostic values based on five 

hypermethylated genes in the early stages of NSCLC. 

Also, Kuo et al. [19] developed a proof-of-concept 

signature pattern with prognostic potential based on 

eight methylated genes for survival outcome 

prognostication among Asian and Caucasian 

populations in the early stages of LADC. 

 

We established a prognostic model to predict various 

DNA methylation markers through high-throughput 

omics analysis, which can advance the prognostic 

assessment and precision therapy. 

 

RESULTS 
 

Identification of overall survival -correlated 

prognostic methylation sites using the training 

dataset  

 

TCGA DNA methylation profiling of LADC was 

exploited to cluster the LADC prognostic molecular 

subtypes. Firstly, the numbers for data pre-processing 

was optimized, which included absent value 

adaptation, removal of batch effect, sex chromosome, 

and single nucleotide polymorphisms, and the CpG 

sites in promoter regions extraction (Materials and 

Methods). For every CpG site obtained from the 

training set (generated from 335 tumor tissues), a 

univariate COX proportional risk regression model 

was established using the methylation status of the 

CpG sites and patient survival outcomes. The analysis 

resulted in 1302 CpG sites that were significantly 

correlated with the patients’ survival (p<0.05). Then, 

these CpG sites were entered into a multivariate COX 

proportional risk regression model combining the  

age, gender, TNM classification, and clinical  

stages as covariates to determine the independent 

prognostic features. Eventually, from both the 
regression models, 774 CpG sites were chosen and 

exploited as the conclusive classification charac-

teristics (Supplementary Table 1). 

Identification of distinct DNA methylation prognosis 

subgroup by consensus clustering and inter-cluster 

prognosis analyses 

 

Consensus clustering of 774 prospective prognostic 

methylation sites was performed to determine the 

distinguishable DNA methylation-based molecular 

subtypes of LADC for the prognosis. Several clusters 

were identified based on the following criteria: 

comparatively high consistency within the cluster with 

no apparent rise in area under the CDF curve. Based on 

the category numbers, we determined the cluster 

consensus average and coefficient of variation within 

the clusters. The area under the CDF curve becomes 

steady after five categories (Figure 1A, 1B). To advance 

the prognostic potential of LADC classifications, 

greater cluster numbers were selected whenever 

feasible. A consensus matrix was further exploited 

(mentioned in the Materials and Methods) to define the 

ideal cluster numbers. The consensus matrix displayed 

in Figure 2A indicates k = 7 consensus and a seven-

block structure was identified. Heatmap, as per the 

dendrogram, is shown in Figure 2A with TNM 

category, stage, age, gender, and DNA methylation 

subtype, while annotations are displayed in Figure 2B. 

 

Kaplan-Meier survival curve exhibited a considerable 

difference in the outcomes of the seven clusters 

(P<0.05). As revealed in Figure 3A, Clusters 6 and 7 

showed the most promising prognosis, while, cluster 1 

was the least promising. Next, we examined the intra-

cluster fractions for the 7 clusters according to the stage 

(Figure 3B), TNM category (Figure 3C–3E), age 

(Figure 3F), and gender (Figure 3G), respectively. 

Predilections for correlations between features and 

certain clusters are listed below: Clusters 1 and 2 were 

correlated with the advanced stages; Clusters 3, 4, and 6 

with lower T grade; while Cluster 1 was correlated with 

higher N grade and along with Cluster 6 it was related 

to higher M grade as well; Cluster 4 was associated with 

older ages; Cluster 5 was correlated with more number 

of females. This elaborated the rationale that cluster 1 

showed the worst prognosis since it was more 

predisposed to disseminate and progress the 

malignancies while exhibiting a similar etiology as the 

DNA methylation aberrations. These data demonstrate 

that every single clinical feature corresponded to a 

different intra-cluster fraction. 

 

Identifying the features by DNA methylation 

clustering and screening the cluster-specific 

methylation sites 

 

Genomic level annotations for the outlined 774 CpG 

sites were exploited to locate the associated 893 

promoter related genes in total. Subsequently, we 
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Figure 1. Criteria for selecting number of categories. (A) Consensus among clusters for each category number k. This graphic shows the 

cumulative distribution functions (CDF) of the consensus matrix for each k (indicated by colors), estimated by a histogram of 100 bins. This 
figure allows a user to determine at what number of clusters, k, the CDF each is an approximate maximum, thus consensus and cluster 
confidence is at a maximum at this k. (B) Delta area curves for consensus clustering indicating the relative change in area under the CDF curve 
for each category number k compared to k-1. The horizontal axis represents the category number k and the vertical axis represents the 
relative change in area under CDF curve. This plot allows users to determine the relative increase in consensus and determine k at which 
there is no appreciable increase. 

 

 
 

Figure 2. Consensus matrix for DNA methylation classification with the corresponding heat map. (A) Color-coded heatmap 

corresponding to the consensus matrix for k=7 obtained by applying consensus clustering. Color gradients represent consensus values from 
0–1; white corresponds to 0 and dark blue to 1. To aid analysis, the cluster memberships are marked by colored rectangles between the 
dendrogram and heatmap according to a legend within the graphic. This enables a user to compare a clusters’ member count in the context 
of their consensus. (B) A heatmap corresponding to the dendrogram in (A) was generated using the heatmap function with DNA methylation 
classification, TNM stage, clinicopathological stage, age, and gender as the annotations. 
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Figure 3. Comparison of prognosis, TNM stage, age, and gender between the DNA methylation clusters. (A) Survival curves for 

each DNA methylation subtype in the training set. The horizontal axis represents survival time (years), and the vertical axis represents the 
probability of survival. The log-rank test was used to assess the statistical significance of differences between subtypes. Stage score (B), 
topography score (C), lymphocyte infiltration (D), metastasis (E), age (F), and gender (G) distributions for each DNA methylation subtype in 
the training set. The horizontal axis represents the DNA methylation clusters. 
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performed the functional enrichment analysis for these 

893 genes and identified 16 dramatically enriched 

pathways (P<0.05), as exhibited in Figure 4A and 

Supplementary Table 2. The three most considerably 

enriched pathways included rheumatoid arthritis, 

Taurine and hypotaurine metabolism, and viral protein 

interaction with cytokine and cytokine receptors. Later, 

we examined the expression level of the methylated 

genes determined in the subgroups. The heatmap of 

gene expression is displayed in Figure 4B, and the raw 

data are listed in Supplementary Table 3. The patterns 

of gene expression diverged among different subtypes, 

implicating that DNA methylation levels represent 

corresponding gene expressions. 

 

Then, we filtered the cluster-specific methylation sites 

by referring them as features of corresponding clusters. 

Firstly, the differences within the 7 clusters were 

evaluated for each methylation site, as illustrated in 

Materials and Methods. The resultant, 61 cluster-

specific methylation sites are listed in Supplementary 

Table 4 along with the heatmap in Figure 5A. Cluster 6 

exhibited the best prognosis with 13 particular sites, all 

of which showed hypomethylation, and their 

methylation status was the lowest compared to all other 

clusters (Figure 6). Genomic annotations were applied 

to these 61 particular sites to define their match-up 

genes. ClusterProfiler analyses revealed the genes that 

were enriched in the five pathways, displayed in Figure 

5B (Supplementary Table 5). These data revealed that 

each cluster possesses distinctive gene expression 

signature and pathway features. 

 

Establishment and evaluation of the LADC 

prognosis predicting platform 

 

We chose Cluster 6 as a seed cluster since it was 

associated with a good prognosis and then established 

the Cox Proportional Hazard Model according to the 

methylation status profiling of the 18 specified sites 

integrated with the prognosis records using formulae 

described in Materials and Methods. Finally, five 

methylation sites (cg03476195, cg03699566, 

cg07572341, cg14896516, cg19224164) in hazard ratio 

model were identified. Subsequently, we developed a 

risk score equation: Risk score = 1.3247 × β value of 

cg03476195 + 2.3568 × β value of cg03699566+ –

6.9075 × β value of cg07572341+ –6.9075 × β value of 

cg14896516+ 1.3834 × β value of cg192241646.  

 

According to the risk scoring formula, we conducted the 

ROC analysis on the risk scores of each sample, as 

displayed in Figure 7A. The area under the curve 

(AUC) was 0.783, which indicated that this platform 

performs well in predicting prognostic outcomes. Next, 

we classified the patients into high- and low-risk 

subgroups with the median risk as a dividing line. 

Through Kaplan-Meier survival analysis, we found that 

the patients in high-risk subgroup showed drastically 

poorer outcomes compared to those in the low-risk 

group (Figure 7B), which was also verified in the test 

group, indicating the predictive reliability and durability 

of this platform. (Figure 7C). Additionally, we ranked 

the samples according to the risk scores to specify if the 

level of methylation changed regularly with the risk 

scores. Figure 8 shows a scatter plot of the risk score 

distribution and the patient status, where high risk is 

related to more deaths. The Heatmap showed a 

comparison of the methylation status of the five 

methylation sites between the high- and low-risk 

groups. The methylation levels of cg03699566, 

cg03476195, cg19224164 increased with the increasing 

risk, while the methylation levels in cg14896516 and 

cg07572341 increased with the decreasing risk. 

 

DISCUSSION 
 

LADC is a common histological subtype, with high 

mortality and poor prognosis [20]. At present, the 

treatment of LADC is mainly surgery. However, nearly 

half of the patients show recurrence or die after the 

operation, resulting in a low 5-year survival rate [21]. 

To improve the management of LADC, it’s crucial to 

discover new prognostic markers that could facilitate 

outcome assessment, molecular subtyping, staging, 

prediction of relapse, and successful early care and 

medications. Epigenetically, gene silencing through 

DNA methylation was recognized as a significant 

mechanism during tumorigenesis [22]. Therefore, it is 

appropriate to presume that the DNA methylation status 

of some genes can be a useful biomarker to predict the 

tumor’s behavior. 

 

Currently, emerging identifications of diverse 

methylations located at the gene promoter regions of 

certain genes are correlated with both the initiation and 

development of LADC. Also, alterations at the 

epigenetic level were seen arising much before the 

alterations at the genetic level, in LADC. At this 

moment, DNA methylation at certain sites was showing 

an underlying association with the initial pathogenesis 

of LADC. Lissa et al. [23] found that HOXA9 promoter 

methylation alone or along with the Blood Vessel 

Invasion (BVI) can act as a prognostic classifier. Some 

studies predicted the prognosis by combining the genes. 

Gao et al. found 118 differentially expressed 

methylation-regulated genes in both, LADC and the 

adjacent tissues and then integrated the expressions of 

genes for further exploitation as independent prognostic 
biomarkers or pharmaceutic targets for LADC [24]. 

However, the exact methylated sequences at the 

promoter regions remain unclear, and whether these 
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gene methylations are clinically relevant to cancer 

classification, survival and outcome are still 

undetermined in a large cohort of LADC patients, 

which requires further validation. We endeavored to 

overcome these problems by establishing a 

classification platform that assembles multiple DNA 

methylation markers for prognostic assessment of 

curative efficiency while providing the therapy. This 

platform could assist in identifying novel biomarkers, 

therapeutic targets for personalized medicine, and 

molecular classification of subgroups in LADC. The 

model might also facilitate outcome prediction, early 

diagnosis, as well as the management of patients, who 

belong to distinct epigenetic subgroups of LADC. 

Further, as one of the most important epigenetic 

modifications, DNA methylation was found to play an 

important role in the occurrence and development of 

different cancers with an epigenetic heterogeneity 

between them. Yang Liu et al. screened out many 

reliable prognostic markers for different cancers (BRCA, 

COAD, ESCA, etc.) through the TCGA database, 

explaining the heterogeneity of cancer at the DNA 

methylation level [25], leading us to envision the 

potential applicability of our methods to other types of 

cancers as well. 

 

Nevertheless, limitations exist in our study. Firstly, the 

prognostic prediction model requires validation in a 

larger sample cohort. Secondly, the construction of the 

prediction model needs to be improved by using a 

 

 
 

Figure 4. Gene annotations of 774 methylated sites. (A) KEGG function enrichment analysis of annotated genes. The graph's horizontal 

axis shows the gene radio and the vertical axis shows different gene functions. The dot size is proportional to gene count and p value is 
indicated by color. (B) Cluster analysis heat map for annotated genes associated with the CpG sites. 

 

 
 

Figure 5. Specific methylation CpG sites for each DNA methylation cluster. (A) Specific CpG sites are shown for each DNA 
methylation prognosis subtype. Red bars represent specific CpG sites with significant differences. (B) KEGG pathway enrichment analysis of 
specific CpG sites. 



 

www.aging-us.com 23923 AGING 

 
 

Figure 6. Box plot of CpG methylation levels of the 7 Clusters. Cluster 6 has the lowest CpG methylation level and Cluster 1 has the 
highest CpG methylation level. 

 

 
 

Figure 7. Evaluation of the predictive performance of the model. (A) Receiver operating characteristic (ROC) analysis of the 

sensitivity and specificity of the survival time by the five CpG sites in the training dataset. (B) The Kaplan-Meier analysis was used to visualize 
the survival probability for the low-risk versus high-risk group of patients based on the median risk value in the training dataset. Rows 
represent survival time (years), and columns represent survival rate. (C) Verification in the testing dataset with the Kaplan-Meier analysis. 
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platform or other tools. We aim to look into the 

possibility of establishing a practical prognosis 

predicting system but as it’s still rudiment, further 

improvements are needed. Thirdly, this work was 

challenging to determine an optimal k in consensus. 

Collectively, we analyzed methylation data, clinical 

information, and the RNA-seq data of lung adeno-

carcinoma by various bioinformatic tools and 

discovered that certain methylation sites were 

significantly related to the prognosis. We also 

constructed the prognosis prediction model for LADC 

patients, which helps in identifying the novel markers 

and potential therapeutic targets for personalized 

medicine based on the molecular subgroups, eventually 

 

 
 

Figure 8. Risk score analysis of the training set. The five DNA methylation signature risk score distribution. Heat-map of the DNA 
methylation profiles. Rows represent CpG sites, and columns represent patients. 
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predicting the outcomes and assisting in early diagnosis, 

and also providing treatment to the patients who belong 

to the distinct epigenetic subgroups. 

 

MATERIALS AND METHODS 
 

Data collection and analysis 

 

RNA-seq data from 594 cases of LADC were obtained 

from TCGA (https://cancergenome.nih.gov/, accessed 

08 Mar 2020). The patient information, along with the 

follow-up records of 522 cases, is listed in 

Supplementary Table 6. Dataset of methylation was 

generated using Illumina Infinium 

HumanMethylation450 and 27 BeadChip arrays from 

503 and 150 patients, respectively, through the UCSC 

website (http://genome.ucsc.edu/, accessed 08 Mar 

2020). Only cases with the follow-up records of over 

30-days were recruited in this study. The methylation 

status of every single site was exhibited as a β value, 

which starts at zero (non-methylation) and peaks at one 

(full methylation). Over 70% of the cases were with 

missing CpG sites and dismissed for the analyses. 

Cross-reactive genome CpG sites that were 

characterized in “Discovery of cross-reactive probes 

and polymorphic CpG in the Illumina Infinium 

HumanMethylation450 microarray” were eliminated as 

well. Additional CpG sites with no longer accessible 

raw data were imputed by k-nearest neighbors (KNN) 

imputation steps. ComBat algorithm in the sva R 

package [26] was applied to eliminate batch effects by 

assembling the entire DNA methylation array dataset 

integrating the batch and clinical information. Unsteady 

genomic regions, for example, the CpG sites located at 

sex chromosomes or single nucleotide polymorphisms 

(SNPs), were also excluded. Considering that 

methylation of the DNA promoter affects the gene 

expressions, we specifically assessed the CpG sites at 

the promoter regions. Promoters are well-characterized 

regions present 2 kilobases upstream and 0.5 kilobases 

downstream from the transcription starting site. We 

finally adopted the samples whose gene expression 

profiling was accessible. Overall, 479 samples, 

including 21,120 methylation sites, were selected for 

the analyses. All the cases were segregated into two 

cohorts: the training cohort (HumanMethylation 450 

BeadChip data) and the testing cohort 

(HumanMethylation 27 BeadChip data).  

 

Determining the classification feature by COX 

proportional risk regression model 

 

 Preliminary data suggested that LADC molecular 
subtypes exhibited distinct prognostic outcomes among 

the analyzed cases; hence, CpG sites that considerably 

affected the survival outcomes were selected as 

classification signatures. Firstly, the univariate COX 

proportional risk regression model was established by 

integrating the methylation status of each CpG site, 

TNM category, age, stage, and survival information. 

Significant CpG sites selected through the univariate 

COX proportional risk regression model were then put 

into the multivariate COX proportional risk regression 

model utilizing the same covariates as in the univariate 

model, such as TNM category, age, and stage, etc. 

Eventually, the CpG sites that were significant in both 

the models were adopted as signature CpG sites. 

 

Correlation of molecular subgroups with prognosis 

determination by consensus clustering 

 

Consensus clustering was implemented by the 

ConsensusClusterPlus package in R [27] to determine 

the LADC subtypes according to the most unstable 

CpG sites. The algorithm started through sub-sampling 

the proportions of items together with characteristics 

based on dataset matrix, where every sub-group was 

separated up to k groups by k-means. This step was 

repeated for multiple rounds set by the users, and 

multiplex clustering algorithm runs were utilized to 

determine the consensus values along with examining 

the constancy of recognized clusters. Pairwise 

consensus values specified as clustering fraction was 

established, out of which two items were pooled 

together, analyzed, and recorded in a consensus matrix 

for every k. Later, for every single k, an ultimate 

agglomerative hierarchical consensus clustering was 

finalized using the distance of 1-consensus values and 

pruned to k groups. This algorithm established the 

“consensus” clustering by examining the clustering 

outcome stability via applying a provided clustering 

approach to randomly selected data subunits. For every 

single iteration, 80% of the samples were selected, 

while exploiting the k-means algorithm with Euclidean 

squared distance metric. Similar outputs were 

compiled over 100 iterations. Following the 

implementation of ConsensusClusterPlus, we acquired 

the cluster consensus and item-consensus output. 

Graphical data incorporated the heatmaps of consensus 

matrices, which revealed the clustering data, consensus 

cumulative distribution function (CDF) plots, and delta 

area plots enabling us to define an approximate 

number of clusters. The Cluster numbers were defined 

based on the following standards: the ones with 

comparatively high consistency among the cluster, low 

coefficient of variation, and without an apparent 

increase in the area under the CDF curve. The 

coefficient of variation was computed based on the 

following equation: CV =(SD/MN)*100%, where SD 

stands for the standard deviation while MN is the 

sample number average. The number of categories was 

determined according to the area under the CDF curve 

https://cancergenome.nih.gov/
http://genome.ucsc.edu/
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but with no significant alteration. To generate further 

in-depth classifications of LADC, larger cohorts were 

preferably needed. 

 

Heatmaps associated with the consensus clustering were 

produced by the pheatmap R package. Consensus values 

starting from zero (white) to one (dark blue) were 

represented by color-gradient mode, and a matrix was 

organized such that the samples correlating to a specific 

cluster were exhibited as adjacent. Here, the matrix 

correlated with a perfect consensus exhibiting a color-

coded heatmap featured by blue blocks along the 

diagonals with a white background. The color-coded 

heatmap corresponding to the consensus matrix using 

consensus clustering is displayed in Figure 2A depicting 

the consensus for k = 7 by identifying the seven-block 

structure. 

 

Survival outcome and clinical feature analysis 

 

Kaplan–Meier plots were generated to demonstrate 

overall survival within the LADC subtypes 

characterized by DNA methylation profiling. The Log-

rank test was performed to examine the significant 

differences between the clusters. Survival outcomes 

were analyzed by survival packages in R. Correlations 

among clinical characteristics, and DNA methylation 

clusters were analyzed utilizing the chi-squared test. All 

analyses carried out were two-sided; P<0.05 was 

regarded as statistically significant for each analysis. 

 

Functional enrichment analyses and genomic 

annotation 
 

We applied the cluster profile package in R [28] with 

KEGG for the gene enrichment analysis of Gene 

Ontology, Biological Pathways, and Regulatory motifs 

in DNA and Protein gene groups. 
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CpG: Cytosine Guanine; NSCLC: non-small cell lung 

cancer; KNN: k-nearest neighbors; SNPs: single 

nucleotide polymorphisms; CDF: cumulative 
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Encyclopedia of Genes and Genomes; CDF: cumulative 

distribution function; HR: hazard ratio; AUC: area 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 3, 4 and 6. 

 

Supplementary Table 1. Multivariate Cox regression analysis of the 774 methylation. 
 

Supplementary Table 2. Functional enrichment analysis and the identified 16 enriched pathways. 

ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count 

hsa05323 
Rheumatoid 

arthritis 
12/349 93/8017 0.000662 0.127121 0.120877 

TGFB3/HLA-

DOB/CXCL3/ATP6V1B1/CCL5/A

TP6V1G3/HLA-

DMA/MMP3/HLA-DRA/HLA-

DPB1/ICAM1/CXCL1 

12 

hsa00430 

Taurine and 

hypotaurine 

metabolism 

4/349 11/8017 0.000913 0.127121 0.120877 GGT1/GGT6/GGT5/GAD2 4 

hsa04061 

Viral protein 

interaction with 

cytokine and 

cytokine receptor 

12/349 100/8017 0.001271 0.127121 0.120877 

CX3CR1/CSF1R/CXCL3/CCL5/T

NFRSF10D/CXCL13/CXCL14/CX

3CL1/CCL25/IL20/CXCL1/CCR8 

12 

hsa04064 

NF-kappa B 

signaling 

pathway 

12/349 104/8017 0.00179 0.134274 0.127678 

LCK/PIDD1/CXCL3/BLNK/TRAF

1/ATM/ICAM1/LY96/CXCL1/TA

B1/TIRAP/CARD11 

12 

hsa04940 
Type I diabetes 

mellitus 
7/349 43/8017 0.002319 0.139159 0.132323 

FASLG/HLA-DOB/PTPRN/HLA-

DMA/GAD2/HLA-DRA/HLA-

DPB1 

7 

hsa05166 

Human T-cell 

leukemia virus 1 

infection 

19/349 219/8017 0.003147 0.157372 0.149642 

PTTG2/LCK/MSX1/TGFB3/ANA

PC2/HLA-

DOB/HRAS/CDK2/CDC23/SLC25

A31/E2F1/HLA-

DMA/CD3G/HLA-DRA/HLA-

DPB1/ATM/ICAM1/E2F2/VAC14 

19 

hsa05169 
Epstein-Barr 

virus infection 
17/349 201/8017 0.006557 0.281035 0.26723 

HLA-

DOB/PSMC5/CDK2/CD247/NFK

BIB/USP7/RUNX3/E2F1/HLA-

DMA/CD3G/BLNK/SKP2/HLA-

DRA/HLA-

DPB1/ICAM1/E2F2/TAB1 

17 

hsa00920 
Sulfur 

metabolism 
3/349 10/8017 0.00781 0.292863 0.278477 SUOX/PAPSS1/SELENBP1 3 

hsa05145 Toxoplasmosis 11/349 112/8017 0.00933 0.310994 0.295717 

TGFB3/HLA-

DOB/LAMC1/NFKBIB/HLA-

DMA/BIRC7/HLA-DRA/HLA-

DPB1/LY96/HSPA6/TAB1 

11 

hsa05202 

Transcriptional 

misregulation in 

cancer 

15/349 186/8017 0.015514 0.380094 0.361422 

SMAD1/RUNX2/HMGA2/CSF1R/

PPARG/NUPR1/HHEX/PTK2/JUP

/MITF/MMP3/TRAF1/ATM/WT1/

LDB1 

15 

hsa04060 

Cytokine-

cytokine receptor 

interaction 

21/349 294/8017 0.017276 0.380094 0.361422 

FASLG/TGFB3/GDF5/CX3CR1/C

SF1R/CXCL3/TNFSF18/IL1F10/C

CL5/TNFSF15/TNFRSF10D/TNF

SF12/CXCL17/CXCL13/CXCL14/

CX3CL1/CCL25/IL20/IL32/CXCL

1/CCR8 

21 

hsa04658 Th1 and Th2 cell 9/349 92/8017 0.018292 0.380094 0.361422 
LCK/HLA-

DOB/CD247/NFKBIB/RUNX3/H
9 
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differentiation LA-DMA/CD3G/HLA-DRA/HLA-

DPB1 

hsa05222 
Small cell lung 

cancer 
9/349 92/8017 0.018292 0.380094 0.361422 

LAMC1/CDK2/PTK2/E2F1/BIRC

7/SKP2/TRAF1/FN1/E2F2 
9 

hsa04110 Cell cycle 11/349 124/8017 0.018992 0.380094 0.361422 

PTTG2/TGFB3/ANAPC2/CDK2/C

DC23/E2F1/CDC14A/SKP2/ATM/

E2F2/MCM3 

11 

hsa00590 
Arachidonic acid 

metabolism 
7/349 63/8017 0.019005 0.380094 0.361422 

CBR1/GGT1/ALOX15B/GGT5/PL

A2G12B/PLA2G5/CYP2J2 
7 

hsa05330 
Allograft 

rejection 
5/349 38/8017 0.023414 0.424015 0.403186 

FASLG/HLA-DOB/HLA-

DMA/HLA-DRA/HLA-DPB1 
5 

 

Supplementary Table 3. The available expression profile of 774 sites in 335 training set. 
 

Supplementary Table 4. The 61 cluster-specific methylation sites. 
 

Supplementary Table 5. Functional enrichment analysis and the enriched 5 pathways. 
 

ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count 

hsa05205 
Proteoglycans in 

cancer 
4/23/2020 204/8017 

0.0024

65312 

0.125199

669 

0.12446750

7 

ANK2/IHH

/SHH/COL

1A2 

4 

hsa04933 

AGE-RAGE 

signaling pathway in 

diabetic 

complications 

3/23/2020 100/8017 
0.0027

82215 

0.125199

669 

0.12446750

7 

SERPINE1

/PRKCE/C

OL1A2 

3 

hsa04340 
Hedgehog signaling 

pathway 
2/23/2020 50/8017 

0.0088

71195 

0.266135

836 

0.26457948

6 
IHH/SHH 2 

hsa04612 
Antigen processing 

and presentation 
2/23/2020 78/8017 

0.0207

16307 

0.422194

563 

0.41972558

9 

CTSS/HLA

-DMA 
2 

hsa04931 Insulin resistance 2/23/2020 108/8017 
0.0378

46858 

0.422194

563 

0.41972558

9 

PPARA/PR

KCE 
2 

 

 

Supplementary Table 6. The clinical information and follow-up data of patients. 


