
 

www.aging-us.com 25275 AGING 

INTRODUCTION 
 

Lung adenocarcinoma (LUAD), a common and 

aggressive subtype of non-small cell lung cancer 

(NSCLC), is the primary cause of cancer-related deaths 

worldwide [1–3]. The overall 5-year survival rate of  

patients with LUAD has remained low despite rapid 

advances in diagnostic techniques and molecular 

therapeutics [4]. Because molecular alterations in 

tumors occur earlier than clinical variations, novel and 

effective molecular biomarkers can accurately predict 

patient prognosis and cancer recurrence. Moreover, 
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ABSTRACT 
 

The marked heterogeneity of lung adenocarcinoma (LUAD) makes its diagnosis and treatment difficult. In 
addition, the aberrant DNA methylation profile contributes to tumor heterogeneity and alters the immune 
response. We used DNA methylation array data from publicly available databases to establish a predictive 
model for LUAD prognosis. Thirty-three methylation sites were identified as specific prognostic biomarkers, 
independent of patients’ clinical characteristics. These methylation profiles were used to identify potential drug 
candidates and study the immune microenvironment of LUAD and response to immunotherapy. When 
compared with the high-risk group, the low-risk group had a lower recurrence rate and favorable prognosis. The 
tumor microenvironment differed between the two groups as reflected by the higher number of resting 
dendritic cells and a lower number of monocytes and resting mast cells in the low-risk group. Moreover, low-
risk patients reported higher immune and stromal scores, lower tumor purity, and higher expression of HLA 
genes. Low-risk patients responded well to immunotherapy due to higher expression of immune checkpoint 
molecules and lower stemness index. Thus, our model predicted a favorable prognosis and increased overall 
survival for patients in the low-risk methylation group. Further, this model could provide potential drug targets 
to develop effective immunotherapies for LUAD. 
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these biomarkers could be used to develop 

individualized treatment plans. 

 

Epigenetic changes, such as DNA methylation, are 

inherited modifications that regulate gene expression, 

without any alteration in the underlying nucleotide 

sequence [5]. Aberrant DNA methylations are known to 

occur early during tumorigenesis in several cancers 

including LUAD [6, 7], and keep accumulating as 

cancer progresses [8]. Because different cancer subtypes 

display distinct methylation profiles [9–13], a DNA 

methylation-based model could provide an effective 

means to predict and identify potential cancer 

therapeutics. 

 

DNA methylation is a process during which methyl 

groups are selectively added to CpG sites to form 5-

methylcytosine [14]. We used the DNA methylation 

array data of LUAD from The Cancer Genome Atlas 

(TCGA) and Gene Expression Omnibus (GEO) 

databases to establish a robust prognosis and recurrence 

prediction model. 

 

The tumor microenvironment of LUAD gets infiltrated 

by different immune cell types that contribute to 

malignancy [15–17]. Cancer immunotherapy involves 

the application of immune checkpoint blockers to 

stimulate the immune system against cancer cells. 

However, its beneficial effects have been reported in 

less than 20% of patients [18], and more reliable 

predictors of immune checkpoint blockade response are 

required. DNA methylation regulates the expression of 

several genes in the tumor microenvironment and could 

function as a reliable biomarker for these immune 

checkpoint blocks [19–22]. Publicly available drug 

sensitivity databases, including the Connectivity Map 

(CMap) at the Broad Institute and Genomics of Drug 

Sensitivity in Cancer (GDSC), could be used to identify 

candidate drugs against LUAD-specific DNA 

methylation signatures and develop individualized 

immunotherapy for patients with LUAD. 

 

RESULTS 
 

DNA methylation sites correlated with patients’ 

survival 

 

The HumanMethylation 450K (HM450K) bead array 

data of 503 samples (471 LUAD and 32 normal lung 

tissue) were screened and 21,120 methylation sites were 

identified. After the exclusion of patients with no 

survival data, we studied the correlation between DNA 

methylation sites and patient prognosis with a univariate 

Cox regression analysis to assess the overall survival of 

patients with LUAD. Next, the penalized Cox analysis 

with the Least Absolute Shrinkage and Selection 

Operator (LASSO) was performed to narrow down the 

number of DNA methylation sites, which were selected 

900 times over 1,000 repetitions. Finally, a stepwise 

multivariate Cox regression analysis was performed, 

and 16 methylation sites were identified as potential 

prognostic methylation sites. These were used to 

perform further analyses. 

 

Consensus clustering revealed distinct DNA 

methylation-based prognostic subgroups 
 

To determine DNA methylation-based clusters of 

LUAD, we performed an unsupervised hierarchical 

cluster analysis of patients with LUAD. Depending on 

the category number, the average cluster consensus and 

the coefficient of variation among clusters were 

calculated. We found that most samples in clusters 6 

and 7 were stable (Figure 1A). Finally, the optimal 

cluster number assessed by the cumulative distribution 

function (CDF) delta area curve was 7 (Figure 1B). 

Therefore, we divided the samples into seven molecular 

subtypes. As shown in Figure 1C, a consensus matrix 

was used to identify the optimal number of clusters. The 

seven distinct clusters showed different DNA 

methylation profiles (Figure 1D). The Kaplan-Meier 

survival analysis revealed that DNA methylation 

affected the prognosis of patients with LUAD  

(Figure 1E). 

 

Generation and validation of the prognostic 

methylation model for patients with LUAD 

 

Because cluster 7 had the poorest prognosis and 

numerous CpG sites, we selected it as the seed cluster. 

DNA methylation profiles based on these 33 specific 

sites were measured for all samples, and we 

subsequently used them to calculate the risk score of 

each patient with LUAD. The optimal cut-off for 

dividing patients into high- or low-risk methylation 

group was set at 0.254 using the time-dependent 

receiver operating characteristic (ROC) curve analysis 

(Supplementary Figure 1). Figure 2A–2C display 

methylation profiles and risk score distribution. The 

Kaplan–Meier analysis showed that patients in the high-

risk group had worse overall survival than those in the 

low-risk group (p < 0.001; Figure 2D). We next 

performed a ROC analysis to examine the specificity 

and sensitivity of the prognostic model. The time-

dependent area under the curves (AUCs) for 1-, 3-, and 

5-year overall survival rates of patients with LUAD 

using the prognostic model were 0.901, 0.868, and 

0.850, respectively (Figure 2E). A higher AUC 

indicated better performance for LUAD-specific 

survival; thus, our data suggested excellent performance 

for survival prediction. To determine the reliability of 

the methylation model as a prognostic biomarker, 
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patients with LUAD were stratified into different 

subgroups based on the following clinical 

characteristics: (1) age (age < 60 and age ≥ 60 years), 

(2) sex (male and female), (3) stage (Stage I + Stage II 

and Stage III + Stage IV), and (4) T stage (T1 + T2 and 

T3 + T4). Kaplan–Meier overall survival curves also 

showed that high-risk patients had shorter overall 

survival than low-risk patients in different subtyes, 

further indicating the excellent predictive ability of the 

methylation model (Figure 3). 

 

Next, we validated the reliability and stability of the 

model using HM27K bead array data, with survival data 

in the external validation dataset. The risk scores of 

patients were calculated using the above-mentioned 

formula based on the optimal cut-off value. Patients 

with LUAD were subsequently classified into low- and 

high-risk groups (Supplementary Figure 2A–2C). 

Consistent with the above findings, patients in the high-

risk group in the validation set had shorter overall 

survival than those in the low-risk group (p = 0.01; 

Supplementary Figure 2D). The AUC of the ROC 

analysis for the prognosis model was 0.824, implying 

high predictive accuracy and stability for survival 

prediction (Supplementary Figure 2E). 

 

To study whether the model had similar prognostic 

values in different patients, we applied the same model 

to two other cohorts (GSE63384 and GSE83845) as 

external validation sets. The risk score for each patient 

with LUAD was calculated using these 33 CpG 

methylation sites. The patients were assigned to low- 

and high-risk groups (Supplementary Figure 3A–3C). 

Patients in the high-risk group had poorer overall 

survival in the meta-GEO dataset than those in the low-

risk group (Supplementary Figure 3D). The AUC of the 

ROC analysis was 0.650 (Supplementary Figure 3E). 

 

For further internal validation of the methylation model, 

patients with LUAD from TCGA HM450K were 

randomly divided into training and testing sets. 

Supplementary Table 1 shows the baseline characteristics 

of these two sets. No significant differences in clinical 

properties were observed between the two datasets (p > 

0.05). We used the same risk score formula and 

computed the risk score for all patients in the training 

 

 
 

Figure 1. Identification of DNA methylation-based clusters in LUAD samples. (A) Consensus among DNA methylation-based clusters 

for each category number k. (B) Delta area curve of consensus clustering. (C) Consensus clustering of LUAD samples with k = 6. (D) Heatmap 
of LUAD methylation differences between each DNA methylation subtype. (E) Kaplan–Meier survival curves of LUAD in each DNA methylation 
subtype. LUAD, lung adenocarcinoma. 
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and testing cohorts (Supplementary Figure 4A–4C and 

4F-4H). In line with the findings of the TCGA and 

meta-GEO cohorts, high-risk patients had shorter 

overall survival than low-risk patients in both cohorts 

(Supplementary Figure 4D and 4I). Time-dependent 

ROC analysis indicated that the AUCs for 1-, 3-, and 5-

year overall survival rates in the training cohort were 

0.895, 0.874, and 0.895, respectively (Supplementary 

Figure 4E). Moreover, the risk score-based 

classification of the testing TCGA cohort yielded 

similar results. The AUCs for 1-, 3-, and 5-year overall 

survival rates were 0.906, 0.865, and 0.819, respectively 

(Supplementary Figure 4J). 

 

Prognostic methylation profiles function as a 

recurrence model for patients with LUAD 

 

We next constructed a recurrence model using specific 

methylation sites and disease-free survival time and 

recurrence status in the dataset from HM450K bead

 

 
 

Figure 2. Construction of the prognostic methylation model for patients with LUAD. (A) The clustering analysis heatmap of 

methylation profile in DNA methylation signature sites. (B) The distribution of DNA methylation-based risk score. (C) Vital status of patients in 
the high‐ and low‐risk groups. (D) Kaplan–Meier survival curves of the relative overall survival of patients in the high- and low-risk groups. (E) 
Accuracy of the prognostic model in predicting survival time by time-dependent ROC curve analysis. LUAD, lung adenocarcinoma; ROC, 
receiver operating characteristic. 
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array. When compared with patients in the low-risk 

group, those in the high-risk group had an elevated 

recurrence rate (p < 0.001) (Figure 4A). The recurrence 

model resulted in an AUC of 0.682, 0.752, and 0.745 

for 1-, 3-, and 5-year disease-free survival time, 

respectively (Figure 4B). These results verified the 

predictive accuracy of the recurrence model. Further, 

these results validated the moderate sensitivity and 

specificity of the prognostic model. Next, we used this 

recurrence model to stratify patients with LUAD based 

on their clinical characteristics such as age, sex, stage, 

and T stage subgroups (Figure 5). 

 

Tumor immune microenvironment of patients with 

high- and low-risk LUAD 

 

Next, differences in immune cell infiltration of tumor 

microenvironment were studied in patients with high- 

 

 
 

Figure 3. Kaplan–Meier analysis of overall survival for patients with LUAD. Patients were classified according to age (age < 60 and 

age ≥ 60 years), sex (male and female), TNM stage (Stage I + Stage II and Stage III + Stage IV), and T stage (T1 + T2 and T3 + T4). LUAD, lung 
adenocarcinoma; TNM, tumor/node/metastasis. 

 

 
 

Figure 4. Construction of the recurrence methylation model for patients with LUAD. (A) Kaplan-Meier curves of the recurrence 

model of patients in the high- and low-risk groups. (B) Accuracy of the prognostic model in predicting recurrence rate by time-dependent 
ROC curve analysis. LUAD, lung adenocarcinoma; ROC, receiver operating characteristic. 
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and low-risk LUAD. The Estimation of STromal and 

Immune cells in MAlignant Tumor tissues using 

Expression data (ESTIMATE) algorithm revealed that 

the immune and stromal scores were higher in patients 

in the low-risk group than those in the high-risk group 

(Figure 6A and 6B). Moreover, we compared the tumor 

purity of the three LUAD subtypes and found opposite 

trends—patients in the high-risk group ranked higher 

than those in the low-risk group (Figure 6C). Because of 

their clinical implications in immunotherapy, we 

investigated any potential correlation between the 

LUAD subtypes and the expression of human leukocyte 

antigen (HLA) genes. Interestingly, patients in the low-

risk group reported higher expression of the majority of 

HLA genes than those in the low-risk group (Figure 

6D). We next evaluated the differences in immune 

infiltration of 22 immune cell types between the two 

groups using the CIBERSORT method in association 

with the LM22 model matrix. Compared with the high-

risk group, patients in the low-risk group had a higher 

number of resting dendritic cells and a lower number of 

monocytes and resting mast cells (Figure 6E). To study 

the biological characteristics of differentially expressed 

genes between high- and low-risk patients with LUAD, 

we conducted gene ontology (GO) enrichment analyses. 

We found differentially expressed genes to be clustered 

and mostly enriched in immune functions, such as 

antigen receptor-mediated signaling pathways, immune 

response-regulating cell surface receptor signaling 

pathways, immune response-activating cell surface 

receptor signaling pathways, regulation of lymphocyte 

activation, and T cell activation (Figure 6F). 

 

Immunotherapeutic response of LUAD subtypes 

 

We subsequently determined the expression of several 

key immunomodulators, including TIGIT, ICOS, TIM-3 

(HAVCR2), CTLA4, and PD-L1 (CD274) to study the 

immunotherapeutic response. As shown in Figure 7A–

7E, low-risk patients had higher expression of immune 

checkpoint molecules than high-risk patients. Cancer 

stem cells are vital for cancer growth, metastasis, and 

recurrence, and contribute to the resistance of tumors to 

conventional radiation therapy and chemotherapy. We 

used a one-class logistic regression (OCLR) machine-

learning algorithm to calculate the tumor mRNA 

expression-based stemness index (mRNAsi). We 

observed that patients with the high-risk LUAD subtype 

had elevated stemness indices compared with those in 

the low-risk group (Figure 7F). Next, we used the 

Tumor Immune Dysfunction and Exclusion (TIDE) 

algorithm to predict the likelihood of the response to 

immunotherapy. Interestingly, we found that patients in 

the low-risk group were more likely to respond to 

immunotherapy than those in the high-risk group  

(Figure 7G). These data further supported our finding 

that patients with low-risk LUAD subtype had better 

prognosis and might respond well to immunotherapies. 

 

 
 

Figure 5. Kaplan–Meier analysis of recurrence-free survival of patients with LUAD. Patients were classified according to age (age  
< 60 and age ≥ 60 years), sex (male and female), TNM stage (Stage I + Stage II and Stage III + Stage IV), and T stage (T1 + T2 and T3 + T4). 
LUAD, lung adenocarcinoma; TNM, tumor/node/metastasis. 
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Identification of novel candidate drugs targeting the 

methylation signature 
 

We next identified 82 compounds as potential drugs 

targeting the methylation signatures. The mode-of-

action (MoA) analysis of these compounds revealed 59 

shared mechanisms of action (Figure 8). The analysis 

using predictive databases, i.e., CMap and GDSC 

revealed that five drugs (phenoxybenzamine, terazosin, 

timolol, dihydroergocristine, and nadolol) shared the 

MoA of an adrenergic receptor antagonist, five drugs 

(levomepromazine, trifluoperazine, chlorpromazine, 

mesoridazine, and pimozide) shared the MoA of a 

dopamine receptor antagonist, and three drugs (lisuride, 

quinpirole, and bromocriptine) shared the MoA of a 

dopamine receptor agonist. Thus, we identified drugs 

that targeted different methylation profiles in patients 

with LUAD and could be used for further analysis. 

 

Correlations between the methylation model and 

clinical properties 

 

We next checked whether the prognostic model was 

independent of other conventional clinical properties. 

Univariate Cox regression analysis revealed that the 

tumor/node/metastasis (TNM), T, M, and N stages and 

the risk score correlated with poor survival. Multivariate 

Cox regression analysis revealed risk score as a specific 

prognostic indicator for LUAD (p < 0.001; Figure 9A). 

Subsequently, a nomogram integrating the seven factors 

was constructed for predicting 1-, 3- and 5-year overall 

survival rates. Compared with the clinical properties, 

the risk score for the prognostic model displayed 

superior predictive performance in the nomogram 

(Figure 9B). 

 

Univariate and multivariate Cox regression analyses 

were further performed to examine whether the 

recurrence model was independent of other clinical 

properties. Cox regression analyses revealed the 

recurrence model to be significant (p < 0.001; Figure 

9C). Next, a nomogram that integrated the risk score 

and clinical risk factors was constructed, in which the 

risk score for the recurrence model demonstrated good 

accuracy for predicting 1-, 3- and 5-year disease-free 

survival rates of patients with LUAD (Figure 9D). 

 

DISCUSSION 
 

Over the past several decades, LUAD has become a 

major public health concern due to its highly malignant 

nature [23]. The tumor microenvironment is known to

 

 
 

Figure 6. Tumor immune microenvironment of patients in high- and low-risk groups with LUAD. (A) Immune scores. (B) Stromal 

scores. (C) Tumor purity between patients with high and low risk. (D) The expression of HLA genes between patients with high and low risk. 
(E) The difference in immune cell infiltration in different LUAD subtypes. (F) GO enrichment analyses. GO, gene ontology; HLA, human 
leukocyte antigen; LUAD, lung adenocarcinoma. 
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contribute to tumorigenesis and malignant phenotypes 

[15, 16]. Furthermore, DNA methylation contributes to 

tumorigenesis by altering the tumor microenvironment 

of several cancers including LUAD. For example, 

aberrant DNA methylation can alter immune functions 

such as T cell differentiation and T cell exhaustion, and 

the expression of inhibitory immune checkpoint genes, 

such as PD-L1, PD-L2, and CTLA4 [24]. 

 

 
 

Figure 7. Evaluating the immunotherapeutic response of LUAD subtypes. The expression of immune checkpoint molecules including 

(A) TIGIT, (B) ICOS, (C) TIM-3 (HAVCR2), (D) CTLA4, and (E) PD-L1 (CD274) between patients with high and low risk. (F) Stemness index values 
of patients in high- and low-risk groups. (G) Immunotherapeutic responses of patients with high and low risk. LUAD, lung adenocarcinoma; 
PD-L1, programmed cell death-ligand 1. 

 

 
 

Figure 8. Identification of novel candidate drugs targeting methylation signatures. 



 

www.aging-us.com 25283 AGING 

Immune checkpoint blockade or immunotherapy is a 

promising strategy for treating various cancers. For 

example, antibodies against programmed cell death-

1/programmed cell death-ligand 1 (PD-1/PD-L1) 

immune checkpoint pathway rescued the tumoricidal 

function of effector T cells [25]. Similarly, anti-PD-1 

antibodies are effective in treating several cancers 

including LUAD, and improving the overall survival 

[26–28]. However, not all patients with lung cancer 

respond well to these inhibitors, which could be 

attributed to checkpoint inhibitor complexity and 

patients’ limited tumor immunity [29, 30]. An 

improved immune signature-based classification of 

LUAD could identify subsets of patients who may 

benefit the most from current therapies [31]. For 

instance, Xue et al. verified that DNA methylation 

signatures could reliably predict the immunotherapy 

response and function as effective biomarkers [19].  

 

We identified 33 DNA methylation sites as novel 

prognostic and recurrence biomarkers and therapeutic 

targets for LUAD. Based on clinical characteristics, 

such as age, sex, TNM stage, and T stage, patients 

were divided into subgroups to validate the 

independent predictive value of methylation 

signatures and study the difference in the overall 

survival and recurrence rate between the high- and 

low-risk methylation groups. 

 

Cancer stemness is associated with worse outcomes and 

suppressed immune responses, such as reduced expression 

of PD-L1 [32]. We found that patients with low-risk 

LUAD subtype reported higher immune and stromal 

scores, infiltration of resting dendritic cells, and elevated 

expression of HLA and immune checkpoint genes. 

Moreover, the mRNAsi negatively correlated with the 

LUAD methylation level, suggesting that DNA 

methylation negatively affected the transcriptome of 

LUAD stem cells. 

 

The DNA methylation model could effectively predict 

the overall survival and recurrence rates, independent of 

patients’ clinical properties. Genes predicted by this 

model were specifically enriched in immune response. 

Prediction using the TIDE algorithm indicated that 

patients with low-risk subtype responded well to 

immunotherapy. Based on these results, we speculate 

that this prediction model could provide reliable 

immune biomarkers for cancer therapy. Further, using 

CMap and GDSC databases, we identified 82 potential 

compounds with 59 MoAs and higher immune response 

in the low-risk group; these could be used to target 

 

 
 

Figure 9. Correlations between the methylation model and clinical characteristics. (A) The prognostic model. (B) Nomogram for 
predicting the probability of 1-, 3-, and 5-year overall survival of patients with LUAD. (C) The recurrent model. (D) Nomogram for predicting 
the probability of 1-, 3-, and 5-year disease-free survival of patients with LUAD. LUAD, lung adenocarcinoma. 
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DNA methylation signatures to treat patients with 

LUAD. 

 

Dendritic cells express adrenergic receptors on their 

surfaces, stimulation of which by β-agonists modifies 

the cytokine secretion profiles of these cells [33]. 

Dendritic cells express dopamine receptors in addition 

to the machinery necessary to synthesize, store, and 

degrade dopamine [34]. Glutamate, released by 

Dendritic cells, is a novel and highly effective regulator 

in the initiation of T cell-mediated immune responses 

during T cell–DC interaction [35]. The role of histone 

deacetylases (HDACs) in the epigenetic regulation of 

innate and adaptive immunity is of significant interest. 

HDAC inhibition acetylated and activated signal 

transducer and activator of transcription-3 (STAT-3), 

which was critical for the induction of indoleamine 2,3-

dioxygenase (IDO) and regulation of Dendritic cells 

[36]. The phosphatidylinositol-3 kinase/protein kinase 

B/mammalian target of rapamycin (PI3K-Akt-mTOR) 

pathway is an important upstream regulator of 

glycolytic metabolism and plays a central role in 

Dendritic cells activation and immune responses [37]. 

Heat shock protein 90 (Hsp90) plays a critical role in 

protein folding, transport, and cellular activity. Hsp90 

was shown to inhibition significantly inhibit Dendritic 

cell function [38].  

 

During routine clinical work, the pathological stage 

functions as a prognostic determinant for lung cancer. 

However, patients with LUAD in the same stage report 

different clinical outcomes, revealing the inaccuracy of 

current staging systems in making reliable predictions 

and revealing LUAD heterogeneity. Therefore, it is 

necessary to obtain potential predictive and therapeutic 

biomarkers. The established DNA methylation model 

offers a novel method for identifying patients with 

LUAD in addition to predicting the prognosis and 

recurrence and taking therapeutic decisions. 

 

MATERIALS AND METHODS 
 

Data source and pre-processing 

 

The DNA methylation data of patients with LUAD were 

generated by Illumina Infinium HumanMethylation 450K 

and 27K BeadChips (HM450K and HM27K) using the 

UCSC genome browser. Methylation levels of each CpG 

site were expressed using the β-value that ranged from 

unmethylated to fully methylated. First, we excluded the 

CpG sites with a missing ratio of more than 70% of all 

samples. Next, we excluded cross-reactive genome CpG 

sites based on the identification of cross-reactive probes 

and polymorphic CpGs in the Illumina Infinium 

HumanMethylation microarray [39]. In addition, the CpG 

sites in the sex chromosomes were excluded, and those in 

the promotor regions were further examined [40]. In 

total, 503 samples and 21,120 methylation sites for 

HM450K, and 150 samples and 21,120 methylation sites 

for HM27K were included in subsequent analyses. RNA 

sequencing and its clinical LUAD patient data were 

obtained from the TCGA website. A univariate Cox 

regression analysis was performed to determine the 

association between the methylation level of each CpG 

site and the overall survival of patients with LUAD for 

HM450K and to identify CpG sites related to overall 

survival (p-value < 0.05). After primary filtration, a 

LASSO Cox regression analysis was performed to reduce 

the number of CpG sites using the R package ―glmnet‖. 

A multivariate Cox regression analysis was ultimately 

performed to evaluate the contribution of CpG sites as an 

independent predictive indicator for patients with LUAD, 

as previously described [41, 42].  

 

Consensus cluster analysis to identify methylation-

based subtypes 

 

To perform the consensus classification of LUAD for 

HM450K, we used the R package ―Consensus 

ClusterPlus‖, which provides stable quantitative and 

visual evidence for estimating the number of 

unsupervised clusters in a dataset [43]. In each cluster, 

80% of the tumors were sampled 100 times, and a k-

means algorithm with the Euclidean metric was used. 

The clustering number was assessed according to the 

area under the CDF curve [39]. 

 

Construction and validation of a prediction 

methylated risk model 

 

The above-mentioned specific methylation sites were 

used to construct a prediction model. To validate the 

methylated signature, the risk score was calculated 

according to the prognostic signatures in two GEO 

datasets (GSE63384 and GSE83845) using the R software 

package ―GEOquery‖. Next, patients with LUAD from 

TCGA were randomly divided into training and testing 

cohorts as additional validation datasets. 

 

Evaluation of immune microenvironment 
 

Immune scores were evaluated by applying the 

ESTIMATE algorithm to the gene expression data from 

TCGA [44, 45]. Tumor purity was obtained based on 

the ESTIMATE score using a fitted formula as 

previously described [45]. 

 

Estimation of tumor-infiltrating immune cells 
 

The normalized gene expression data with standard 

annotation files were uploaded to the CIBERSORT web 

portal. Next, the algorithm was determined by 1,000 
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permutations and LM22 gene signature, as described in 

previous studies [42, 46]. The R ―Genefilter‖ package 

was used to screen each LUAD sample, and a p-value < 

0.05 was used to set the threshold. 

 

Functional enrichment analysis 

 

The GO analysis was performed on differentially 

expressed genes using the R ―clusterProfiler‖ package 

[47]. The thresholds for analyses were set using a p-value 

< 0.05 that indicated enriched functional annotations. 

 

Calculation of stemness index 

 

Stemness indices were calculated using an innovative 

OCLR machine-learning algorithm, as previously 

described [44, 48]. Next, we calculated Spearman’s 

correlations between the stemness index model and the 

lung cancer sample expression profiles based on the data 

obtained from TCGA. The stemness index was mapped 

to the [0,1] range using a linear transformation that 

subtracted the minimum and divided the maximum value. 

 

Immunotherapeutic response prediction 

 

Several immune checkpoint pathways are involved in 

tumor immune evasion. Therefore, immune checkpoint 

inhibitors would enhance anticancer immunity [49]. We 

used the TIDE algorithm to predict clinical responses of 

immune checkpoint inhibitors as previously described 

[42, 50].  

 

Compounds therapeutic response prediction 
 

CMap was used to predict the target therapeutic 

compounds using the top 1,000 differentially 

expressed genes [48]. Further, we used the R  

package ―pRRophetic‖ to predict the half maximal 

inhibitory concentration (IC50) of chemotherapeutics 

obtained from the GDSC website in patients with 

LUAD [51]. 

 

Independence of methylation-based model from 

patients’ clinical characteristics 
 

To examine whether prognostic and recurrence models 

were independent variables as compared with other 

conventional clinical characteristics (age, gender, and 

TNM, T, N, and M stages) in patients with LUAD, 

univariate and multivariate Cox regression analyses 

were performed. 

 

AUTHOR CONTRIBUTIONS 

 
Feng Xu, Lulu He, Xueqin Zhan, and Jiexin Chen 

designed the study, analyzed the data, and wrote the 

manuscript. Huan Xu, Xiaoling Huang, Yangyi Li, and 

Xiaohe Zheng analyzed the data and contributed to 

writing the manuscript. Ling Lin and Yongsong Chen 

supervised the research, analyzed the data, and wrote 

the manuscript. All authors read and approved the final 

manuscript. 

 

CONFLICTS OF INTEREST 

 
The authors declare no conflicts of interest. 

 

FUNDING 
 

This study was supported by grants from the National 

Natural Science Foundation of China (81672640), the 

Grant for Key Disciplinary Project of Clinical Medicine 

under the Guangdong High-Level University 

Development Program (002-18120310), the Special 

Funds for Innovation Strategy of Science and Education 

in Guangdong Province (2018-157), the Special Funds 

for Science and Technology of Guangdong Province 

(2019-113), the Science and Technology Planning 

Project of Shantou City (2019-106), "Dengfeng Project" 

for the construction of high-level hospitals in 

Guangdong Province–the First Affiliated Hospital of 

Shantou University Medical College Supporting 

Funding (2019-70), the Guangdong Basic and Applied 

Basic Research Foundation (2020A1515011519), and 

the Medical Science and Technology Research 

Foundation of Guangdong Province (A2020430). 

 

REFERENCES 
 

1. Herbst RS, Morgensztern D, Boshoff C. The biology and 
management of non-small cell lung cancer. Nature. 
2018; 553:446–54. 

 https://doi.org/10.1038/nature25183 PMID:29364287 

2. Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-
based treatment of lung adenocarcinoma. Cell Death 
Dis. 2018; 9:117. 

 https://doi.org/10.1038/s41419-017-0063-y 
PMID:29371589 

3. Xu F, Chen JX, Yang XB, Hong XB, Li ZX, Lin L, Chen YS. 
Analysis of lung adenocarcinoma subtypes based on 
immune signatures identifies clinical implications for 
cancer therapy. Mol Ther Oncolytics. 2020; 17:241–49. 

 https://doi.org/10.1016/j.omto.2020.03.021 
PMID:32346613 

4. Zhang L, Zhang Z, Yu Z. Identification of a novel 
glycolysis-related gene signature for predicting 
metastasis and survival in patients with lung 
adenocarcinoma. J Transl Med. 2019; 17:423. 

 https://doi.org/10.1186/s12967-019-02173-2 
PMID:31847905 

https://doi.org/10.1038/nature25183
https://pubmed.ncbi.nlm.nih.gov/29364287
https://doi.org/10.1038/s41419-017-0063-y
https://pubmed.ncbi.nlm.nih.gov/29371589
https://doi.org/10.1016/j.omto.2020.03.021
https://pubmed.ncbi.nlm.nih.gov/32346613
https://doi.org/10.1186/s12967-019-02173-2
https://pubmed.ncbi.nlm.nih.gov/31847905


 

www.aging-us.com 25286 AGING 

5. Hulshoff MS, Xu X, Krenning G, Zeisberg EM. Epigenetic 
regulation of endothelial-to-mesenchymal transition in 
chronic heart disease. Arterioscler Thromb Vasc Biol. 
2018; 38:1986–96. 

 https://doi.org/10.1161/ATVBAHA.118.311276 
PMID:30354260 

6. Shi B, Thomas AJ, Benninghoff AD, Sessions BR, Meng 
Q, Parasar P, Rutigliano HM, White KL, Davies CJ. 
Genetic and epigenetic regulation of major 
histocompatibility complex class I gene expression in 
bovine trophoblast cells. Am J Reprod Immunol. 2018; 
79:e12779. 

 https://doi.org/10.1111/aji.12779  
PMID:29131441 

7. Shen N, Du J, Zhou H, Chen N, Pan Y, Hoheisel JD, Jiang 
Z, Xiao L, Tao Y, Mo X. A diagnostic panel of DNA 
methylation biomarkers for lung adenocarcinoma. 
Front Oncol. 2019; 9:1281. 

 https://doi.org/10.3389/fonc.2019.01281 
PMID:31850197 

8. He W, Ju D, Jie Z, Zhang A, Xing X, Yang Q. Aberrant 
CpG-methylation affects genes expression predicting 
survival in lung adenocarcinoma. Cancer Med. 2018; 
7:5716–26. 

 https://doi.org/10.1002/cam4.1834 PMID:30353687 

9. Ding W, Feng G, Hu Y, Chen G, Shi T. Co-occurrence 
and mutual exclusivity analysis of DNA methylation 
reveals distinct subtypes in multiple cancers. Front Cell 
Dev Biol. 2020; 8:20. 

 https://doi.org/10.3389/fcell.2020.00020 
PMID:32064261 

10. Sharp GC, Ho K, Davies A, Stergiakouli E, Humphries K, 
McArdle W, Sandy J, Davey Smith G, Lewis SJ, Relton 
CL. Distinct DNA methylation profiles in subtypes of 
orofacial cleft. Clin Epigenetics. 2017; 9:63. 

 https://doi.org/10.1186/s13148-017-0362-2 
PMID:28603561 

11. Fleischer T, Tekpli X, Mathelier A, Wang S, Nebdal D, 
Dhakal HP, Sahlberg KK, Schlichting E, Børresen-Dale 
AL, Borgen E, Naume B, Eskeland R, Frigessi A, et al, 
and Oslo Breast Cancer Research Consortium 
(OSBREAC). DNA methylation at enhancers identifies 
distinct breast cancer lineages. Nat Commun. 2017; 
8:1379. 

 https://doi.org/10.1038/s41467-017-00510-x 
PMID:29123100 

12. Ferraresso S, Aricò A, Sanavia T, Da Ros S, Milan M, 
Cascione L, Comazzi S, Martini V, Giantin M, Di Camillo 
B, Mazzariol S, Giannuzzi D, Marconato L, Aresu L. DNA 
methylation profiling reveals common signatures of 
tumorigenesis and defines epigenetic prognostic 
subtypes of canine diffuse large B-cell lymphoma. Sci 
Rep. 2017; 7:11591. 

 https://doi.org/10.1038/s41598-017-11724-w 
PMID:28912427 

13. Long J, Chen P, Lin J, Bai Y, Yang X, Bian J, Lin Y, Wang 
D, Yang X, Zheng Y, Sang X, Zhao H. DNA methylation-
driven genes for constructing diagnostic, prognostic, 
and recurrence models for hepatocellular carcinoma. 
Theranostics. 2019; 9:7251–67. 

 https://doi.org/10.7150/thno.31155 PMID:31695766 

14. Santos KF, Mazzola TN, Carvalho HF. The prima 
donna of epigenetics: the regulation of gene 
expression by DNA methylation. Braz J Med Biol 
Res. 2005; 38:1531–41.  

 https://doi.org/10.1590/s0100-879x2005001000010 
PMID:16172746 

15. Mony JT, Schuchert MJ. Prognostic implications of 
heterogeneity in intra-tumoral immune composition 
for recurrence in early stage lung cancer. Front 
Immunol. 2018; 9:2298. 

 https://doi.org/10.3389/fimmu.2018.02298 
PMID:30374348 

16. Liu X, Wu S, Yang Y, Zhao M, Zhu G, Hou Z. The 
prognostic landscape of tumor-infiltrating immune cell 
and immunomodulators in lung cancer. Biomed 
Pharmacother. 2017; 95:55–61. 

 https://doi.org/10.1016/j.biopha.2017.08.003 
PMID:28826097 

17. Johnson SK, Kerr KM, Chapman AD, Kennedy MM, King 
G, Cockburn JS, Jeffrey RR. Immune cell infiltrates and 
prognosis in primary carcinoma of the lung. Lung 
Cancer. 2000; 27:27–35. 

 https://doi.org/10.1016/s0169-5002(99)00095-1 
PMID:10672781 

18. He Y, Jiang Z, Chen C, Wang X. Classification of triple-
negative breast cancers based on immunogenomic 
profiling. J Exp Clin Cancer Res. 2018; 37:327. 

 https://doi.org/10.1186/s13046-018-1002-1 
PMID:30594216 

19. Xue G, Cui ZJ, Zhou XH, Zhu YX, Chen Y, Liang FJ, Tang 
DN, Huang BY, Zhang HY, Hu ZH, Yuan XY, Xiong J. DNA 
methylation biomarkers predict objective responses to 
PD-1/PD-L1 inhibition blockade. Front Genet. 2019; 
10:724. 

 https://doi.org/10.3389/fgene.2019.00724 
PMID:31475034 

20. Elashi AA, Sasidharan Nair V, Taha RZ, Shaath H, Elkord 
E. DNA methylation of immune checkpoints in the 
peripheral blood of breast and colorectal cancer 
patients. Oncoimmunology. 2018; 8:e1542918. 

 https://doi.org/10.1080/2162402X.2018.1542918 
PMID:30713804 

21. Sasidharan Nair V, Toor SM, Taha RZ, Shaath H, Elkord 
E. DNA methylation and repressive histones in the 

https://doi.org/10.1161/ATVBAHA.118.311276
https://pubmed.ncbi.nlm.nih.gov/30354260
https://doi.org/10.1111/aji.12779
https://pubmed.ncbi.nlm.nih.gov/29131441
https://doi.org/10.3389/fonc.2019.01281
https://pubmed.ncbi.nlm.nih.gov/31850197
https://doi.org/10.1002/cam4.1834
https://pubmed.ncbi.nlm.nih.gov/30353687
https://doi.org/10.3389/fcell.2020.00020
https://pubmed.ncbi.nlm.nih.gov/32064261
https://doi.org/10.1186/s13148-017-0362-2
https://pubmed.ncbi.nlm.nih.gov/28603561
https://doi.org/10.1038/s41467-017-00510-x
https://pubmed.ncbi.nlm.nih.gov/29123100
https://doi.org/10.1038/s41598-017-11724-w
https://pubmed.ncbi.nlm.nih.gov/28912427
https://doi.org/10.7150/thno.31155
https://pubmed.ncbi.nlm.nih.gov/31695766
https://doi.org/10.1590/s0100-879x2005001000010
https://pubmed.ncbi.nlm.nih.gov/16172746
https://doi.org/10.3389/fimmu.2018.02298
https://pubmed.ncbi.nlm.nih.gov/30374348
https://doi.org/10.1016/j.biopha.2017.08.003
https://pubmed.ncbi.nlm.nih.gov/28826097
https://doi.org/10.1016/s0169-5002(99)00095-1
https://pubmed.ncbi.nlm.nih.gov/10672781
https://doi.org/10.1186/s13046-018-1002-1
https://pubmed.ncbi.nlm.nih.gov/30594216
https://doi.org/10.3389/fgene.2019.00724
https://pubmed.ncbi.nlm.nih.gov/31475034
https://doi.org/10.1080/2162402X.2018.1542918
https://pubmed.ncbi.nlm.nih.gov/30713804


 

www.aging-us.com 25287 AGING 

promoters of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, PD-L1, 
and galectin-9 genes in human colorectal cancer. Clin 
Epigenetics. 2018; 10:104. 

 https://doi.org/10.1186/s13148-018-0539-3 
PMID:30081950 

22. Sasidharan Nair V, El Salhat H, Taha RZ, John A, Ali BR, 
Elkord E. DNA methylation and repressive H3K9 and 
H3K27 trimethylation in the promoter regions of PD-1, 
CTLA-4, TIM-3, LAG-3, TIGIT, and PD-L1 genes in human 
primary breast cancer. Clin Epigenetics. 2018; 10:78. 

 https://doi.org/10.1186/s13148-018-0512-1 
PMID:29983831 

23. Pérez-Ramírez C, Cañadas-Garre M, Robles AI, Molina 
MÁ, Faus-Dáder MJ, Calleja-Hernández MÁ. Liquid 
biopsy in early stage lung cancer. Transl Lung Cancer 
Res. 2016; 5:517–24. 

 https://doi.org/10.21037/tlcr.2016.10.15 
PMID:27826533 

24. Wang Y, Deng H, Xin S, Zhang K, Shi R, Bao X. 
Prognostic and predictive value of three DNA 
methylation signatures in lung adenocarcinoma. Front 
Genet. 2019; 10:349. 

 https://doi.org/10.3389/fgene.2019.00349 
PMID:31105737 

25. Nadal E, Massuti B, Dómine M, García-Campelo R, 
Cobo M, Felip E. Immunotherapy with checkpoint 
inhibitors in non-small cell lung cancer: insights from 
long-term survivors. Cancer Immunol Immunother. 
2019; 68:341–52. 

 https://doi.org/10.1007/s00262-019-02310-2 
PMID:30725206 

26. Shukuya T, Carbone DP. Predictive markers for the 
efficacy of anti-PD-1/PD-L1 antibodies in lung cancer. J 
Thorac Oncol. 2016; 11:976–88. 

 https://doi.org/10.1016/j.jtho.2016.02.015 
PMID:26944305 

27. Chen L, Han X. Anti-PD-1/PD-L1 therapy of human 
cancer: past, present, and future. J Clin Invest. 2015; 
125:3384–91. 

 https://doi.org/10.1172/JCI80011  
PMID:26325035 

28. Liu J, Nie S, Wu Z, Jiang Y, Wan Y, Li S, Meng H, Zhou S, 
Cheng W. Exploration of a novel prognostic risk 
signatures and immune checkpoint molecules in 
endometrial carcinoma microenvironment. Genomics. 
2020; 112:3117–34. 

 https://doi.org/10.1016/j.ygeno.2020.05.022 
PMID:32474122 

29. Sasidharan Nair V, Elkord E. Immune checkpoint 
inhibitors in cancer therapy: a focus on T-regulatory 
cells. Immunol Cell Biol. 2018; 96:21–33. 

 https://doi.org/10.1111/imcb.1003  
PMID:29359507 

30. Long L, Zhao C, Ozarina M, Zhao X, Yang J, Chen H. 
Targeting immune checkpoints in lung cancer: current 
landscape and future prospects. Clin Drug Investig. 
2019; 39:341–53. 

 https://doi.org/10.1007/s40261-018-00746-5 
PMID:30778885 

31. Xiao Q, Zhou D, Rucki AA, Williams J, Zhou J, Mo G, 
Murphy A, Fujiwara K, Kleponis J, Salman B, Wolfgang 
CL, Anders RA, Zheng S, et al. Cancer-associated 
fibroblasts in pancreatic cancer are reprogrammed by 
tumor-induced alterations in genomic DNA 
methylation. Cancer Res. 2016; 76:5395–404. 

 https://doi.org/10.1158/0008-5472.CAN-15-3264 
PMID:27496707 

32. Miranda A, Hamilton PT, Zhang AW, Pattnaik S, Becht 
E, Mezheyeuski A, Bruun J, Micke P, de Reynies A, 
Nelson BH. Cancer stemness, intratumoral 
heterogeneity, and immune response across cancers. 
Proc Natl Acad Sci USA. 2019; 116:9020–29. 

 https://doi.org/10.1073/pnas.1818210116 
PMID:30996127 

33. Wu H, Chen J, Song S, Yuan P, Liu L, Zhang Y, Zhou A, 
Chang Y, Zhang L, Wei W. Β2-adrenoceptor signaling 
reduction in dendritic cells is involved in the 
inflammatory response in adjuvant-induced arthritic 
rats. Sci Rep. 2016; 6:24548. 

 https://doi.org/10.1038/srep24548  
PMID:27079168 

34. Prado C, Contreras F, González H, Díaz P, Elgueta D, 
Barrientos M, Herrada AA, Lladser Á, Bernales S, 
Pacheco R. Stimulation of dopamine receptor D5 
expressed on dendritic cells potentiates Th17-
mediated immunity. J Immunol. 2012; 188:3062–70. 

 https://doi.org/10.4049/jimmunol.1103096 
PMID:22379034 

35. Pacheco R, Oliva H, Martinez-Navío JM, Climent N, 
Ciruela F, Gatell JM, Gallart T, Mallol J, Lluis C, Franco 
R. Glutamate released by dendritic cells as a novel 
modulator of T cell activation. J Immunol. 2006; 
177:6695–704. 

 https://doi.org/10.4049/jimmunol.177.10.6695 
PMID:17082582 

36. Sun Y, Chin YE, Weisiger E, Malter C, Tawara I, Toubai 
T, Gatza E, Mascagni P, Dinarello CA, Reddy P. Cutting 
edge: negative regulation of dendritic cells through 
acetylation of the nonhistone protein STAT-3. J 
Immunol. 2009; 182:5899–903. 

 https://doi.org/10.4049/jimmunol.0804388 
PMID:19414739 

37. Snyder JP, Amiel E. Regulation of dendritic cell immune 
function and metabolism by cellular nutrient sensor 
mammalian target of rapamycin (mTOR). Front 
Immunol. 2019; 9:3145. 

https://doi.org/10.1186/s13148-018-0539-3
https://pubmed.ncbi.nlm.nih.gov/30081950
https://doi.org/10.1186/s13148-018-0512-1
https://pubmed.ncbi.nlm.nih.gov/29983831
https://doi.org/10.21037/tlcr.2016.10.15
https://pubmed.ncbi.nlm.nih.gov/27826533
https://doi.org/10.3389/fgene.2019.00349
https://pubmed.ncbi.nlm.nih.gov/31105737
https://doi.org/10.1007/s00262-019-02310-2
https://pubmed.ncbi.nlm.nih.gov/30725206
https://doi.org/10.1016/j.jtho.2016.02.015
https://pubmed.ncbi.nlm.nih.gov/26944305
https://doi.org/10.1172/JCI80011
https://pubmed.ncbi.nlm.nih.gov/26325035
https://doi.org/10.1016/j.ygeno.2020.05.022
https://pubmed.ncbi.nlm.nih.gov/32474122
https://doi.org/10.1111/imcb.1003
https://pubmed.ncbi.nlm.nih.gov/29359507
https://doi.org/10.1007/s40261-018-00746-5
https://pubmed.ncbi.nlm.nih.gov/30778885
https://doi.org/10.1158/0008-5472.CAN-15-3264
https://pubmed.ncbi.nlm.nih.gov/27496707
https://doi.org/10.1073/pnas.1818210116
https://pubmed.ncbi.nlm.nih.gov/30996127
https://doi.org/10.1038/srep24548
https://pubmed.ncbi.nlm.nih.gov/27079168
https://doi.org/10.4049/jimmunol.1103096
https://pubmed.ncbi.nlm.nih.gov/22379034
https://doi.org/10.4049/jimmunol.177.10.6695
https://pubmed.ncbi.nlm.nih.gov/17082582
https://doi.org/10.4049/jimmunol.0804388
https://pubmed.ncbi.nlm.nih.gov/19414739


 

www.aging-us.com 25288 AGING 

 https://doi.org/10.3389/fimmu.2018.03145 
PMID:30692999 

38. Bae J, Mitsiades C, Tai YT, Bertheau R, Shammas M, 
Batchu RB, Li C, Catley L, Prabhala R, Anderson KC, 
Munshi NC. Phenotypic and functional effects of heat 
shock protein 90 inhibition on dendritic cell. J 
Immunol. 2007; 178:7730–37. 

 https://doi.org/10.4049/jimmunol.178.12.7730 
PMID:17548610 

39. Yang C, Zhang Y, Xu X, Li W. Molecular subtypes based 
on DNA methylation predict prognosis in colon 
adenocarcinoma patients. Aging (Albany NY). 2019; 
11:11880–92. 

 https://doi.org/10.18632/aging.102492 
PMID:31852837 

40. Li C, Ke J, Liu J, Su J. DNA methylation data-based 
molecular subtype classification related to the 
prognosis of patients with cervical cancer. J Cell 
Biochem. 2020; 121:2713–24. 

 https://doi.org/10.1002/jcb.29491 PMID:31680300 

41. Xu F, Lin H, He P, He L, Chen J, Lin L, Chen Y. A TP53-
associated gene signature for prediction of prognosis 
and therapeutic responses in lung squamous cell 
carcinoma. Oncoimmunology. 2020; 9:1731943. 

 https://doi.org/10.1080/2162402X.2020.1731943 
PMID:32158625 

42. Xu F, Zhang H, Chen J, Lin L, Chen Y. Immune signature 
of T follicular helper cells predicts clinical prognostic 
and therapeutic impact in lung squamous cell 
carcinoma. Int Immunopharmacol. 2020; 81:105932. 

 https://doi.org/10.1016/j.intimp.2019.105932 
PMID:31836430 

43. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a 
class discovery tool with confidence assessments and 
item tracking. Bioinformatics. 2010; 26:1572–73. 

 https://doi.org/10.1093/bioinformatics/btq170 
PMID:20427518 

44. Daily K, Ho Sui SJ, Schriml LM, Dexheimer PJ, Salomonis 
N, Schroll R, Bush S, Keddache M, Mayhew C, Lotia S, 
Perumal TM, Dang K, Pantano L, et al. Molecular, 
phenotypic, and sample-associated data to describe 
pluripotent stem cell lines and derivatives. Sci Data. 
2017; 4:170030. 

 https://doi.org/10.1038/sdata.2017.30 
PMID:28350385 

45. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, 
Kim H, Torres-Garcia W, Treviño V, Shen H, Laird PW, 

Levine DA, Carter SL, Getz G, Stemke-Hale K, et al. 
Inferring tumour purity and stromal and immune cell 
admixture from expression data. Nat Commun. 2013; 
4:2612. 

 https://doi.org/10.1038/ncomms3612  
PMID:24113773 

46. Zhou R, Zhang J, Zeng D, Sun H, Rong X, Shi M, Bin J, 
Liao Y, Liao W. Immune cell infiltration as a biomarker 
for the diagnosis and prognosis of stage I-III  
colon cancer. Cancer Immunol Immunother. 2019; 
68:433–42. 

 https://doi.org/10.1007/s00262-018-2289-7 
PMID:30564892 

47. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R 
package for comparing biological themes among gene 
clusters. OMICS. 2012; 16:284–87. 

 https://doi.org/10.1089/omi.2011.0118 
PMID:22455463 

48. Malta TM, Sokolov A, Gentles AJ, Burzykowski T, 
Poisson L, Weinstein JN, Kamioska B, Huelsken J, 
Omberg L, Gevaert O, Colaprico A, Czerwioska P, 
Mazurek S, et al, and Cancer Genome Atlas Research 
Network. Machine learning identifies stemness 
features associated with oncogenic dedifferentiation. 
Cell. 2018; 173:338–54.e15. 

 https://doi.org/10.1016/j.cell.2018.03.034 
PMID:29625051 

49. Postow MA, Callahan MK, Wolchok JD. Immune 
checkpoint blockade in cancer therapy. J Clin Oncol. 
2015; 33:1974–82. 

 https://doi.org/10.1200/JCO.2014.59.4358 
PMID:25605845 

50. Lu X, Jiang L, Zhang L, Zhu Y, Hu W, Wang J, Ruan X, Xu 
Z, Meng X, Gao J, Su X, Yan F. Immune signature-based 
subtypes of cervical squamous cell carcinoma tightly 
associated with human papillomavirus type 16 
expression, molecular features, and clinical outcome. 
Neoplasia. 2019; 21:591–601. 

 https://doi.org/10.1016/j.neo.2019.04.003 
PMID:31055200 

51. Geeleher P, Cox NJ, Huang RS. Clinical drug response 
can be predicted using baseline gene expression levels 
and in vitro drug sensitivity in cell lines. Genome Biol. 
2014; 15:R47. 

 https://doi.org/10.1186/gb-2014-15-3-r47 
PMID:24580837 

  

https://doi.org/10.3389/fimmu.2018.03145
https://pubmed.ncbi.nlm.nih.gov/30692999
https://doi.org/10.4049/jimmunol.178.12.7730
https://pubmed.ncbi.nlm.nih.gov/17548610
https://doi.org/10.18632/aging.102492
https://pubmed.ncbi.nlm.nih.gov/31852837
https://doi.org/10.1002/jcb.29491
https://pubmed.ncbi.nlm.nih.gov/31680300
https://doi.org/10.1080/2162402X.2020.1731943
https://pubmed.ncbi.nlm.nih.gov/32158625
https://doi.org/10.1016/j.intimp.2019.105932
https://pubmed.ncbi.nlm.nih.gov/31836430
https://doi.org/10.1093/bioinformatics/btq170
https://pubmed.ncbi.nlm.nih.gov/20427518
https://doi.org/10.1038/sdata.2017.30
https://pubmed.ncbi.nlm.nih.gov/28350385
https://doi.org/10.1038/ncomms3612
https://pubmed.ncbi.nlm.nih.gov/24113773
https://doi.org/10.1007/s00262-018-2289-7
https://pubmed.ncbi.nlm.nih.gov/30564892
https://doi.org/10.1089/omi.2011.0118
https://pubmed.ncbi.nlm.nih.gov/22455463
https://doi.org/10.1016/j.cell.2018.03.034
https://pubmed.ncbi.nlm.nih.gov/29625051
https://doi.org/10.1200/JCO.2014.59.4358
https://pubmed.ncbi.nlm.nih.gov/25605845
https://doi.org/10.1016/j.neo.2019.04.003
https://pubmed.ncbi.nlm.nih.gov/31055200
https://doi.org/10.1186/gb-2014-15-3-r47
https://pubmed.ncbi.nlm.nih.gov/24580837


 

www.aging-us.com 25289 AGING 

SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Optimal cut–off value for the risk score. 
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Supplementary Figure 2. Validation of the prognostic methylation model for patients with LUAD using the HM27K dataset. 
(A) The clustering analysis heatmap of methylation profile in DNA methylation signature sites. (B) Distribution of the DNA methylation-based 
risk score. (C) Vital status of patients in the high- and low-risk groups. (D) Kaplan–Meier survival curves of the relative overall survival of 
patients in the high- and low-risk groups. (E) Accuracy of the prognostic model in predicting survival time by ROC curve analysis. LUAD, lung 
adenocarcinoma; HM27K, HumanMethylation 27K; ROC, receiver operating characteristic. 
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Supplementary Figure 3. Validation of the prognostic methylation model for patients with LUAD using the meta-GEO 
dataset. (A) The clustering analysis heatmap of methylation profile in DNA methylation signature sites. (B) The distribution of the DNA 

methylation-based risk score. (C) Vital status of patients in the high‐ and low‐risk groups. (D) Kaplan–Meier survival curves of the relative 
overall survival of patients in high- and low-risk groups. (E) Accuracy of the prognostic model in predicting survival time by ROC curve 
analysis. LUAD, lung adenocarcinoma; GEO, Gene Expression Omnibus; ROC, receiver operating characteristic. 
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Supplementary Figure 4. Validation of the prognostic methylation model for patients with LUAD using TCGA internal 
validation. (A) The clustering analysis heatmap of methylation profile in the DNA methylation signature sites for the training set. (B) 

Distribution of the DNA methylation-based risk score for the training set. (C) Vital status of patients in the high- and low-risk groups for the 
training set. (D) Kaplan–Meier survival curves of the relative overall survival of patients in high- and low-risk groups for the training set. (E) 
Accuracy of the prognostic model in predicting survival time by ROC curve analysis for the training set. (F) The clustering analysis heatmap of 
methylation profile in DNA methylation signature sites for the testing set. (G) Distribution of the DNA methylation-based risk score for testing 
set. (H) Vital status of patients in the high- and low-risk groups for the testing set. (I) Kaplan–Meier survival curves of the relative overall 
survival of patients in the high- and low-risk groups for the testing set. (J) Accuracy of the prognostic model in predicting survival time by ROC 
curve analysis for the testing set. LUAD, lung adenocarcinoma; ROC, receiver operating characteristic; TCGA, The Cancer Genome Atlas. 
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Supplementary Table 
 

Supplementary Table 1. Summary of patients’ characteristics. 

Characteristics 
Training set Testing set 

p-Value 
Number Percentage Number Percentage 

Age (years) 
     

<60 59 26.82 64 29.36 0.5823 

≥60 157 71.36 148 67.89 
 

Not available 4 1.82 6 2.75 
 

Sex 
     

Female 116 52.73 114 52.29 1 

Male 104 47.27 104 47.71 
 

Stage 
     

Stage I–II 171 77.73 173 79.36 0.9805 

Stage III–IV 45 20.45 44 20.18 
 

Not available 4 1.82 1 0.46 
 

T 
     

T1–T2 190 86.36 192 88.07 0.6682 

T3–T4 29 13.18 24 11.01 
 

Not available 1 0.45 2 0.92 
 

M 
     

M0 141 64.09 136 62.39 0.9909 

M1 10 4.55 9 4.13 
 

Not available 69 31.36 73 33.49 
 

N 
     

N0 141 64.09 146 66.97 0.7056 

N1–N3 73 33.18 69 31.65 
 

Not available 6 2.73 3 1.38 
 

 


