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INTRODUCTION 
 

Chronic myeloid leukemia (CML) is a hematopoietic 

stem cell disease caused by a single translocation event, 

t(9;22)(q34;q11), which generates the fusion protein  

BCR-ABL. CML responds to treatment with targeted 

tyrosine kinase inhibitors (TKI), such as imatinib and 

dasatinib, which bind to the active site of BCR-ABL. 

However, some CML patients fail to benefit from TKI 

therapy, and 3-5% progress into blast crisis after 
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ABSTRACT 
 

The treatment of chronic myeloid leukemia (CML), a disease caused by t(9;22)(q34;q11) reciprocal 
translocation, has advanced largely through the use of targeted tyrosine kinase inhibitors (TKIs). To identify 
molecular differences that might distinguish TKI responders from non-responders, we performed single cell 
RNA sequencing on cells (n = 41,723 cells) obtained from the peripheral blood of four CML patients at different 
stages of treatment to generate single cell expression profiles. Analysis of our single cell expression profiles in 
conjunction with those previously obtained from the bone marrow of additional CML patients and healthy 
donors (total = 69,263 cells) demonstrated that imatinib treatment significantly altered leukocyte population 
compositions in both responders and non-responders, and affected the expression profiles of multiple cell 
populations, including non-neoplastic cell types. Notably, in imatinib poor-responders, patient-specific pre-
treatment unique stem/progenitor cells became enriched in peripheral blood compared to the responders. 
These results indicate that resistance to TKIs might be intrinsic in some CML patients rather than acquired, and 
that non-neoplastic immune cell types may also play vital roles in dispersing the responsiveness of patients to 
TKIs. Furthermore, these results demonstrated the potential utility of peripheral blood as a diagnostic tool in 
the TKI sensitivity of CML patients. 
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treatment [1–3]. Underlying mechanisms for resistance 

to TKI treatment have been associated with genomic 

aberrations in addition to the BCR-ABL translocation, 

including mutations in the fusion protein and triosomy 

of chr8 or chr17p [4, 5]. 

 

Immune function in CML is impaired as in other 

malignancies. For example, Rossignol et al. [6] reported 

dysfunctional invariant natural killer T cells (iNKT) in 

untreated CML patients, and Chen et al. [7] also 

observed a decreased proportion of NK cells in the 

peripheral blood that did not recover after treatment 

with TKIs. In addition, immune suppressive cells, such 

as Tregs and myeloid-derived suppressor cells 

(MDSCs), were also reported to increase in high-risk 

populations [8]. Despite these intriguing results, the 

population structure of the peripheral blood has not 

been well characterized in CML patients. The extent to 

which the population structure of the peripheral blood 

differs among patients, whether these differences have 

an impact on the response to TKI treatment and how the 

TKI treatment alters the immune system have also not 

yet been fully elucidated. In fact, an immune-

modulatory role for TKI treatment has been previously 

observed in studies examining the frequencies of 

different immune compartments in the peripheral blood 

[9]. Yet, the specific changes in the expression 

programs remain a mystery.  

 

Recent advances in single cell analysis have challenged 

and revised the trajectory map of hematopoiesis  

[10–12]. Thus, to refine the immune cell population 

structure at a higher resolution in CML might lead to 

further insight into alternative therapies. Giustacchini et 

al. and Warfvinge et al. [13, 14] analyzed single-cell 

transcriptomes of CML cancer stem cells in bone 

marrow and identified subpopulations and gene markers 

of TKI therapy-resistance. However, there are some 

limitations of these studies. First, these studies 

examined only a subgroup of CD34+ cells rather than 

whole CML cell populations. Second, only a small 

number of cells were studied (~ 2,000 cells), which 

limited cell classification. Finally, cells were only 

characterized from the bone marrow, and not the 

peripheral blood, which can be used as a noninvasive 

biopsy for monitoring of CML. Here, we performed 

single cell RNA-sequencing on a total of 41,723 cells 

from peripheral blood, covering different TKI treatment 

stages of four CML patients, to generate expression 

profiles for individual cells. We furthermore analyzed 

this data in association with expression profiles of 

17,540 bone marrow cells from both CML patients and 

healthy donors to generate a comprehensive landscape 

for CML. Using the combined datasets, we investigated 

the immune cell structure in parallel with CML 

progression, and characterized the molecular/cell 

signature of the immune response to TKI treatment. Our 

study provides insight into the pathogenic mechanisms 

involved in CML beyond BCR-ABL translocation and 

new therapeutic strategies to complement TKI. 

 

RESULTS  
 

Comparison of the expression profiles of primitive 

stem/progenitor populations in peripheral blood 

from CML patients with healthy bone marrow 

components  
 

To investigate the comprehensive immune cell 

composition in the peripheral blood of CML patients, 

we performed single cell RNA sequencing (scRNA-seq) 

on PBMCs collected from four representative patients 

with CML at multiple time points before (BT) and after 

treatment with imatinib. Despite treatment with 

imatinib, one patient (P04) rapidly progressed to the 

blast phase within three months, and had acquired a 

mutation in the kinase domain region of BCR-ABL 

(p.M448V). This patient received dasatinib for the 

second round of treatment. PBMC samples from P04 in 

the blast phase as well as post-blast treatment (blast 

cells (BC)-BT and BC-AT, respectively) were also 

included. We also obtained PBMCs from a single 

healthy donor (N). These single-cell suspensions were 

subjected to scRNA-seq using barcodes and UMIs for 

individual cells and unique transcript counting. After 

filtering out low-quality cells, we obtained a total of 

41,723 cells from peripheral blood with at least 200 

detected genes (Supplementary Table 2). The cell 

numbers obtained from different stages including all 

individuals were the following: normal, 5,082; BT, 

5,562; AT, 24,815; BC-BT, 4,515; and BC-AT, 1,749. 

 

Unsupervised clustering of the expression data obtained 

from all cells revealed a total of 11 clusters (Figure 1A). 

Through examination of known cell type specific 

markers, eight clusters were classified as functionally 

common immune cell types, including CD4+ T  

cells, CD8+ T cells, NK cells, B cells, CD14+ 

monocytes, CD16+ monocytes, and megakaryocytes 

(Supplementary Figure 1A). Sample-of-origin of cells 

in these immune cell compartments were well mixed 

(Figure 1B, Supplementary Figure 1B), and the 

fractions of each compartment in the healthy blood 

sample were consistent with the previously reported 

composition of PBMCs, thus confirming the clustering 

methods and results (Supplementary Figure 1C). 

 

The most remarkable result was the identification of four 

clusters with apparent features of primitive cells, 

including Clu-CD34, Clu-MPO, Clu-MME and a subset 

of erythrocytes (GATA1
high

) (Figure 1C). These four 

clusters exhibited a significant enrichment in the patients 
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with poor prognosis, such as Clu-CD34 and Clu-MPO in 

P03 at diagnosis, early-stage erythrocytes (GATA1
high

) in 

P03 and P04 at diagnosis, and Clu-MME in P04 at the 

blast-crisis stage (Figure 1B, Supplementary Figure 1D. 

To further understand the biological status of these 

primitive cells, we used an expression dataset representing 

healthy Lin- bone marrow cells (n=17,540) as a 

comprehensive reference (referred to as BM- 

reference) [15]. Visualization using uniform manifold 

approximation and projection (UMAP) effectively 

recapitulated the intermediate clusters from our analysis 

during the continuous development process (Figure 1D, 

BM-1 to BM-11). We then mapped the primitive cells 

from peripheral blood onto the BM-reference to 

understand the hierarchy of these cells (Figure 1E). Clu-

CD34 correlated with a collection of early stem cells with 

heterogenous differentiation destinies. The blended 

lineage potentials in this cluster were also confirmed 

using the lineage-specific signatures defined in a separate 

study (Supplementary Figure 1E). The primitive cell 

cluster Clu-MPO contained cells from the earliest myeloid 

progenitors to neutrophil-defined or monocyte-defined 

progenitors, while the Clu-MME cluster represented early 

B cell progenitors.  

 

Since BCR-ABL fusion is usually considered to be 

associated with CD34+CD38- stem cells, we focused on 

the primitive cell cluster Clu-CD34 and compared the 

expression profile of this cluster with early HSCs and 

their immediate progenies from the reference dataset 

(BM-1 and BM-7) to identify differentially expressed 

genes (DEG). Up-regulated DEGs included LGALS1, 
MALAT1, TGFB1, MZB1, while down-regulated  

DEGS included KIT, PTEN, and CXCR4 (Figure 1F). 

GSEA analysis revealed that inflammation signatures 

(interferon signaling, TNF signaling) were significantly 

up-regulated in Clu-CD34 which was consistent with an 

enhanced inflammatory response in these patients (Figure 

1G). These same inflammation signatures were also 

associated with Clu-MPO (Supplementary Figure 1F). 

 

 
 

Figure 1. Comparison of the primitive stem/progenitor populations in peripheral blood with the healthy BM components. (A) 
TSNE plot for the resultant 11 clusters identified based on single cell RNA sequencing. The total number of cells is 41,723. Clusters are 
highlighted by different colors, and the number of cells in each cluster is listed in Supplementary Table 2. (B) TSNE plot of all cells. Colors 
indicate sample origin. (C) Heatmap showing the expression profiles of the four primitive clusters identified in peripheral blood. Expression of 
the scaled value of the top 30 significant marker genes in each cluster are shown. (D) UMAP plot displaying the resultant clusters identified in 
healthy Lin- bone marrow datasets [15]. The total number of cells is 15,253. Colors indicate clusters, and lineage destinations are labeled. P, 
early progenitor cells; Meg, megakaryocytes; (E) erythroid cells; BaP, basophil progenitors; N, neutrophils; M, monocytes; DC, dendritic cells; 
Ly, lymphoid cells. (E) Kernel density plot showing the projection result of the four primitive clusters identified in peripheral blood onto the 
BM reference map. (F) Violin plot showing the expression distribution of selected genes in Clu-CD34 in comparison with BM-1 and BM-7. (G) 
Bar plot displaying the GSEA result on the ordered expression profiles in Clu-CD34. X-axis indicates the normalized enrichment score (NES) 
and colors indicate the -log10(P value).  
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Clu-CD34 and Clu-MPO were mainly composed of 

cells from the non-responder P03 at diagnosis. Most of 

the altered expression signatures identified in these two 

clusters were consistent with TKI non-responding 

signatures identified in previous single cell studies 

performed on bone marrow samples from CML 

patients. For example, Giustacchini et al. [13]. observed 

enrichment of signatures related to inflammation, TGF-

beta and TNF-alpha in BCR-ABL- stem cells at 

diagnosis from poor relative to good responders. In 

addition, a subgroup of BCR-ABL+ stem cells with 

selective persistence during TKI treatment was found 

exhibiting increased expression of TGFB1, GAS2, 

CTNNB1, and HIF1A but reduced expression of 

CXCR4, which was consistent with our observations. 

Finally, TNF-alpha and TGF-beta signaling became 

progressively enriched in this subgroup during the 

course of treatment. Warfvinge et al. [14]. also found 

that the most TKI-insensitive cells were negative for 

cKIT. Results from all the datasets suggested that 

despite the extensive heterogeneity that was present 

among CML patients, some of the features were shared 

by TKI-insensitive cells in the bone marrow, and these 

features could also be detected in the peripheral blood 

of some patients.  

 

Integration analysis of bone marrow and peripheral 

blood primitive cells in CML patients 
 

We next combined the primitive clusters in peripheral 

blood and the stem cells in bone marrow (CML-

reference) [13] to illustrate the variation from BM to 

peripheral blood in CML patients. The CML-reference 

contained 2,287 CD34+CD38- cells from 34 CML 

patients and 6 healthy controls. Integration of Clu-CD34 

and Clu-MPO with the CML-reference revealed both 

well-mapped and unmapped cells (Figure 2A). Using 

specific cell type markers, we identified that the well-

mapped cells included three groups of cells: 

proliferating, megakaryocyte/erythrocyte progenitors 

(MEP) and erythroid progenitors (clustered together 

with K562 cells) (Figure 2B). Interestingly, we also 

found that a small subset of the cells in Clu-CD34 

grouped together with the cells at the blast crisis stage 

within the CML-reference (Figure 2B). This 

observation may provide evidence for the existence of 

CML stem cells at diagnosis which already have 

potential for seeding blast crisis. However, two groups 

of cells clustered separately from the CML-reference, 

including a subset of Clu-CD34 cells and most Clu-

MPO cells. The unmapped subset in Clu-CD34 

uniquely expressed several leukemia-related genes 

(Figure 2C), one of which was CD99. This gene is 

known for playing key roles in promoting the 

mobilization of the hematopoietic cells [16–18] and has 

been recognized as a robust marker and promising 

therapeutic target in several tumor types [19]. Through 

inspection of known ligand-receptor pairs, we found 

that Clu-CD34 could possibly affect other immune cell 

types through elevated interaction between CD99 and 

PILRA (Figure 2D). Finally, HOXA9, which is 

frequently overexpressed in acute myeloid leukemia and 

may promote leukemia through epigenetic landscape 

remodeling [20, 21], was up-regulated. 

 

Erythropoiesis is one of the major hallmarks of CML. In 

the peripheral blood dataset, we did observe a large 

number of erythroid cells with extremely high 

expression of HBA1/2 and HBB, although most of these 

cells were filtered out due to the low number of detected 

genes. However, among all the erythroid cell types, the 

most primitive erythroid progenitors (GATA1
high

) 

originated overwhelmingly in the non-responder P03 

and the fast-BC-transforming patient P04 at diagnosis 

(Ery-TMCC2+ from P03-BT and Ery-CA2+ from P04-

BT, Figure 3A, 3B). Compared with the GATA1
low

 

erythroid cells, these GATA1
high

 cells had higher 

expression of ABCG2, which is an ATP-binding 

cassette (ABC) transporters and has been implicated as 

a potential mechanism of primary resistance to TKI 

(Figure 3C) [22]. Interestingly, cells in the Ery-CA2+ 

cluster (originated from P04) were predominantly 

synchronized in the G2/M phase (Figure 3D). In 

previous studies, cells just entering terminal 

differentiation have been identified in committed 

erythroid progenitor initiates, in part due to their 

synchronization in S phase [23, 24]. This cluster 

therefore possibly represents erythroid-terminal 

differentiation initiating populations.  

 

In the bone marrow dataset, cells from the BC phase 

were separated from those from the chronic phase. In 

the peripheral blood dataset, we also found that Clu-

MME, composed of 184 cells, was significantly 

enriched for blast phase cells from P04 (Supplementary 

Figure 1D, Figure 2A). This group of cells expressed 

common acute lymphocytic leukemia antigen MME, 

and the pro-B cell specific gene VPREB1, indicating 

that a minor subpopulation of P04-BC-BT was a 

lymphocytic cell type. We then integrated the BC cells 

from bone marrow and peripheral blood, and observed a 

well-mixed cell population [13] (Figure 3E). This result 

indicated that cells at the BC phase had unique 

expression signatures, and probably exhibited less inter-

patient heterogeneity. The exclusively up-regulated 

genes in BC cells included SOCS2 and S100A16, which 

are pivotal in promoting progression of leukemia as 

well as other types of cancer (Figure 3F, 3G) [25–27]. 

In addition, Clu-MME from peripheral blood also 

exhibited signatures consistent with a RUNX1-RUNXT1 

translocation, indicating that selection for an additional 

genomic alteration had occurred in P04, even though it 
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was represented by only a small fraction of cells 

(Supplementary Figure 2B). This detection of this 

translocation in this small cell population also 

emphasizes the high sensitivity of single cell 

transcriptome data in the identification of subclonal 

genetic alterations. 

 

Validation of the pre-treatment predictive signatures 

 

Clu-CD34, Clu-MPO, Ery-TMCC2, and Ery-CA2 were 

present in the peripheral blood of patients with a poor-

prognosis at diagnosis. These cells showed limited 

developmental trajectories towards three directions, 

erythroid, myeloid and BC (Figure 4A). Since they 

showed unique expression signatures compared with 

either normal stem cells or peripheral blood cells, we 

assumed that these primitive clusters could possibly 

predict the prognosis of CML patients as early as at 

primary diagnosis. Therefore, we analyzed a 

transcriptome dataset of 59-patients with known 

imatinib-treatment response [28], and found that the 

expression signatures of Clu-CD34 and Clu-MPO had 

 

 
 

Figure 2. Comparison of Clu-CD34 and Clu-MPO with bone marrow CML datasets. (A) UMAP plot showing the clustering result of 

the integrated datasets comprising Clu-CD34, Clu-MPO and the BM-reference [13]. The total number of cells is 4,603 (Clu-CD34: 1,789; Clu-
MPO: 527; BM-reference: 2,287). (B) UMAP plots of cells. Colors indicate dataset origin. Arrow in the lowest panel indicates the mixture of 
cells from the Clu-CD34 (n = 61) clustered together with BC cells from the BM-reference. (C) Heatmap showing expression of marker genes 
across different subtypes from the integrated dataset. Two specific subtypes from our dataset (absent in the BM-reference) are marked as 
red at top. (D) Dot plots comparing the interaction of the CD99-PILRA ligand-receptor pair between P03-BT and N. The p value was calculated 
using a permutation test.  
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significantly higher correlations with the imatinib non-

responders compared with the imatinib responders, 

(Supplementary Figure 2C; Clu-CD34, P=0.0024, Clu-

MPO, P=0.0068; unpaired t test). We generated ROC 

curves to demonstrate the prediction performance of 

Clu-CD34 and Clu-MPO gene expression signatures on 

the dataset. The curves were able to predict resistance to 

imatinib before initiation of the therapy (Supplementary 

Figure 2D; Clu-CD34, AUC = 0.74, Clu-MPO, AUC = 

0.69).  

 

We analyzed three other independent datasets derived 

from cohorts of patients (total = 217) treated with 

imatinib or dasatinib, or in different phases of CML, to 

achieve a significant scientific conclusion [29–31]. For 

the CML patients treated with imatinib (n = 96, 

GSE130404), Clu-CD34 and Clu-MPO gene expression 

signatures were able to predict early resistance to 

imatinib (Clu-CD34, AUC = 0.80, Clu-MPO, AUC = 

0.82; Figure 4B–4D). When we integrated these two 

clusters together, the AUC reached 0.86 (95%CI 0.76-

0.95; Figure 4E). However, in patients treated with 

dasatinib (n = 14, GSE33224), Clu-CD34 and Clu-MPO 

gene expression signatures were not able to predict 

dasatinib resistance (P-value > 0.05; Supplementary 

Figure 2E, 2F). These two clusters therefore are of more 

value in predicting response to imatinib than dasatinib. In 

the last cohort of CML patients in different phases of the 

 

 
 

Figure 3. Comparison of erythrocytes and Clu-MME with bone marrow CML datasets. (A) UMAP plot presenting the re-clustering 

result of erythrocytes. Cells are highlighted with colors indicating sample origin. The expression of GATA1, CA2 and TMCC2 are indicated. The 
CA2- and TMCC2-expressing erythrocytes are separately enriched in P04-BT and P03-BT. (B) Heatmap showing enrichment of samples in each 
erythroid cluster. Enrichment score was calculated using the Fisher’s exact test and indicated by log10(Odd Ratio). (C) Beeswarm plots 
showing the expression of ABCG2 between good responders (P01 and P02) and poor responders (P03 and P04). P= 4.109e-10, unpaired t test. 
(D) Bar plots showing the fraction of cells from different cell cycle phases across different erythrocyte subtypes. (E) UMAP plot showing the 
integration result of the BC cluster (from the integrated dataset shown in Fig. 2a) and Clu-MME (the numbers of cells in the BC cluster and 
Clu-MME are 370 and 183, respectively). (F) Scatter plot showing the highly-expressed marker genes in Clu-MME (left) and the BC cluster 
(right). Significant markers (FDR<0.05, fold change > 2) are shown as red dots. The name of shared marker genes of these two clusters are 
indicated in red. (G) Heatmap comparing the expression profiles of CD16+ monocytes across different samples. The selected marker genes 
are indicated.  



 

www.aging-us.com 25343 AGING 

disease (n = 107, GSE4170), Clu-CD34 and Clu-MPO 

gene expression signatures were highly associated  

with blast crisis phase (P < 0.05; Supplementary  

Figure 2G, 2H). 

 

Modulation of the immune structure in response to 

imatinib treatment 
 

In addition to the primitive cell populations, we 

investigated changes in the common functional non-

neoplastic immune compartments during the treatment 

course. Fractions of these immune compartments 

differed significantly among different time points or 

different response status to imatinib. Within untreated 

samples (BT), the frequencies of lymphocytes and 

monocytes were significantly reduced relative to the 

healthy donor, especially in patients with adverse 

prognosis (P < 2e-16, Fisher’s exact test), which were 

dominated by stem/progenitor cells (P03) or erythroid 

cells (P04). Imatinib treatment had an obvious positive 

 

 
 

Figure 4. Validation of prognostic cell populations in 59 CML patients treated with imatinib. (A) Pseudotime trajectory of the 

primitive cells in peripheral blood. Cells are colored based on their identities in the integrated datasets with CML-reference or the erythroid 
clusters. (B) Box plots comparing the correlation coefficients of Clu-CD34 (left) and Clu-MPO (right) between 13 imatinib nonresponders (NR) 
and 83 responders (R) from GSE130404. The correlation coefficients were calculated using Pearson correlation of gene expression signatures 
of these two clusters with the gene expression profile in each CML patient treated with imatinib (see Methods). (C, D) ROC curves illustrating 
the classification performance of Clu-CD34 (C) and Clu-MPO (D) gene expression signatures of 13 imatinib nonresponders and 83 responders 
from GSE130404. The blue shade denotes the 95% confidence interval of the sensitivity at a given specificity point. AUC, area under the ROC 
curve are indicated. (E) We integrated Clu-CD34 and Clu-MPO clusters together to predict imatinib resistance. ROC curves illustrating the 
classification performance of gene expression signatures of 13 imatinib nonresponders and 83 responders from GSE130404. The blue shade 
denotes the 95% confidence interval of the sensitivity at a given specificity point. AUC, area under the ROC curve are indicated. 
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effect in the restoration of the functional immune 

structures (Figure 5A). However, the monocytes in the 

poor responders clustered independently from those in 

healthy donors (Figure 5B, 5C). GSVA analysis 

revealed aberrant activation of multiple pathways in 

P03-AT, including the TNF-α signaling, MAPK, and 

IL12-STAT4 pathways (Supplementary Figure 3A). 

Moreover, monocytes from P04-AT showed 

significantly higher expression levels of several genes, 

including AP-1 members FOS and JUNB (Sup-

plementary Figure 3B).  

 

We also observed that CD16+ monocytes were 

significantly enriched with cells originating from P04-

BC-BT. They accounted for 49.7% (429/863) of the 

total number of monocytes within the sample, which 

was much higher than in the healthy control (101/690, 

14.6%; P < 2.0e-16, Fisher’s exact test). Their 

expression profile was also distinct from CD14+ 

monocytes (Supplementary Figure 3C, 3D). Several 

genes, including IFI27 and VAMP5, were highly up-

regulated in P04-BC-BT compared to the CD16+ 

monocytes from the healthy donor (Figure 5D). The 

increased frequency of macrophages may indicate that 

there is a pro-inflammatory stimulation in the peripheral 

blood during the blast crisis phase. In addition, further 

dissection of CD16+ monocytes revealed a higher 

proportion of cells expressing C1QA, which has been 

implicated in suppression of the cytotoxicity of CD8+ T 

cells (Figure 5E) [32, 33]. The Clu-MME in P04-BC-

BT also showed evidence for significantly elevated 

interaction between CD52 and SIGLEC10, which has 

been shown to suppress T cell function (Figure 5F) [34]. 

LAG3 was also increased in P04-BC-BT T cells 

(Supplementary Figure 3E), revealing suppressed T cell 

function through the presence of both T cell inhibitory 

signals and suppressive macrophages during blast crisis. 

 

In addition to the possible interaction between 

macrophages and T cells, we noticed that the NK cell 

inhibitory receptor and licensing mediator KIR2DL2 

was only restored in the patients with favorable 

prognosis after treatment (Figure 5G). Previous studies 

have suggested that KIR2DL2 plays a protective role in 

CML as well as in solid tumor types, representing a 

good prognostic factor [35, 36]. Expression of NK cell 

inhibitory receptors are highly heterogeneous among 

human populations; thus, it was unclear whether this 

discrepancy in KIR2DL2 was due to differences in 

tumorigenesis or in genetic backgrounds among 

individuals. However, we did not find discrepancies for 

other inhibitory receptors, including KIR2DL3, which is 

considered to bind HLA-C1 like KIR2DL2, but with 

lower affinity (Supplementary Figure 3F) [37]. Previous 

studies have also suggested that KIR polymorphism was 

associated with clinical response [38]. Although this 

result requires further validation due to the low number 

of cells detected with expression of KIRD2L2, it might 

indicate that this gene is crucial in sensitizing NK cells 

against leukemic cells. 

 

DISCUSSION 
 

Ultra-high-throughput single cell RNA-seq enabled 

characterization of the expression profiles of leukemic 

cells and immune structures simultaneously. Although 

the number of cases was limited, we managed to 

identify features of leukemic cells common among 

patients, and to excavate significant discriminations 

between poor and favorable prognosis, based 

principally on the cell population configurations. The 

presence of even small cell populations with unique 

expression profiles could be detected. Cells with similar 

transcriptomes existing in all patients represented 

“classic leukemic” cells in CML. Thus, molecular 

analysis at the single cell level has provided a 

comprehensive overview of many cell populations in 

peripheral blood of patients, which has implications for 

management of patients and their response to the 

current standard of care for CML.  

 

Many of the previously reported genes playing 

important roles in CML progression or resistance were 

detected in our study, such as c-FOS and DUSP1 in 

CD34+ cells [39]. However, preservation of these genes 

might vary in different subpopulations of terminally 

differentiated cells, as c-FOS was enriched in a 

subgroup of CD14+ monocytes (Supplementary  

Figure 3B) and DUSP1 was elevated in CD16+ 

macrophages (Supplementary Figure 3G), which were 

significantly expanded in the BC phase. This 

observation emphasizes the necessity of understanding 

the precise role of different lineage priming processes 

and the exact function of these terminal immune 

compartments in the context of leukemia.  

 

The presence of sample-specific subpopulations in 

untreated cells from patients with a poor prognosis 

indicated that the clinical resistance phenotype is more 

intrinsic than acquired. Nevertheless, the exact cell 

subpopulations indicative of clinical TKI resistance 

varied among patients, and they represented/covered 

different developmental stages along the trajectory of 

hematopoiesis. Using a recently revised hematopoiesis 

map at the resolution level of single cells, we refined 

the (accurate) hierarchy of the circulating progenitor 

cells previously determined as common myeloid 

progenitors (CMP) and megakaryocyte/erythrocyte 

progenitors (MEP) [40, 41]. The differentiation destiny 

of the leukemic HSCs in CML was basically confined 

to granulocytes and erythrocytes, but it may vary among 

patients. Notably, in the non-responder for imatinib, an 
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accumulation of cells in the population occurred at a 

higher level in the hierarchy of the differentiation of 

stem cells, suggesting that restoring the ability of cells 

to differentiate may further facilitate TKI treatment.  

 

The mutations accompanying the development of cancer 

continue to be characterized for the purposes of 

understanding the biology of the disease and the design of 

therapies specific for malignant cells in individual patients 

[42–44]. While targeting mutations works for many 

cancers [45–47], the approach is of significant benefit to 

CML patients due to the application of TKI targeted at 

BCR-ABL kinase [48]. However, a significant proportion 

of CML patients still suffer from the resistance to TKI 

treatment. Thus, although the prediction of primary 

resistance of CML patients to imatinib is difficult, it is a 

clinically important goal to achieve [28].  

 

The uniquely expressed gene sets in resistant-relevant 

cell populations discriminate them from the normal 

functional compartments, as well as classic leukemic 

cells, providing possible surrogates for their 

identification in clinical application. In our study, we 

identified two unique cell populations as primary 

imatinib resistance clusters, which can predict imatinib 

response before treatment using available CML 

expression profiles. Of more clinical importance is that 

these two clusters can be detected in peripheral blood,

 

 
 

Figure 5. Modulation of the immune structure in response to imatinib treatment (A) Bar plots showing the fraction of different cell lineages 

in each sample. (B) TSNE plot of the re-clustering result of CD14+ monocytes. Cells are highlighted in colors indicating sample of origin. The 
number of cells in each cluster is listed in Supplementary Table 2. (C) Heatmap displaying the expression profiles of CD14+ monocytes across 
different samples. Top differentially expressed genes in each sample are indicated. (D) Heatmap comparing the expression profiles of CD16+ 
monocytes across different samples. The selected marker genes are indicated. (E) Bar plots comparing the detected C1QA-expressing 
monocytes across different samples. P value was calculated using a Fisher’s exact test. (F) Dot plots comparing the CD52-SIGLECT10 ligand-
receptor interactions between P04-BC-BT and N. The p value was calculated using a permutation test. (G) Beeswarm plots showing the 
expression of KIR2DL2 among all cells across samples. The number of cells expressing KIR2DL2 in each sample is indicated. 
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but not necessarily in bone marrow. Nevertheless, some 

of the possible prognostic populations were too small, 

such as the Clu-CD34 subset seeding blast crisis and 

Clu-MME, to be detected using traditional strategies. 

These results further highlight the importance and 

necessity of high-throughput methodologies, such as 

single cell RNA sequencing.  

 

In addition, molecular distinctions between favorable 

and poor prognosis was found not only in leukemic 

stem/progenitor clones, but also in the terminal immune 

context which consist mainly of macrophage/monocytes 

and T cells. The observed molecular differences 

between leukemic monocytes emphasizes the fact that 

although the morphology might be normal, expression 

can differ in leukemic myeloid cells. Both macrophages 

and T cells are known to play vital roles in the 

suppression of malignancy, which underscores the value 

of the exploration of immunotherapy in combination 

with TKI treatment, especially for patients at high risk 

for resistance or relapse [49].  

 

MATERIALS AND METHODS 
 

Ethics statement 

 

The protocols in this study were approved by the 

Institutional Review Board (IRB) of Beijing Hospital 

following the guidelines issued by the Ministry of 

Science and Technology of the People’s Republic of 

China. Written informed consent was obtained from all 

individuals participating in the study in accordance with 

the Declaration of Helsinki. Human samples were 

collected and anonymously coded. 

 

Patients and samples 

 

Our study included four newly diagnosed CML patients 

who had undergone treatment with imatinib between 2017 

and 2018 at the Department of Hematology, Beijing 

Hospital and the Department of Hematology, Beijing 

Tongren Hospital. One healthy donor was also included in 

our study. All patients were diagnosed according to the 

2008 World Health Organization (WHO) consensus 

criteria. Peripheral blood mononuclear cells (PBMCs) for 

single cell RNA sequencing were isolated from 10 mL of 

peripheral blood within 2 h of the draw using Human 

Lymphocyte Separation Medium (DAKEWE; Shenzhen, 

China) according to the manufacturer's instructions. The 

clinical information is summarized in Supplementary 

Table 1. 

 

10X Genomics Single-Cell RNA Sequencing 
 

PBMCs were suspended and loaded on the Chromium 

Single Cell Controller, and single-cell RNA-seq 

libraries were prepared following the manufacturer’s 

instructions using the Single Cell 3’ Library Gel Bead 

Kit V1 (10 X Genomics; San Francisco, CA, USA). The 

captured libraries were sequenced on the Illumina 

HiSeq genome analyzer with paired-end 150-base reads 

(Illumina; San Diego, CA, USA). 

 

Data Analysis 

 

Pre-processing of sequencing data 

The sequencing raw data was first de-multiplexed, 

aligned to the reference genome (hg19, UCSC), and 

quality-filtered, and barcodes and unique molecular 

identifiers (UMIs) were counted using CellRanger for 

each PBMC sample, according to the manufacturer’s 

instructions. We applied Seurat v2.3.4 [50] and Seurat 

v3.5.2 [51] for merging of samples, filtering (cells with 

> 200 genes detected, genes with > 3 cells detected, and 

cells with > 5% UMIs derived from mitochondrial 

genes), down-sampling, data normalization and scaling.  

 

Integration of datasets 

Integration of datasets from different studies was 

generated with procedures implemented in Seurat [51]. 

In brief, features with high variances in each dataset 

were first selected individually, and those features 

identified as highly-variable in multiple datasets were 

combined. The top ranked 1,000 to 2,000 features were 

selected for downstream processing. The paired datasets 

were then placed in sharing low-dimension spaces using 

canonical correlation analysis (CCA). Mutual nearest 

neighbors (MNN) were then identified based on K-

nearest neighbors (KNN), and these MNNs were then 

defined as “anchors” connecting each pair of datasets. 

The parameter K.filters in the command 

FindIntegratedAnchors was set to 50 when dealing with 

small sized datasets with < 500 cells. Datasets were then 

assembled using the identified anchors and processed as 

a single scRNA-seq object for subsequent analysis. 

 

Dimension reduction and unsupervised clustering of 

the data 

Principle component analysis (PCA) was performed using 

variable genes with RunPCA implemented in Seurat. The 

standard deviations of the first 40 principle components 

(PCs) were plotted to determine which PC would be used 

for further clustering and dimension reduction. 

Unsupervised clustering was performed using 

FindClusters in Seurat. Clustering results were visualized 

in 2-dimensional images by applying t-distributed 

Stochastic Neighbor Embedding (t-SNE) or Uniform 

Manifold Approximation and Projection (UMAP) [52]. 

Cluster-specific markers and differentially expressed 

genes among clusters or between any two given cell 

groups were identified using FindAllMarkers or 

FindMarkers in Seurat, and cell types were determined 
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using the known lineage-specific markers listed in 

Supplementary Figure 1A. The scores of different features 

were calculated based on the average expression levels of 

the feature-related gene sets (Supplementary Table 3) 

using AddModuleScore in Seurat. Cell cycle status was 

imputed with CellCycleScoring in Seurat, using 

implemented cc.genes for scoring and phase mapping 

(Supplementary Table 3). 

 

Projection of single cells onto reference maps 

When projecting the query dataset onto the reference 

dataset, we first selected 2,000 of the most variable 

genes among the intersecting genes between the 

reference and query datasets. Using these 2000 features, 

we calculated the PCs in the reference dataset, and the 

top 30 PCs were projected onto the query dataset. For 

each cell from the query dataset in the common lower 

dimensional space, the nearest five cells from the 

reference dataset were considered as the anchors of the 

query cell. The projection result is represented by a 

kernel density plot of the anchors on the reference map.  

 

Pathway and gene set analysis 

Standard GSEA [53] or GSVA [54] was applied for the 

identification of significantly enriched gene sets 

between two clusters or given cell groups. The required 

input files (including *.gct and *.cls) were extracted 

from the expression matrix (the integrated transformed 

matrix was used for integrated datasets), and the gene 

set files were downloaded from The Molecular 

Signature Database (MSigDB) [55]. Hallmark, curated 

and GO gene sets (H, C2 and C5, respectively) from 

MSigDB were used for analysis. 

 

Cell interaction evaluation 

The possible interaction between cell populations was 

evaluated using CellphoneDB [56], based on the curated 

known ligand-receptor pairs implemented in the 

package. In brief, for every two given clusters, the 

genes encoding certain receptors or ligands which were 

expressed in more than 30% of cells in a specific cluster 

were chosen for downstream analysis, and the 

significance of a ligand-receptor pair between two 

clusters was calculated through the permutation test by 

randomly assigning the cluster labels of each cell 1,000 

times. An empirical P value was determined by the rank 

of the actual average expression of a given ligand and 

receptor pair in two clusters among the 1,000 

permutated results. 

 

Pseudo-time trajectory construction 

Pseudo-time trajectory was constructed using Monocle 

v2.6.4 R package [57, 58]. The top 50 differentially 

expressed genes in each cluster identified using 

FindAllMarkers in Seurat were combined and used for 

dimension reduction (DDRTRee) and cell ordering.  

Statistical analysis and data availability  

Statistical analyses were performed in R 3.4.3 

(foundation for statistical computing, or functions 

implemented in Seurat). Detailed descriptions are 

specified in the text. 

 

Validation in independent datasets of 276 CML 

patients 

 

Gene expression profiles of CML patients (n = 59) who 

had received imatinib treatment were obtained from the 

GEO database (GSE14671) [28]. Forty-one were imatinib 

nonresponders (NR) while 18 were responders (R). 

Samples of each CML were collected before the initiation 

of imatinib therapy. Gene expression profiles were 

obtained with the Affymetrix Human Genome U133 Plus 

2.0 Array. The robust multiarray averaging method 

(RMA) was used to analyze the RNA expression 

microarray of each CML sample. The expression levels of 

each gene were log2 transformed. The correlation 

coefficients between the gene expression profiles of the 

59 CML patients and the Clu-CD34 (or Clu-MPO) gene 

expression signatures (Supplementary Table 4) were 

calculated using the Pearson correlation. The correlation 

coefficients of the 41 imatinib nonresponders and the 18 

responders were further used to build ROC curves with 

the pROC package (R 3.4.3). 

 

Similarly, 3 other independent datasets with a total of 

217 CML patients were analyzed to achieve significant 

scientific results. The clinical characteristics of the 

cohorts are the following: 1) imatinib therapy 

(GSE130404, 96 CML patients) [29]: 13 imatinib 

nonresponders and 83 responders; 2) dasatinib therapy 

(GSE33224, 14 CML patients) [30]: 8 dasatinib 

nonresponders and 6 responders; and 3) different phases 

of CML (GSE4170, 107 CML patients) [31]: 17 

accelerated phase (AP), 33 (blast crisis (BC) and 57 

chronic phase (CP) CML patients. The first two cohorts 

were used to build receiver operating curves (ROC). 

 

Abbreviations 
 

CML: chronic myeloid leukemia; TKI: tyrosine kinase 

inhibitor; PBMC: peripheral blood mononuclear cell; 

CCA: canonical correlation analysis; PCA: principle 

component analysis; KNN: K-nearest neighbors; MNN: 

mutual nearest neighbors; tSNE: t-distributed stochastic 

neighbor embedding; UMAP: uniform manifold 

approximation and projection; GSEA: gene set 

enrichment analysis; GSVA: gene set variation analysis; 

UMI: unique molecular index; HSC: hematopoietic stem 

cells; CMP: common myeloid progenitors; GMP: 

granuloid progenitors; MEP: megakaryocyte/erythrocyte 

progenitors; BM: bone marrow; BC: blast crisis; BT: 

before treatment; AT: after treatment. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. (A) TSNE plots showing the cell type specific markers in the sequenced dataset. (B) TSNE plots of the sequenced 

dataset colored by sample types (top) and clinical stages (bottom). (C)  Bar plots showing the fraction of different lineages from the healthy 
donor sample. The number of cells in each lineage is indicated. (D) Heatmap showing enrichment of samples in each cluster. Enrichment 
scores were calculated using the Fisher’s exact test and indicated by log10(Odd Ratio). (E) Heatmap showing the lineage potential scores of 
each stem/progenitor cell towards the different development directions (adopted from Velten et al. [12] as shown in Supplementary Table 3) 
EBM: esophils/basophils/mast cell; N: neutrophils; ME: megakyrocytes/erythrocytes. B: B cells, MD: multiple direction. (F) Bar plots displaying 
the GSEA result on the ordered expression profile in Clu-MPO. X-axis indicates the normalized enrichment score (NES) and colors indicate the 
-log10(P value). 
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Supplementary Figure 2. (A) TSNE plots showing the sample origins (left) and expression of MME of cells in the Clu-MME cluster. (B) Gene 

set enrichment analysis revealing an enriched signature of RUNX1-RUNX11 fusion in Clu-MME. (C) Box plots comparing the correlation 
coefficients of Clu-CD34 (left) and Clu-MPO (right) between 41 imatinib nonresponders (NR) and 18 responders (R). The correlation 
coefficients were calculated using Pearson correlation of gene expression signatures of these two clusters with the gene expression profile 
for each CML patient treated with imatinib (see Methods). (D) ROC curves illustrating the classification performance of Clu-CD34 (left) and 
Clu-MPO (right) gene expression signatures of 41 imatinib nonresponders and 18 responders. The blue shade denotes the 95% confidence 
interval of the sensitivity at a given specificity point. AUC, area under the ROC curve are indicated. (E) Box plots comparing the correlation 
coefficients of Clu-CD34 (left) and Clu-MPO (right) between 8 dasatinib nonresponders (NR) and 6 responders (R) from GSE33224. The 
correlation coefficients were calculated using Pearson correlation of gene expression signatures of these two clusters with the gene 
expression profile in each CML patient treated with imatinib (see Methods). (F) ROC curves illustrating the classification performance of Clu-
CD34 (left) and Clu-MPO (right) gene expression signatures of 8 dasatinib nonresponders (NR) and 6 responders (R) from GSE33224. The blue 
shade denotes the 95% confidence interval of the sensitivity at a given specificity point. AUC, area under the ROC curve are indicated. (G) Box 
plots comparing the correlation coefficients of Clu-CD34 (left) and Clu-MPO (right) for 17 AP (accelerated phase) CML patients, 33 BC (blast 
crisis) CML patients and 57 CP (chronic phase) CML patients from GSE4170. The correlation coefficients were calculated by Pearson 
correlation of gene expression signature of these two clusters with the gene expression profile in each CML patient treated with imatinib (see 
Methods). (H) ROC curves illustrating the classification performance of Clu-CD34 (up) and Clu-MPO (down) gene expression signatures for 17 
AP (accelerated phase), 33 BC (blast crisis) and 57 CP (chronic phase) CML patients from GSE4170. The blue shade denotes the 95% 
confidence interval of the sensitivity at a given specificity point. AUC, area under the ROC curve are indicated. 
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Supplementary Figure 3. (A) Bar plots displaying the GSVA t values of top ranked gene sets. Bars are colored by the FDR Q value. (B) TSNE 
plots showing expression of JUNB and FOS in CD14+ monocytes. (C) Heatmap comparing the expression profiles for all CD14+ and CD16+ 
monocytes. (D) Scatter plot showing the highly-expressed markers in CD14+ monocytes and CD16+ monocytes, separately. Significant 
markers (FDR<0.05, fold change > 2) are colored as red in CD16+ monocytes and blue in CD14+ monocytes. (E) TSNE plots displaying LAG3 
expression status of T cells/NK cells in P04-BC-AT in comparison with N. Cells positive for LAG3 were indicated as red. (F) Beeswarm plots 
showing the expression of other KIRs. The number of cells in each sample is indicated. (G) TSNE plot showing the enrichment of DUSP1 
expression in CD16+ monocytes among all monocytes. Dashed line marks the cluster of CD16+ monocytes.  
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 3, 4. 

 

 

Supplementary Table 1. Clinical information. 

 

Supplementary Table 2. Number of cells in each cluster across samples 

  N P01-AT P01-BT P02-AT P02-BT P03-AT P03-BT P04-AT P04-BC-AT P04-BC-BT P04-BT Total 

B 1045 526 54 197 44 872 99 237 103 377 24 3578 

CD4T 2176 2100 171 1309 354 2191 120 1629 759 1535 4 12348 

CD8T 576 1027 31 2674 243 1694 67 591 48 167 1 7119 

CD14Mono 589 481 84 102 59 3776 189 619 186 434 49 6568 

CD16Mono 101 33 17 13 7 48 2 80 6 429 4 740 

Erythro 9 3 91 2 256 55 425 30 374 285 698 2228 

Mega 61 75 3 17 17 19 5 5 20 58 9 289 

Clu-MME 8 2 1 3 1 31 3 0 0 135 0 184 

NK 497 1517 53 864 178 1236 105 606 248 1040 9 6353 

Clu-MPO 0 0 5 0 28 29 451 0 0 5 9 527 

Clu-CD34 20 12 52 5 141 101 1375 4 5 50 24 1789 

Total 5082 5776 562 5186 1328 10052 2841 3801 1749 4515 831 41723 

 

 

Supplementary Table 3. Gene modules introduced for cell cycle scoring or lineage priming scoring. 

 

Supplementary Table 4. Expression signatures in Clu-CD34 and Clu-MPO. 


