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INTRODUCTION 
 

The prevalence of chronic kidney disease (CKD) is high 

and increasing continuously [1, 2]. Renal fibrosis is a 

common outcome of a wide variety of CKD and is 

associated with compromised kidney functions, leading 

to eventual end-stage renal disease, for which the renal 

function needs to be ameliorated and/or mitigated by 

undergoing dialysis or kidney transplantation [3].  

However, no effective therapy is available to inhibit or 

reverse renal fibrosis. 

 

Renal fibrosis is characterized by tubular atrophy, 

inflammatory cell infiltration, activated myofibroblasts 

accumulation, and excessive extracellular matrix (ECM) 

deposition [4, 5]. Myofibroblasts, characterized by 

being α-smooth muscle actin (α-SMA) positive in renal 

interstitium, play an important role in the process of 
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ABSTRACT 
 

Objective: Tumor necrosis factor superfamily protein 14 (TNFSF14) was recently identified as a risk factor in 
some fibrosis diseases. However, the role of TNFSF14 in renal fibrosis pathogenesis remains unknown. 
Results: It was found that TNFSF14 levels were significantly increased both in UUO-induced renal fibrotic mice 
and in patients with fibrotic nephropathy, compared with those in controls. Accordingly, Tnfsf14 deficiency led 
to a marked reduction in renal fibrosis lesions and inflammatory cytokines expression in the UUO mice. 
Furthermore, the levels of Sphk1, a critical molecule that causes fibrotic nephropathy, were remarkably 
reduced in Tnfsf14 KO mice with UUO surgery. In vitro recombinant TNFSF14 administration markedly up-
regulated the expression of Sphk1 of primary mouse renal tubular epithelial cells (mTECs). 
Conclusion: TNFSF14 is a novel pro-fibrotic factor of renal fibrosis, for which TNFSF14 up-regulates Sphk1 
expression, which may be the underlying mechanism of TNFSF14-mediated renal fibrosis. 
Methods: We investigated the effect of TNFSF14 on renal fibrosis and the relationship between TNFSF14 and 
pro-fibrotic factor sphingosine kinase 1 (Sphk1) by using the unilateral urethral obstruction (UUO)-induced mice 
renal fibrosis as a model and the specimen of patients with fibrosis nephropathy, by Masson trichrome staining, 
immunohistochemistry, qRT-PCR, and western blot analysis.  
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fibrosis and are proportionally correlated with severity 

of renal fibrosis [6]. In addition, many cytokines 

contribute to renal fibrosis, including TGF-β1, and 

directly promote ECM production in renal interstitium 

by epithelial cells and fibroblasts.  

 

Tumor necrosis factor superfamily protein 14 

(TNFSF14), also called as LIGHT or CD258, is a 29-

kD type II transmembrane protein expressed primarily 

on activated T lymphocytes and other immunocytes [7]. 

TNFSF14 plays an important role in immune and 

inflammatory responses and can exist in a soluble form 

by proteolytic cleavage [8–10]. Recently, several 

studies have reported that TNFSF14 contributes to 

tissue remodeling and fibrosis, which are initiated by 

inflammatory conditions such as skin fibrosis, 

pulmonary fibrosis, and asthmatic airway remodeling, 

and rheumatoid arthritis [11–14]. In addition, TNFSF14 

expression is induced by epithelial damage and directly 

increases the level of primary human bronchial 

epithelial cells (hBECs) undergoing EMT and 

expressing matrix metallopeptidase-9 [15]. However, 

the role of TNFSF14 in renal fibrosis pathogenesis 

remains unknown. 

 

Sphingosine kinase 1 (Sphk1), an enzyme that produces 

sphingosine-1-phosphate (S1P), has gained considerable 

attention owing to its potential involvement in renal 

inflammation and fibrosis progression [16]. Sphk1 is 

up-regulated in inflammatory related kidney diseases, 

such as diabetic nephropathy and polycystic kidney 

disease [17, 18]. Moreover, it is well-established that 

Sphk1/S1P signaling promotes renal fibrosis by up-

regulating miR-21, and Sphk1 silencing by siRNA 

treatment results in a reduction in fibronectin [19, 20]. 

However, how TNFSF14 pathway correlates Sphk1 

expression during renal fibrosis progression is unclear. 

 

In the present study, we have provided direct evidence, 

for the first time, that TNFSF14 is a novel pro-fibrotic 

factor in renal fibrosis progression, for which TNFSF14 

up-regulates Sphk1 expression. Inhibition of the 

TNFSF14 pathway is plausible for the clinical treatment 

of patients with renal fibrosis. 

 

RESULTS 
 

Increased TNFSF14 expression in the fibrotic kidney 

 

To address TNFSF14 relevance in determining kidney 

fibrosis, we used the unilateral ureteral obstruction 

(UUO)-induced renal fibrosis mouse model. It was 

found that TNFSF14 levels both in kidney tissues 

(Figure 1A and 1B) and in serum (Figure 1C) increased 

rapidly within 3 days and peaked at day 7 after UUO 

surgery (Figure 1A and 1C). TNFSF14 receptors, 

 

 
 

Figure 1. Increased TNFSF14 expression in mice after UUO surgery. (A) TNFSF14 expression in kidney tissues at the indicated time 

points in Tnfsf14
+/+ 

mice after UUO surgery was assessed by qRT-PCR. GAPDH was used as the internal control. (B) The expression of TNFSF14 
in the kidney tissues of Tnfsf14

+/+
 mice after UUO for 7 days was detected by immunohistochemistry (upper lane, original magnification ×200; 

lower lane, original magnification ×400). (C) TNFSF14 levels in serum in Tnfsf14
+/+ 

mice at the indicated time points after UUO surgery were 
measured by ELISA. The data were representative of the results of three independent experiments. All values are represented as mean ± 
SEM. Sham group was used as the UUO control. n = 5 per group. 

*
P < 0.01, 

**
P < 0.01 and 

***
P < 0.001. 
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HVEM and LTβR, also increased remarkably in kidney 

tissues at day 7 after UUO surgery (Supplementary 

Figure 2A and 2B). Moreover, both TNFSF14 and 

HVEM/LTβR were primarily expressed in the tubular 

epithelia rather than in the interstitium (Figure 1B and 

Supplementary Figure 2). 

 

Through specimen examination of patients with CKD 

(including membranous nephritis, focal segmental 

glomerulosclerosis and thrombotic microangiopathy), 

which showed fibrotic lesions in kidney tissues 

(Supplementary Figure 3), we also detected increased 

expression of TNFSF14 and its receptors in biopsy 

kidney tissues (Figure 2A and 2B) and in serum 

(Figure 2C). 

 

These results suggest that TNFSF14 plays a critical role 

during renal fibrosis development. 

 

Tnfsf14 deficiency reduces renal fibrosis 

 

To further examine the functional importance of 

TNFSF14 in kidney fibrosis, we used Tnfsf14- 

deficient mice. Tnfsf14 absence apparently alleviated  

UUO-induced tubular injury and renal fibrosis, as 

demonstrated by significant reductions in collagen 

deposition by staining with Sirius Red and Masson’s 

trichrome (Figure 3A), in the expression of α-SMA and 

fibronectin by immunohistochemical staining and 

western blot (Figure 3B and 3C), in the mRNA levels of 

pro-fibrotic markers Cola1, Vim, and TGF-β1 by qRT-

PCR (Figure 3D), and in tubular dilation, brush border 

disruption and tubular atrophy (Supplementary Figure 

4A and 4B). 

 

E-cadherin expression is an important marker of 

epithelial integrity and its absence is closely related to 

tissue fibrosis [21]. Therefore, we detected the 

expression of E-cadherin in the obstructed kidney, and 

found that it was significantly higher in Tnfsf14 KO 

mice than that of WT mice after UUO surgery (Figure 

4A and 4B). 

 

Tnfsf14 deficiency attenuates inflammatory 

cytokines expression in psoriatic skin lesions 

 

Persistent inflammatory cell infiltration in the tissue and 

inflammatory cytokines secretion play an important role

 

 
 

Figure 2. Increased TNFSF14 expression in patients with fibrotic nephropathy. (A) The expression of TNFSF14 in human kidney 
sections from healthy control, CKD patients were detected by immunohistochemistry (upper lane, original magnification×200; lower lane, 
original magnification×400). (B) The expression of TNFSF14 receptors (HVEM and LTβR) in biopsied human kidney specimens from patients 
with CKD were detected by immunohistochemistry. (upper lane, original magnification×200; lower lane, original magnification×400). 
Nontumoral kidney tissue from patients with renal cell carcinoma was used as healthy control. (C) TNFSF14 levels in serum from healthy 
controls (n = 8) and patients with CKD (n = 16) were measured by ELISA. The data were representative of the results of three independent 
experiments. Values are represented as mean ± SEM. 

*
P < 0.05. 
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in renal fibrosis progression [22]. It was demonstrated 

that Tnfsf14 deficiency led to a remarkable reduction in 

infiltration of macrophages (F4/80
+
), neutrophils (Ly-

6G
+
), and T lymphocytes (CD3

+
) (Figure 5A) and in the 

mRNA levels of pro-inflammatory cytokines TNF-α, 

IL-6, and IL-1β (Figure 5B); However, an increase was 

observed in anti-inflammatory factor IL-10 (Figure 5B) 

level in UUO-induced obstructed damaged kidney. 

 

 
 

Figure 3. Tnfsf14 deficiency ameliorates UUO-induced renal fibrosis. Kidney tissues from Tnfsf14
+/+

 and Tnfsf14
−/−

 mice were 
collected at 7 days after UUO surgery. Sham group was used as the control of UUO. (A) Sirius Red and Masson staining of kidney tissues 

sections. Original magnification ×400. (B) α-SMA expression in kidney tissues was measured by immunohistochemistry. Original magnification 
×200. (C) Western blot analyses of renal fibronectin and α-SMA expression in kidney tissues. Representative western blot (Left) and 
quantitative data (Right) are presented. (D) The mRNA levels of pro-fibrotic mediators Cola1, Vim, and TGF-β1 were measured by qRT-PCR. 
The data were representative of the results of three independent experiments. All values are represented as mean ± SEM. n = 5 per group. 
**

P < 0.01 and 
***

P < 0.001. 



 

www.aging-us.com 25473 AGING 

These data clearly demonstrate that Tnfsf14 deficiency 

can alleviate disease severity during UUO-induced renal 

fibrosis in mice. 

 

Sphk1 is critical for the development of renal 

fibrosis 

 

Sphk1 participates in some types of tissue fibrosis, 

including pulmonary, liver, and cardiac fibrosis [23–26]. 

Moreover, Sphk1 is closely associated with CKD  

[27, 28] Consistent with these results and similar to 

increased Sphk1 expression in renal biopsy of patients 

with CKD (Supplementary Figure 5A), we found that 

Sphk1 was significantly up-regulated in the UUO-

induced obstructed kidney in mice (Figure 6A and 

Supplementary Figure 5B). Furthermore, Sphk1 

expression exhibited a close association with fibrosis-

related factors expression, including Cola1 (Figure 6B, 

r
2
 = 0.736) and Acta2 (Figure 6B, r

2
 = 0.745).  

 

To further assess the role of Sphk1 during renal fibrosis 

development, we used PF543, a specific inhibitor of 

Sphk1 activation, to block Sphk1 endogenous activity in 
vivo, and found that PF543 treatment led to an evident 

down-regulation in UUO-induced collagen deposition 

(Figure 6C) and the expression of α-SMA (Figure 6D) 

and fibronectin (Figure 6E) in kidney tissues in mice. 

All these results suggest that Sphk1 is an important 

factor during UUO-induced renal fibrosis. 

TNFSF14 signaling is essential for pro-fibrotic factor 

Sphk1 production during the development of renal 

fibrosis 

 

To explore the association of pro-fibrotic factor Sphk1 

with TNFSF14 pathway during renal fibrosis 

pathogenesis, we measured Sphk1 expression in 

Tnfsf14-deficient mice. Compared with Tnfsf14
+/+ 

controls, Tnfsf14
−/− 

mice displayed significantly 

reduced Sphk1 expression in UUO-induced obstructed 

damaged kidney (Figure 7A–7C). To further 

investigate the effect of TNFSF14 signaling on Sphk1 

expression, we isolated primary mTECs, which 

exhibited the typical characteristic cobblestone 

morphology of epithelial cells under light microscopy 

(Supplementary Figure 6A) and were CK-18, HVEM 

and LTβR positive (Supplementary Figure 6B). The 

Sphk1 production of primary cultured mTECs was 

remarkably increased after stimulating with 

rmTNFSF14 (100 ng/mL) for 24 h (Figure 7D and 

Supplementary Figure 7). Moreover, TNFSF14 

showed a stronger ability for the induction of Sphk1 

expression when compared with TNF-α, IFN-γ,  

TGFβ-1, IL-1β and IL-6 (Supplementary Figure 7). 

These data indicate that the TNFSF14 pathway is 

critical for pro-fibrotic factor Sphk1 expression during 

the development of renal fibrosis, which may be the 

underlying mechanism of TNFSF14-mediated renal 

fibrosis. 

 

 
 

Figure 4. Increased renal tubular cell integrity in Tnfsf14-deficient mice after UUO. Kidney tissues of Tnfsf14
+/+

 and Tnfsf14
−/−

 mice 

were collected after UUO surgery for 7 days. (A) E-cadherin expression in kidney tissues was measured by western blot. Representative 
western blot (Left) and quantitative data (Right) are presented. (B) E-cadherin expression in kidney tissues was measured by 
immunofluorescence. Sham group was used as the control of UUO. The data were representative of the results of three independent 
experiments. Values are represented as mean ± SEM. Original magnification ×400. n = 5 per group. 

***
P < 0.001. 
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DISCUSSION 
 

TNFSF14 has been reported to be involved in various 

tissues fibrosis, including pulmonary and skin fibrosis 

[11, 12]. However, no studies had evaluated the role of 

TNFSF14 in renal fibrosis development. In the present 

study, we found that the expression of TNFSF14 and its 

receptors HVEM and LTβR were rapidly up-regulated 

in UUO-induced mouse renal fibrosis model and in 

patients with fibrosis nephropathy. Notably, although 

TNFSF14 is a transmembrane protein [7], it can be 

proteolyzed releasing a soluble, bioactive form since a 

metalloprotease cleavage site is present in TNFSF14 

[29]. In agreement with previous results from the 

concanavalin A-induced hepatitis model [30], the 

morbidly obese subjects [31] and the diabetic patients 

[32], circulating TNFSF14 concentrations were 

significantly increased in fibrotic nephropathy patients. 

Furthermore, the important role of soluble form 

TNFSF14 is confirmed in the pathogenesis of liver 

inflammation [30] and DSS-induced colitis [8]. 

However, the cellular source of plasma levels of 

 

 
 

Figure 5. Reduced inflammatory responses in Tnfsf14-deficient mice after UUO. Kidney tissues of Tnfsf14
+/+

 and Tnfsf14
−/−

 
mice were collected after UUO surgery for 7 days. (A) Infiltration of neutrophils (Ly-6G

+
, white arrows), macrophages (F4/80

+
, white 

arrows), and T lymphocytes (CD3
+
, white arrows) in kidney tissues was assessed by immunofluorescence. Original magnification ×400. (B) The 

mRNA levels of inflammatory cytokines TNF-α, IL-6, IL-1β, and IL-10 in kidney tissues were measured by qRT-PCR. Sham group was used as 
the control of UUO. The data were representative of the results of three independent experiments. Values are represented as means ± SEM. 
n = 5 per group. 

**
P < 0.01 and 

***
P < 0.001. 



 

www.aging-us.com 25475 AGING 

 
 

Figure 6. Sphk1 is critical for UUO-induced kidney fibrosis in mice. (A) Sphk1 expression in kidney tissues of Tnfsf14
+/+ 

mice after UUO 

surgery for 7 days was measured by immunohistochemistry (upper lane, original magnification ×200; lower lane, original magnification ×400). 
(B) Linear regression showed a close correlation between Sphk1 mRNA expression and Cola1 and Acta2 mRNA expression in kidney tissues of 
Tnfsf14

+/+ 
mice after UUO surgery for 7 days. Spearman’s correlation coefficient and P value are shown (n = 10). (C–E) After UUO surgery, 

PF543 (1 mg/kg/day) was injected intraperitoneally for consecutive 7 days, and then kidney tissues were collected from each group. (C) Sirius 
Red and Masson staining of kidney tissues sections. Original magnification ×400. (D) α-SMA expression in kidney tissues was measured by 
immunohistochemistry. Original magnification ×200. (E) Western blot analyses of renal fibronectin and α-SMA protein in kidney tissues. 
Representative western blot (Left and quantitative data (Right) are presented. Sham group was used as the control of UUO. The data were 
representative of the results of three independent experiments. All values are represented as means ± SEM. n = 5 per group. 

***
P < 0.001. 
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TNFSF14 is complex and not mentioned in the most of 

literatures since TNFSF14 is expressed and can also be 

shed from different types of immune-inflammatory 

cells, including T and B lymphocytes, monocytes/ 

macrophages, granulocytes, spleen cells, and dendritic 

cells [33–35]. Although it was confirmed that platelets 

in the diabetic patients [32] or activated T cells in acute 

DSS-induced colitis [8] were the important cellular 

source of plasma levels of TNFSF14, the possibility 

could not be dismissed that other cell types might be 

capable of shedding TNFSF14. Herein, the source and 

the functions of increased circulating TNFSF14 in 

fibrotic nephropathy patients was not evaluated because 

of the limited human samples, and further studies are 

needed in the future. 

“No inflammation, no fibrosis”, and in agreement with 

previous studies [2, 36], UUO induced a significant 

increase in the expression of several pro-inflammatory 

cytokines as well as pro-fibrotic factors. However, 

Tnfsf14 deficiency markedly down-regulated UUO-

induced inflammatory responses and renal fibrosis, 

which indicating that the protection observed in Tnfsf14 

deficient mice, at least partially, is associated to the 

reduced immune-inflammatory response. Consistent 

with these results, anti-inflammation drugs showed a 

potentially effectiveness for inflammatory renal 

diseases [37, 38].  

 

There are several cell types that can generate 

proliferating and activated myofibroblast, such as 

 

 
 

Figure 7. Tnfsf14 deficiency leads to a remarkable reduction in UUO-induced Sphk1 expression in kidney tissues of mice. 
After UUO surgery for 7 days, kidney tissues from Tnfsf14

+/+
 and Tnfsf14

−/−
 mice were collected. (A) The expression of Sphk1 in kidney tissues 

was measured by immunohistochemistry (upper lane, original magnification ×200; lower lane, original magnification ×400). (B) The 
expression of Sphk1 in kidney tissues was measured by western blot. Representative western blot (Left) and quantitative data (Right) are 
presented. (C) The expression of Sphk1 mRNA in kidney tissues was measured by qRT-PCR. Sham group was used as the control of UUO. (D) 
Primary cultured mTECs were stimulated with rmTNFSF14 (100 ng/mL) for 24 h. Medium was used as the negative control. Western blot 
analyses of Sphk1 protein of mTECs. Representative western blot (Left) and quantitative data (Right) are presented. The data were 
representative of the results of three independent experiments. All values are represented as means ± SEM. n = 5 per group. 

**
P < 0.01 and 

***
P < 0.001. 
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resident fibroblasts, pericytes, epithelial-to-

mesenchymal transition (EMT), endothelial-to-

mesenchymal transition, and circulating bone-marrow-

derived cells [39]. Here, our results showed a 

remarkable reduced α-SMA level in renal tissues of 

UUO-induced Tnfsf14 KO mice, indicating a lower 

level of fibrosis and fewer myofibroblasts in kidney 

tissues. By using lineage tracing techniques, it was 

demonstrated that approximately 36% of fibroblasts in 

UUO-induced fibrosis were derived from tubular EMT 

[40]. TNFSF14 has been proved to induce EMT 

effectively [15]. That may be the reason why fewer 

myofibroblasts and then the decreased renal fibrosis 

were observed in UUO-induced Tnfsf14 KO mice. On 

the other hand, several studies showed that epithelia 

contributed little to the myofibroblast population after 

injury [41–43]. The reasons for the discrepancy may be 

due to the different experimental models and animal 

strains [44]. In addition, because it is difficult to 

demonstrate EMT in vivo, and a concept of “partial 

EMT” is proposed in UUO model; partial EMT means 

that tubular epithelia acquire mesenchymal features but 

do not fully transform into myofibroblasts [45], which 

explains the conflicting views previously.  

 

E-cadherin is essential for the maintenance of epithelial 

cell integrity and its absence is closely related to renal 

fibrosis [46, 47]. TNFSF14 directly induces E-cadherin 

degradation [15, 48]. Consistent with these results, our 

data showed that Tnfsf14 deficiency substantially 

preserved E-cadherin expression. Taken together, these 

results indicate a profound involvement of endogenous 

TNFSF14 in kidney fibrosis pathogenesis. 

 

Sphk1 plays a pivotal role in renal inflammatory 

response and fibrosis. Sphk1/S1P was shown to induce 

pro-fibrotic factors production by cross-activating the 

TGF-β/Smad signaling pathway [49], and over-

expression of Shpk1 promoted the release of 

inflammatory factors leading to glomerulosclerosis and 

interstitial fibrosis [28]. Sphk1 deficiency induced renal 

fibrosis to a lesser extent in diabetic mice [50]. In the 

present study, the pro-fibrotic properties of Sphk1 were 

further confirmed in the UUO-induced kidney fibrosis 

mouse model. In contrast to the pro-fibrotic role of 

Sphk1, it was found that Sphk2-deficient rather than 

Sphk1-deficient mice were protected from folic acid or 

ischemia-reperfusion injury-induced renal fibrosis [51]. 

The discrepancy between these results may be related to 

the different renal fibrosis models, and the pro-fibrotic 

effects of Sphk1 were not obvious in acute kidney injury 

model. In addition, we found that UUO-induced Sphk1 

expression was remarkably reduced in Tnfsf14 KO 

mice, and in vitro recombinant TNFSF14 administration 

markedly up-regulated Sphk1 expression of mTECs, 

indicating TNFSF14 was required for Sphk1 production 

during renal fibrosis and TNFSF14 may mediate renal 

fibrosis by way of potentiating pro-fibrotic factor Sphk1 

expression.  

 

Collectively, our results provide direct evidence of the 

role of TNFSF14 pathway in kidney fibrosis 

development, indicating that disturbing the TNFSF14 

signaling pathway can be a useful immunotherapeutic 

strategy for kidney fibrosis in humans. Moreover, this is 

the first report showing that the TNFSF14 pathway 

potentiates pro-fibrotic factor Sphk1 expression, which 

may be the underlying mechanism of TNFSF14-

mediated renal fibrosis. 

 

MATERIALS AND METHODS 
 

Human serum and kidney biopsy samples 

 

Human serum samples and kidney specimens were 

obtained from 16 patients with CKD stage 3 or 4 at the 

Southwest Hospital, Third Military Medical University, 

China. All patients were diagnosed with CKD for the 

first time. Serum samples were also obtained from 

healthy volunteers, considered as controls. After 

centrifugation at 3000 rpm for 10 min to remove debris, 

serum samples were aliquot and stored at −80° C for 

further study. Optimal cutting temperature compound 

(O.C.T, Sakura Finetek, USA)-embedded human kidney 

biopsy sections (4-μm) were prepared as described 

previously [52]. Peritumoral renal tissues from patients 

with renal cell carcinoma who underwent nephrectomy 

were used as normal controls. Informed consent was 

obtained from all patients included in this study, and all 

experiments were conducted according to the principles 

of the Declaration of Helsinki. The study was approved 

by the ethical committee of the First Affiliated Hospital 

(Southwest Hospital) of Third Military Medical 

University. 

 

Animal models 
 

Male C57BL/6 mice were purchased from the Peking 

University Animal Center (Beijing, China). Tnfsf14
−/−

 

mice with a C57BL/6 genetic background were 

provided by Prof. Pfeffer (Institute of Medical 

Microbiology and Hospital Hygiene, University of 

Duesseldorf, Germany). Genotyping for Tnfsf14 in mice 

was performed by PCR with the following primers, 

provided by Dr. Preffer [53]. For Tnfsf14, wild type: 5’-

CGACAGACATGCCAGGAATGG-3’; common: 5’-

ACG CATGTGTCCTGCGTGTGG-3’; mutant: 5’-

GACGTAAACTCCTCTTCAGAC-3. Eight to twelve-

week-old male mice were used for the present study. 

UUO-induced renal fibrosis was performed as described 

previously [54]. Briefly, mice were anesthetized with  

1 % pentobarbital (10 μL/g), and the left ureter was 
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exposed by a midline incision. The ureter was 

obstructed by two point ligations with 6–0 silk sutures. 

Sham-operated mice had their ureters exposed and 

manipulated and underwent the same procedure but 

were not ligated. The incision was sutured, and mice 

were allowed to recover and were provided ad libitum 

access to food and water. Mice were euthanized at day 

1, 3, 5, 7, or 9 after the surgery, and kidney tissues and 

serum were collected for further study. For assessing 

PF543 therapeutic efficacy (Sphk1 activation specific 

inhibitor) on UUO-induced kidney fibrosis, three 

groups of mice were used: (1) Sham control, (2) UUO 

injected with vehicle, and (3) UUO injected with 

PF543. There were 5 mice in each group except for 

special instructions. Mice were treated with vehicle 

(PBS) or PF543 (1 mg/kg, Medchemexpress, USA) by 

intraperitoneal injection daily and were euthanized at 7 

days after UUO. This dosage of PF543 is widely used in 

studies including in UUO-induced mouse model of 

renal fibrosis [55, 56], and the inhibitory effect of PF-

543 was also determined by western blot 

(Supplementary Figure 1). All animal studies were 

approved by the Institutional Animal Care and Use 

Committee of the Third Military Medical University. 

 

Primary mouse renal tubular epithelial cells 

(mTECs) culture and treatment 

 

mTECs were isolated as previous described [57, 58]. 

Briefly, the kidney was removed and washed with cold 

PBS. After the capsule was removed, kidney cortices 

from WT mice were cut into pieces and digested with 

collagenase (2 mg/mL) at 37° C for 30 min, followed by 

PBS washing. Next, the suspension was passed through 

a series of cell sieves (mesh diameters of 100 and  

70 μm). Cortical tubular cells were centrifuged at  

1300 rpm for 5 min, followed by PBS washing. Cells 

were cultured in DMEM/F12 medium supplemented 

with 10% fetal bovine serum (ScienCell, Carlsbad, 

USA) and 100 U/mL penicillin/streptomycin (Life 

Technologies, Grand Island, USA). For in vitro studies, 

serum-starved mTECs were stimulated with 

recombinant murine TNFSF14 (100 ng/mL), TNF-α  

(10 ng/mL), IFN-γ (100 ng/mL), TGFβ-1 (10 ng/mL), 

IL1-β (10 ng/mL), or IL-6 (10 ng/ml) (All from 

Peprotech, Rocky Hill, NJ, USA) for 24 h.  

 

Immunofluorescence staining 

 

Kidney cryosections were fixed with 4 % paraformaldehyde 

for 15 min at room temperature. mTECs cultured on 

coverslips were fixed with cold acetone for 10 min at 

−20° C. After blocking with 5 % BSA for 1 h, the slides 

were immunostained with primary antibodies against 

fibronectin, E-cadherin, CD3, CK-18, LTβR (All 

diluted by 1:100, Abcam, Cambridge, MA, USA), and 

TNFSF14, F4/80, Ly-6G, HVEM (All diluted by 1:100; 

Santa Cruz, Dallas, TX, USA). These slides were then 

stained with DyLight- or Cy3-conjugated secondary 

antibody (1:300; Biolegend, San Diego, CA, USA), 

respectively. Nuclei were stained using Hoechst33258 

(Enzo, Lausen, Switzerland). The slides were visualized 

by fluorescent microscopy (Olympus BX51, Japan). 

 

Histology and immunohistochemistry  

 

Kidney tissues were fixed in 4 % formalin and 

embedded in paraffin. Paraffin sections (4-μm) were 

stained with Masson’s trichrome and Sirius Red. Renal 

fibrosis was assessed and quantified by imaging 

analysis (ImageJ software; Bethesda, MD, USA). 

Briefly, 6–8 corticomedullary junction viewing fields 

were selected from appropriate areas for each kidney 

examined. Fibrosis was expressed as the percentage of 

the total area. A total of 4–5 images were evaluated per 

kidney, and mean values were calculated. 

Immunohistochemical staining was performed on 

kidney by using routine protocols [59]. Briefly, sections 

were blocked with 5 % BSA for 1 h at room 

temperature and incubated at 4° C overnight with 

primary antibodies against α-SMA, LTβR, Sphk1 (All 

diluted by 1:150; Abcam, Cambridge, MA, USA), and 

TNFSF14, HVEM (All diluted by 1:150; Santa Cruz, 

Dallas, TX, USA). These slides were then stained with a 

horseradish peroxidase-conjugated secondary antibody 

(1:800; Beyotime, Shanghai, China). The results were 

analyzed using the DAB assay kit (ZSGB-BIO, Beijing, 

China). The slides were visualized by microscopy 

(Olympus BX51, Japan). 

 

Quantitative real-time PCR 

 

Total RNA was extracted from the tissues using the 

TRIzol reagent (Takara, Tokyo, Japan) according to the 

manufacturer’s protocol. First-strand cDNA was 

synthesized using a reverse transcription system 

(Takara, Tokyo, Japan) according to the manufacturer’s 

instruction, and the cDNA was used for quantitative 

real-time PCR analysis using SYBR Premix Ex Taq 

(Takara, Tokyo, Japan). mRNA levels were normalized 

to those of GAPDH. Primer sequences used for 

amplifications are presented in Table 1. All samples 

were measured in triplicates. Differences in gene 

expression were calculated using 2
−ΔΔct

 method. 

 

ELISA 

 

TNFSF14 levels in serum were measured using 

commercially available ELISA kit (Cloud-Clone, 

Houston, USA) according to the manufacturer’s 

instructions. OD values were detected using a 

microplate absorbance reader (BIO-RAD, California, 
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Table 1. Sequences of primers used for qRT-PCR. 

Gene Forward primer Reverse primer 

Tnfsf14 ATCTTACAGGAGCCAACGCC ACGTCAAGCCCCTCAAGAAG 

Acta2 CCCAGACATCAGGGAGTAATGG TCTATCGGATACTTCAGCGTCA 

Cola1 TTCTCCTGGCAAAGACGGAC CTCAAGGTCACGGTCACGAA 

Vim CAAACGAGTACCGGAGACAG TAGCAGCTTCAAGGGCAAAA 

TGF-β1 CTCCCGTGGCTTCTAGTGC GCCTTAGTTTGGACAGGATCTG 

TNF-α CCTGTAGCCCACGTCGTAG GGGAGTAGACAAGGTACAACCC 

IL-1β GCAACTGTTCCTGAACTCAACT ATCTTTTGGGGTCCGTCAACT 

IL-6 TTCCTCTGGTCTTCTGGAGT GTGACTCCAGCTTATCTCTTGG 

IL-10 GCTGGACAACATACTGCTAACC ATTTCCGATAAGGCTTGGCAA 

Sphk1 TTTGGAGGTTGCTGACGAG GGGGCGGCCAGATTTTTAG 

GAPDH GGTTGTCTCCTGCGACTTCA TAGGGCCTCTCTTGCTCAGT 

 

USA) at a wavelength of 450 nm and calculated in the 

linear part of the curve. 

 

Western blot 

 

Total proteins were isolated from the renal tissues using 

the RIPA buffer, and protein concentrations were 

quantified using the BCA protein assay kit (Beyotime, 

Shanghai, China). Protein samples (35 μg/lane) were 

resolved via sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis and were transferred onto 

polyvinylidene difluoride membranes (Beyotime, 

Shanghai, China). The membranes were incubated 

overnight at 4° C with rabbit anti-mouse fibronectin 

(1:1000), mouse anti-mouse α-SMA (1:200), mouse 

anti-mouse E-cadherin (1:500), rabbit anti-mouse Sphk1 

(1:1000) (All from Abcam, Cambridge, MA, USA) 

followed by incubation with horseradish peroxidase-

conjugated goat anti-mouse or goat anti-rabbit IgG 

secondary antibodies (1:3000; ZSGB-BIO, Beijing, 

China). Immunoblots were visualized using the ECL 

Western blot Detection System (Millipore, Billerica, 

MA, USA). GAPDH was used as the loading control. 

 

Statistics 

 

All data are represented as mean ± SEM. Statistical 

significances between experimental and control groups 

were assessed by the Student’s t-test or one-way 

ANOVA. Spearman (nonparametric) correlation 

analysis was used to assess the relationship between 

Sphk1 mRNA expression in kidney and other variables. 

P < 0.05 was considered significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Inhibition efficiency of PF543 treatment. After UUO surgery, mice were treated with PBS or PF543  

(1 mg/kg) by intraperitoneal injection daily. Mice were euthanized and kidney tissues were collected at 7 days after UUO. Sham group was 
used as the control of UUO. The expression of Sphk1 was measured by western blot. GAPDH was used as a loading control. The data were 
representative of the results of three independent experiments. 

 

 
 

Supplementary Figure 2. Immunostaining of kidney tissues of mice with UUO surgery. The expression of HVEM (A) and LTβR (B) in 

kidney tissues on day 7 after UUO surgery was measured by immunohistochemistry. Sham group was used as the control of UUO. Upper 
lane, original magnification ×200; lower lane, original magnification ×400. 

 

 
 

Supplementary Figure 3. Immunostaining of kidney tissues of CKD patients. Immunofluorescence staining of fibronectin in human 
kidney sections from healthy control, membranous nephritis (MN), focal segmental glomerulosclerosis (FSGS) and thrombotic 
microangiopathy (TMA). Original magnification ×400. The data were representative of the results of three independent experiments. 
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Supplementary Figure 4. Histopathology of kidney tissues from Tnfsf14
+/+ 

and
 
Tnfsf14

−/−
 mice. Kidney tissues were collected on 

day 7 after UUO surgery. Sham group was used as the control of UUO. (A) Kidney tubular injury was determined by using PAS staining. (B) 
Tubular injury scoring of kidney tissues. Original magnification ×400. The data were representative of the results of three independent 
experiments. All values are represented as mean ± SEM. n = 5 per group. 

***
P < 0.001. 

 

 
 

Supplementary Figure 5. Increased Sphk1 expression in fibrotic kidney. (A) Expression of Sphk1 in kidney sections from healthy 

control and patients with CKD was assessed by immunohistochemical staining. Original magnification ×200. (B) Expression of Sphk1 in kidney 
tissues of Tnfsf14

+/+ 
mice at 3 and 7 days after UUO surgery was assessed by qRT-PCR. Sham group was used as the control of UUO. The data 

were representative of the results of two independent experiments. Values are represented as mean ±SEM. n = 5 per group. 
**

P < 0.01 and 
***

P < 0.001. 
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Supplementary Figure 6. Characteristics of primary mouse renal tubular epithelial cells (mTECs). (A) The typical characteristic 
cobblestone morphology of mTECs. (B) The expression of CK-18, LTβR, and HVEM in mTECs was assessed by immunofluorescence. The 
isotype here was used as the negative control of the corresponding primary antibody staining group during the immunofluorescence staining. 
The section in isotype group was treated with the corresponding second antibody, but not treated with the primary antibody. Nuclei were 
stained with Hoechst33258. Original magnification ×200. The data were representative of the results of three independent experiments. 

 

 
 

Supplementary Figure 7. Effect of inflammatory cytokines on Sphk1 production by renal tubular epithelial cells (mTECs). The 

expression of Sphk1 mRNA in mTECs was measured by qRT-PCR. Primary cultured mTECs were stimulated with recombinant murine TNFSF14 
(100 ng/mL) , TNF-α (10 ng/mL), IFN-γ (100 ng/mL), TGFβ-1 (10 ng/mL), IL1-β (10 ng/mL), or IL-6 (10 ng/mL) for 24 h. Medium was used as the 
negative control. GAPDH was used as the internal control. The data were representative of the results of three independent experiments. All 
values are represented as means ± SEM. n = 5 per group. 

*
P < 0.05, 

**
P < 0.01 and 

***
P < 0.001. 


