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INTRODUCTION 
 

The incidence of esophageal adenocarcinoma (EAC) has 

increased in recent decades, especially in the Western 

world. It is the solid tumor with the fastest increase in 

cases in the United States in the last 30 years [1]. The 

prognosis of EAC remains poor because it is usually 

diagnosed late. Although many efforts have been made to 

improve prevention, early detection, and treatment, the 5-

year survival rate for patients with EAC is still less than 

15% [2]. Therefore, promising biomarkers may have 

potential for identifying patients at a high risk of EAC 

and for evaluating their prognoses, since the progression 

status of EAC patients does not reflect prognoses and 

treatment responses accordingly.  

 
Numerous biomarkers have been developed and used to 

predict the prognoses of cancer patients [3, 4]. Some of 

them, such as glypican 3 (GPC3) and HER2/neu, were 

identified through global and targeted metabolite 

profiling [5, 6]. However, the prognostic efficiency of 

single-gene biomarkers is limited. Cancer is partly 

characterized by reprogrammed energy metabolism [7]. 

EAC is not only a malignant disease but also an energy 

metabolism disease. It has been recognized that 

glycolysis pathways are significantly upregulated in the 
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ABSTRACT 
 

Background: Esophageal adenocarcinoma (EAC) is a growing problem with a rapidly rising incidence and carries 
a poor prognosis. We aimed to develop a glycolysis-related gene signature to predict the prognostic outcome of 
patients with EAC. 
Results: Five genes (CLDN9, GFPT1, HMMR, RARS and STMN1) were correlated with prognosis of EAC patients. 
Patients were classified into high-risk and low-risk groups calculated by Cox regression analysis, based on the 
five gene signature risk score. The five-gene signature was an independent biomarker for prognosis and 
patients with low risk scores showed better prognosis. Nomogram incorporating the gene signature and clinical 
prognostic factors was effective in predicting the overall survival. 
Conclusion: An innovative identified glycolysis-related gene signature and an effective nomogram reliably 
predicted the prognosis of EAC patients. 
Methods: The Cancer Genome Atlas database was investigated for the gene expression profile of EAC patients. 
Glycolytic gene sets difference between EAC and normal tissues were identified via Gene set enrichment 
analysis (GSEA). Univariate and multivariate Cox analysis were utilized to construct a prognostic gene signature. 
The signature was evaluated by receiver operating characteristic curves and Kaplan–Meier curves. A prognosis 
model integrating clinical parameters with the gene signature was established with nomogram.  
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precursor lesions of EAC, which is known as Barrett's 

esophagus [8]. Increased glycolysis is a Hallmark of 

cancer metabolism, yet little is known about this 

phenotype at malignant stages of progression. Gene set 

enrichment analysis (GSEA) can detect the overall 

expression of various genes without requiring extensive 

experience or a clear differential gene threshold. GSEA 

reveals general trends in the data. Therefore, this 

emerging computational technology could be applied to 

statistically analyze gene expression and biological 

behavior [9]. When applied to studying the glycolytic 

process, GSEA could provide better understanding of 

the underlying mechanism of tumorigenesis and the 

progression of EAC.  

 

In this study, a new gene signature that effectively 

predicted the outcome of EAC patients was explored by 

analyzing data from The Cancer Genome Atlas (TCGA) 

database. We identified three glycolysis-related gene 

sets (GO glycolytic process, hallmark glycolysis and 

reactome glycolysis gene sets) and a five-gene risk 

model (CLDN9, GFPT1, HMMR, RARS and STMN1) 

to predict the prognostic outcome of EAC patients. 

CLDN9 has been found to be related to many human 

malignancies, such as non-Hodgkin's lymphoma, breast 

cancer, pituitary oncocytomas, laryngeal carcinoma and 

endometrial cancer, contributing to disease progression 

and poor prognosis in patients. Wang et al. revealed that 

CLDN9 was significantly correlated with overall 

survival and predicted a poorer prognosis in 

endometrial cancer patients [10]. GFPT1 is the first 

enzyme of the hexosamine biosynthetic pathway. It 

transfers an amino group from glutamine to fructose-6-

phosphate to yield glucosamine-6-phosphate, thus 

providing the precursor for uridine diphosphate N-

acetylglucosamine (UDP-GlcNAc) synthesis, which is 

essential for all mammalian glycosylation biosynthetic 

pathways. Zhang et al. recently suggested that the 

lncRNA ELFN1-AS1 facilitates the proliferation, 

migration and invasion of esophageal cancer in vitro by 

promoting GFPT1 expression [11]. It was also 

recognized that HMMR was elevated in some 

malignancies, such as non-small-cell lung, breast, 

bladder, prostate, colorectal and ovarian cancers, 

resulting in aggressive phenotypes, poor prognosis and 

disease progression. Recently, Zhang et al. confirmed 

the relationship of HMMR involved in a glycolysis 

related nine-gene risk signature and lung 

adenocarcinoma in development [12]. Arginyl-tRNA 

synthetase (RARS) is one of the nine synthetase 

components of a multienzyme complex, and it belongs 

to a family of cytoplasmic aminoacyl-tRNA synthetases 

[13, 14]. Its fusion with MAD1L1 might contribute to 

tumorigenesis, cancer stem cell like properties and 

therapeutic resistance [15]. STMN1 functions as a 

critical element of regulating microtubule dynamics, 

which is necessary in the final stage of cell division, and 

its mutation may lead to uncontrolled cell proliferation 

[16–18]. STMN1 has been reported to be upregulated in 

several types of cancer tissues and correlated with tumo 

r aggressiveness [19, 20]. Reports have suggested that 

higher expression of STMN1 predicts worse survival in 

patients with several types of solid tumors, such as head 

and neck squamous cell carcinoma [21], gallbladder 

carcinoma [22], esophageal squamous cell cancer [23], 

lung carcinoma [24, 25], breast cancer [26], and 

endometrial cancer [27]. Javed Akhtar et al also 

reported that STMN1 may be a suitable target for future 

therapeutic strategies in distal esophageal 

adenocarcinoma. Its overexpression was found to be 

associated with lymph node metastasis and increased 

malignancy in distal esophageal adenocarcinoma both 

in vivo and in vitro [28]. Multiple single genes 

correlated with glycolysis have been reported as a 

predictor of EAC prognosis; however, no glycolysis-

related gene signature has been constructed. In our 

study, we initially identified a gene signature (CLDN9, 

GFPT1, HMMR, RARS and STMN1) involved in 

glycolysis and then proved the predictive ability of this 

gene signature for EAC. Remarkably, a glycolysis-

related gene signature was identified and could be used 

to evaluate EAC patients’ prognosis independently. 

Furthermore, a comprehensive nomogram based on 

clinical factors and gene signatures was established to 

predict the prognosis of EAC patients. 

 

RESULTS 
 

Development of glycolysis-related genes with GSEA 

 

TCGA data analysis procedure of this study is shown in 

Supplementary Figure 1. As shown in the flow chart, 

GSEA was conducted to identify whether the five 

glycolysis-related gene sets were significantly different 

between EAC and normal specimens. The results 

showed that GO glycolytic process (NES=2.00, 

normalized P<0.001, FDR < 0.001, Figure 1A), 

hallmark glycolysis (NES=1.79, normalized P=0.007, 

FDR=0.007, Figure 1B), and reactome glycolysis (NES 

= 2.01, normalized P<0.001, FDR<0.001, Figure 1C) 

gene sets were significantly enriched in cancer samples. 

However, gene sets from the Biocarta glycolysis 

pathway (NES=0.93, normalized P=0.615, FDR=0.615) 

and KEGG glycolysis gluconeogenesis (NES=1.00, 

normalized P=0.456, FDR=0.456) did not manifest 

many meaningful results. After screening upregulated 

gene expression in cancer samples, 106 core genes  

from the GO glycolytic process gene set (Figure 2A), 

200 core genes from the hallmark glycolysis gene  

set (Figure 2B) and 72 core genes from the reactome 

glycolysis gene set (Figure 2C) were used in  

further analysis. 
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Figure 1. Enrichment plots between EAC and normal tissues identified by GSEA. (A) GO glycolytic process gene set, (B) Hallmark 
glycolysis gene set, (C) Reactome glycolysis gene set. Abbreviations: FDR, False discovery rate; NES, Normalized enrichment score; 

 

 

 

 

Figure 2. Heatmap of 378 core genes between EAC and normal tissues. (A) GO glycolytic process gene set, (B) Hallmark glycolysis 

gene set, (C) Reactome glycolysis gene set. 



 

www.aging-us.com 25831 AGING 

Expression level of the five-gene signature in EAC 

and normal tissues 
 

An unpaired t test was used to assess the differential 

expression of 5 genes in 78 EAC tissues and 9 normal 

tissues. In comparison with normal tissues, results 

showed that CLDN9, GFPT1, HMMR, RARS and 

STMN1were upregulated in EAC tissues (Figure 3). 

Mutation status of the five glycolysis-related genes in 

EAC 
 

We then evaluated alterations in the five selected genes 

by testing 182 EAC samples in the cBioPortal database 

(https://www.cbioportal.org/). The Results demonstrated 

that genes on inquiry were altered in 13 (7.14%) of the 

sequenced cases. The CLDN9 gene was changed in 

 

 
 

Figure 3. Expression of the five genes in EAC (n=78) and normal samples (n=9) with unpaired t test. (A) GFPT1, (B) STMN1,  
(C) RARS, (D) HMMR, (E) CLDN9. 

https://www.cbioportal.org/
https://www.cbioportal.org/
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2.75% of cases, displaying diverse alterations; 1.65% 

had amplification and 0.55% had deep mutations in 

GFPT1; The HMMR gene contained one deep deletion 

sample and one truncating mutation sample; RARS and 

STMN1 had 0.55% amplification and 0.55% missense 

mutations, respectively (Figure 4). 

 

Determination of glycolysis-related genes related to 

survival of EAC patients 

 

Univariate Cox hazard analysis was used to identify 

individual single genes from the three glycolysis-related 

gene sets that affect the survival of EAC patients, in 

which we obtained five statistically significant genes: 

CLDN9, GFPT1, HMMR, RARS and STMN1. The five 

genes were associated with OS of EAC patients (P < 

0.05). Thus, these screened genes were entered into the 

multivariate regression analysis and were split into a 

protective role (HMMR) with hazard ratio (HR) < 1 and 

a risk role (CLDN9, GFPT1, RARS and STMN1) with 

HR > 1 (Table 1). The joint risk score of the five genes 

was calculated by substituting the coefficient into  

the formula to evaluate the prognosis as follows: risk 

score = (0.1340 × expression of CLDN9) + (0.0347 ×

 

 
 

Figure 4. (A) The proportion of alteration for the selected genes in 182 clinical samples, (B) The five genes’ specific mutation sites. 
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Table 1. Information of the five prognostic mRNAs associated with overall survival in EAC patients. 

mRNA Ensemble ID location β(cox) HR P 

CLDN9 ENSG00000213937 chr16:3,012,456-3,014,505 0.134 1.143 0.011 

GFPT1 ENSG00000198380 chr2:69,319,769-69,387,254 0.035 1.035 0.015 

HMMR ENSG00000072571 chr5:163,460,203-163,491,945 -0.103 0.902 0.006 

RARS ENSG00000113643 chr5:168,486,451-168,519,306 0.097 1.102 0.001 

STMN1 ENSG00000117632 chr1:25,884,181-25,906,991 0.059 1.061 0.001 

Footnotes: EAC, esophageal adenocarcinoma; chr, chromosome; HR, Hazard ratio. 
 

expression of GFPT1) + (-0.1031 × expression of 

HMMR) + (0.0969 ×expression of RARS) + (0.0590 × 

expression of STMN1). We split patients with EAC in 

the TCGA cohort into low- and high-risk groups 

according to the median risk score, based on the five-

gene signature. The distribution of survival status and 

risk score for each patient are displayed in Figure 5A, 

indicating that patients in the low-risk group had  

a better survival rate than those in the high-risk group. 

Additionally, the expression profiles of the five  

genes are exhibited with a heatmap (Figure 5C). 

Similarly, ROC curves manifested that the areas under 

the curve (AUC) at 5-year was 0.922 (Figure 5B), 

indicating good specificity and sensitivity of the five-

gene signature in assessing prognostic outcome for 

patients with EAC.  

 

The five-gene signature-based risk score acts as an 

independent prognostic factor 

 

Univariate and multivariate analyses were utilized to 

analyze the effect of each clinicopathological feature in 

comparison with the five-gene signature on survival. The 

prognostic value of the glycolysis-related risk score for 

OS in EAC patients was tested in combination with 

clinical features including age, gender, grade and stage. 

The results of univariate analysis indicated that stage [HR 

= 3.862, 95% confidence interval (CI): 1.840 - 8.105, P < 

0.001] and risk score [HR = 1.546, 95% CI: 1.263 - 

1.894, P < 0.001] were correlated with the prognostic 

outcome (Figure 6A). Subsequently, multivariate Cox 

analysis suggested that stage [HR = 3.147, 95% CI: 1.421 

- 6.968, P = 0.005] and risk score [HR = 1.463, 95% CI: 

1.185 - 1.805, P < 0.001] were independent prognostic 

indices (Figure 6B). 

 

Validation of the survival predictive ability of the 

five-gene signature by Kaplan–Meier curve analysis 
 

A better prognosis in the low-risk score group was 

revealed by the log-rank method and Kaplan-Meier 

survival curves (P < 0.001) (Figure 7H). The UICC 

(Union for International Cancer Control) stage and five-

gene signature were significant in predicting the 

survival rate of EAC patients in the univariate Cox 

regression analysis, and the above results were 

confirmed by the K-M method. Patients at grade 3, III-

IV stages (UICC stage) and with lymph node and 

distant metastasis demonstrated a poor prognosis 

(Figure 7A–7G), in accordance with the survival curves. 

Stratified analysis was carried out as the above results 

further confirmed the accuracy of our analysis. As 

shown in the K-M curves, the five-gene signature was a 

dependable prognostic indicator for EAC patients who 

were in the low-risk group and had a better prognosis 

(Figure 8A–8C). However, in the N0 (Figure 8D), M1 

(Figure 8E), G1-2 (Figure 8F) and female (Figure 8G) 

subgroups, the risk parameter could no longer 

independently act as a prognostic marker.  

 

Construction of a nomogram model integrating the 

glycolysis-related gene signature 

 

As a tool for use in clinical practice, a nomogram model 

incorporating the gene signature-based risk score with 

clinicopathological characteristics (age, gender, grade 

stage) was constructed to evaluate the survival 

probability of EAC patients for clinicians (Figure 9A). 

Survival probability between the two risk groups 

demonstrated a significant result with P = 0.0001 

(Figure 9B). The nomogram demonstrated a worth 

noting value of the five-gene signature for 

individualized survival estimation (Figure 9C). The 

performance of the nomogram was assessed with 

respect to calibration, discrimination, and clinical 

usefulness with a C-index of 0.8557. 

 

DISCUSSION 
 

Increasing studies have verified the significant roles of 

gender, age, smoking history, pathological stage, tumor 

size, and lymph node and distant organ metastasis in 

predicting patient prognosis. Accordingly, more 

associated mRNAs are molecularly noted to evaluate 

and predict the prognosis of EAC, suggesting their 

evaluable clinical significance in studies [29]. For 

instance, expression of the glycolytic enzyme PKM2 is 

positively associated with obesity in EAC patients [30],
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Figure 5. The five-gene signature associated with risk parameter predicts OS in patients with EAC. (A) The distribution of the 
five-gene risk score and survival status for each patient. (B) ROC curves of the five-gene signature for prediction of 5-year OS. (C) A heatmap 
of five genes’ expression profile. Abbreviations: AUC, areas under the curve; ROC, Receiver operating characteristic. 
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overexpression of uncoupling protein-2 (UCP2) 

abrogated cigarette smoking condensate and 

deoxycholic acid mediated increases in lactate and ATP 

production in EAC; these links may provide novel 

strategies for EAC therapy [31]. The promising 

prognostic survival and treatment response based on 

tumor metabolism and targeting alterations in cellular 

energetics of EAC patients is in its full swing [32–34]. 

Studies have examined the prognostic outcomes of EAC 

patients with cellular glycolysis-related genes. For 

example, elevated expression of IGF2 mRNA binding 

protein 2 (IGF2BP2/IMP2) is linked to short survival 

and metastasis in EAC [35]. Mucin glycoprotein 1 

(MUC1) expression increased during progression to 

EAC and followed tumor invasion [36]. However, these 

biomarkers were insufficient to independently predict 

patient prognoses. In particular, multiple factors can 

affect single gene expression levels. Thus, these 

biomarkers may be insufficient to be used as prognostic 

indicators independently and reliably. Therefore, a 

statistical model made up of genetic markers was used 

to improve prediction, of which various genes were 

combined to predict the effect of a single individual 

gene. A more accurate ability to evaluate the survival 

outcome of patients with malignancies leads to a 

widespread application of the model, compared with 

single biomarkers [37, 38].  

 

Tumors are characterized by unrestricted cell 

proliferation, which not only eliminates cell cycle 

control but also gives rise to excessive energy 

metabolism and eventually results in tumor cell 

replication and differentiation. Warburg’s landmark 

observation that cancer cells predominantly convert

 

 
 

Figure 6. Univariable and multivariable analyses for the risk score and other clinical characteristics. (A) Univariable analysis,  

(B) Multivariable analysis. 
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large amounts of glucose to lactate even under conditions 

of adequate O2 supply is still acknowledged after more 

than 90 years. Advanced developments in molecular 

biology and high-throughput molecular analyses have 

revealed, that the selection for high rates of aerobic 

glycolysis, which is a prerequisite for unlimited growth, 

is due to an accumulation of signaling pathways that  

are altered by gene mutations or changes in gene 

 

 
 

Figure 7. Kaplan–Meier survival curve of different factors for the patients with EAC in TCGA dataset. (A) age, (B) gender, (C) 
grade, (D) stage, (E) T classification, (F) N classification, (G) M classification, (H) risk. 
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expression [39]. This suggested that aerobic glycolysis 

operates in a sophisticated mechanism. Tumor cells 

proliferate at a speed outpacing the cellular energy 

supply, thus, redundant nutrient and oxygen consumption 

by cells could lead to the tumor microenvironment being 

hypoxic, acidic and lacking of sugar. This phenomenon is 

more prominent in solid tumors [40]. After nearly a 

century of unceasing research and exploration, the 

Warburg effect has been found to take place in various 

tumors, including breast cancer, lung cancer, gastric 

carcinoma and colon cancer. Cellular energy metabolic 

disorders are extensively acknowledged as one of the 

features of malignancies, although not all tumors 

demonstrate the Warburg effect. The glycolysis pathway 

also plays an important role in Barrett’s esophagus 

developing into EAC, which is illustrated by upregulated 

pyruvate kinase activity [8]. Thus, a statistical model of 

glycolysis-related gene signatures comprised of various 

genes has been built to assess cancer prognosis. Research 

on large biological datasets has been supported by the 

technology of the quick development of high-throughput 

genetic sequencing [19]. A large amount of genomic data 

was obtained individually to develop new prognostic, 

diagnostic and immunological biomarkers [20]. Recently, 

a novel predictive signature was identified by analyzing 

the gene expression levels or mutations with microarray 

and RNA-sequencing data. Construction and verification 

were performed with a Cox proportional hazards 

regression model [41, 42]. In this study, using 

bioinformatics methods, we identified genes (CLDN9, 

GFPT1, HMMR, RARS and STMN1) associated with 

cellular aerobic glycolysis and exhibited their prognostic 

ability in EAC. This study facilitates the preceding 

comprehension of EAC and provides a foundation for 

further EAC research. We collected glycolysis-related 

genes and compared data of EAC and normal samples 

 

 
 

Figure 8. Kaplan–Meier curves for prognostic value of risk-score signature for the patients divided by each clinical 
characteristic. (A) age, (B) UICC stage, (C) T classification. (D) N classification, (E) M classification, (F) Grade, (G) gender. 
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from the EAC dataset in TCGA. We then identified 3 

functions displaying significant differences in GSEA. 

The predictive effect of the five-gene signature for 

patients with EAC was analyzed with univariate and 

multivariate Cox regression. Compared with other 

recognized prognostic estimating indicators, this selected 

risk profile should be a more efficient classification 

marker for patients with EAC and a more powerful and 

targeted prognostic method in evaluating prognostic 

outcome. We adopted the top-ranking function to screen 

genes in association with patient survival prediction, 

instead of wide-range exploration. Kaplan-Meier survival 

demonstrated that patients with high-risk parameters 

showed a poor prognosis. The detection and calculation 

of risk parameters in EAC patients indicated effective 

clinical value. However, we only made use of OS to 

predict patient outcomes, due to an inadequate metastasis 

number and lacking recurrence information from TCGA 

database, which is one limitation of the study. In 

addition, the risk parameter predicted EAC patient 

prognoses in all subgroups except for the female, G1-2, 

N0, and M1 subgroups, as was displayed in the stratified 

analysis, though the P value (0.053) of the N0 group 

infinitely approximated 0.05. The negative result of M1 

may be restricted to specimen inadequacy (n=5). The 

results of the female and G1-2 subgroups indicate that the 

risk parameter is influenced by the gender and grade of 

patients with EAC, and the consequence requires deeper 

investigation. Furthermore, compared with the potential 

of a single parameter, the combination of clinical

 

 
 

Figure 9. An established nomogram model predicting 3- and 5-year OS of EAC patients. (A) Nomogram incorporated with the five-

gene signature and clinical factors for prediction of the 3- and 5-year OS in patients with EAC in the TCGA dataset. (B) Survival curve based on 
the nomogram grouped by risk score. (C) Calibration curve of the nomogram for the prediction of 3- and 5-year OS. 
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Table 2. Clinicopathological parameters of EAC patients. 

Clinical characteristic N % 

Age (years) 

  ≤65 36 46.15 

> 65 42 53.85 

Gender 

  Male 67 85.90 

Female 11 14.10 

Grade   

G1-2 29 54.72 

G3 24 45.28 

T classification 

  T1 - T2 30 45.45 

T3-T4 36 54.55 

N classification 

  N0 19 29.23 

N1-3 46 70.77 

M classification 

  M0 50 90.91 

M1 5 9.09 

UICC stage 

  I-II stage 30 48.39 

III-IV stage 32 51.61 

Survival status 

  Alive 40 51.28 

Deceased 38 48.72 

Mean follow-up time (month) 19.65 

Footnotes: EAC, esophageal adenocarcinoma; UICC, Union for International Cancer Control; T, tumor; N, node; M, metastasis. 
 

characteristics and glycolysis risk score provided a higher 

potential for clinical application and a more precise 

prognostic value established with the nomogram. 

 

In conclusion, we identified a glycolysis-related gene 

signature to predict the prognostic outcome of EAC 

patients. The five-gene signature was an independent 

prognostic marker for overall survival, with a lower risk 

parameter indicating better prognosis. Nomogram 

integrating clinical factors with this gene signature may 

not only play a role in predicting EAC patients’ 

prognosis in clinical practice, but also provides an 

enlightenment in the underlying mechanisms of cellular 

glycolysis in tumorigenesis and the identification of more 

gene targets for EAC treatment. 

 

MATERIALS AND METHODS 
 

Data collection 

 

We obtained clinical information and gene expression 

data of patients with esophageal adenocarcinoma from 

The Cancer Genome Atlas (TCGA) database. 

Additionally, the following clinical information was 

recorded: gender, age, stage, survival status and 

follow-up time. In total, 78 EAC and 9 normal samples 

were included for the subsequent study. Detailed 

information on the overall clinicopathologic features is 

summarized in Table 2. This study complies with the 

publication guidelines and access rules of TCGA. 

 

Gene set enrichment analysis (GSEA) 

 

To explore whether glycolysis-related genes exhibit 

statistically significant, concordant differences 

between EAC and normal samples, five glycolysis-

related gene sets, the Hallmark, BioCarta, KEGG, GO 

and reactome gene sets, were downloaded from the 

Molecular Signatures Database and analyzed with 

GSEA software 4.0.3. For selecting gene sets enriched 

in every phenotype, a normalized enrichment score 

(NES) was obtained by performing 1000 gene set 

permutations for each analysis. Finally, subsequent 

analysis was performed when the false discovery rate 
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(FDR) < 0.1, normalized P < 0.05 and |NES| > 1.6 of 

the gene set. 

 

Establishment of the gene signature 
 

To determine core genes that correlate with the prognosis 

of EAC patients in enriched glycolysis-related gene sets, 

the mRNA quantification data were matched with the 

survival status for subsequent analysis. OS-related core 

genes were identified with the univariate Cox regression 

analysis (P < 0.05), and subsequent analysis was 

performed by multivariate Cox regression. A linear joint 

risk score of gene expression level using regression 

coefficient β was established. The risk score for each 

sample was calculated as follows: risk score = (β1 × 

expression of gene 1) + (β2 × expression of gene 2) + (β3 

× expression of gene 3) + (β4 × expression of gene 4) + 

(β5 × expression of gene 5). The samples were then 

divided into high- and low-risk groups based on the 

median risk scores for survival analysis. 

 

Construction and evaluation of the nomogram 

 

The survival probability of EAC patients was compared 

by the nomogram model, which integrated with thefive-

gene signature with clinicopathologic features; this was 

performed by R software (version 4.0.2). Calibration 

plots and C-index were generated as an assessment of 

the nomogram performance. The clinical outcome 

prediction is displayed on the y-axis and x-axis 

separately in the calibration graph, with which an ideal 

prediction could be indicated with a 45-degree dotted 

line. Bootstrapping was used as an internal validation to 

decrease the bias of the C-index’s predictive ability. 

 

Statistical analysis 
 

Statistical analyses were conducted using Excel software 

(Microsoft Corporation, California) and R software. The 

prognostic significance of individual indicators was 

evaluated by univariate and multivariate Cox 

proportional hazard regression analyses. Kaplan-Meier 

curves and log-rank tests were utilized to assess the 

prognostic outcome. Comparison of the different 

expression levels between the two groups was performed 

by unpaired t test. Genetic changes in the 5 glycolysis-

related genes in EAC were obtained from the cBioPortal 

website (http://www.cbioportal.org/). R software (version 

4.0.2) was utilized to draw the heatmaps, ROC curves, 

enrichment, forest and calibration plots. P < 0.05 was 

regarded as statistically significant. 

 

Abbreviations 
 

TCGA: The Cancer Genome Atlas; GSEA: Gene set 

enrichment analysis; GO: Gene ontology; KEGG: Kyoto 

encyclopedia of genes and genomes; AUC: areas under 

the curve; ROC: Receiver operating characteristic; FDR: 

False discovery rate; NES: Normalized enrichment score; 

HR: Hazard ratio; C-index: concordance index. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Flow chart of the analysis procedure in this study. 


