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INTRODUCTION 
 

Biological aging in humans is characterized by  

genomic instability, telomere attrition, epigenetic 

alterations, loss of proteostasis, dysregulated nutrient 

sensing, mitochondrial dysfunction, cellular senescence, 

stem cell exhaustion, and altered intercellular 

communication. These abnormal changes in the body 

lead to age-related damage [1, 2]. The accumulation of 

aging-related damage leads to increased morbidity and 

mortality among the elderly [3]. Aging lowers the 

human body’s resistance to pathogens and impairs the 

subsequent immune responses. In the case of severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) pneumonia, the damages caused by human aging are 

closely related to the deterioration of the condition of 

the patients. Aging adults are more likely to have 

underlying comorbidities and are therefore at greater 

risk of deterioration of coronavirus disease-2019 

(COVID-19) [4]. In Figure 1, we have summarized  
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ABSTRACT 
 

Aging is an important factor affecting the deterioration of patients with coronavirus disease 2019 (COVID-19). The 
aging and degeneration of various tissues and organs in the elderly lead to impaired organ function. Underlying 
conditions such as chronic lung disease, cardiovascular disease, and diabetes in aged patients are associated with 
higher mortality. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily interacts with the cell 
surface receptor angiotensin-converting enzyme (ACE) 2 and other accessory proteins such as 78 kDa glucose-
regulated protein 78 (GRP78) and CD147. Thus, altered receptor signals in aging and chronic disease play a role in 
SARS-CoV-2 infection, and are associated with a higher risk of deterioration in different organs. In this review, 
after a brief introduction to the link between aging and receptors for SARS-CoV-2, we focus on the risk of 
deterioration in different organs of COVID-19 patients considering aging as the main factor. We further discuss the 
structural and/or physiological changes in the immune system and organs (lung, heart, kidney, vessels, nerve 
system), as well as those associated with diabetes, in aging patients, and speculate on the most likely mechanisms 
underlying the deterioration of COVID-19 patients. 
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the association between COVID-19 and aging in 

various organs. 

 

The ongoing age-related COVID-19 pandemic 
 

Following the initial reports of COVID-19 in December 

2019, this disease rapidly became a pandemic and a 

major global public health concern. COVID-19 is an 

infectious disease caused by SARS-CoV-2. From a 

global perspective, the situation remains bleak as this 

pandemic has concentrated medical attention on treating 

people with COVID-19. There is a widespread lack of 

immunity to this emerging pathogen, and the world’s 

population is largely susceptible to this virus. 

Epidemiological studies have shown that COVID-19 is 

less common in children than in older adults, especially 

those with underlying comorbidities. Moreover, middle-

aged and elderly people are the most affected by this 

disease, while elderly patients and those with 

underlying diseases have more acute and shorter 

courses of the disease [5–13]. We integrated the data 

from several reports and found that the ratio of deaths to 

infections was higher in the elderly than in the other age 

groups (Figure 2). Comorbidities, including chronic 

lung disease, cardiovascular disease, chronic kidney 

disease (CKD), and diabetes, are also associated with 

higher mortality in older patients [9, 14, 15].  

 

The link between virus receptors and aging 
 

SARS-CoV-2 belongs to the same beta coronavirus 

subgroup that also comprises severe acute respiratory 

syndrome coronavirus (SARS-CoV) and Middle East 

respiratory syndrome coronavirus (MARS-CoV). 

Viruses in this group have an affinity for angiotensin-

converting enzyme 2 (ACE2) and the auxiliary 

molecule, transmembrane serine protease (TMPRSS2) 

[16–18]. Studies have shown that SARS-CoV-2 invades 

the human body via the ACE2 receptor. Moreover, the 

affinity of SARS-CoV-2 for ACE2 is ten-fold higher 

than that of SARS-CoV. The receptor-binding domain 

(RBD) of the S1 subunit of the viral Spike protein binds 

to ACE2 to invade target cells [19–21]. In coronavirus 

infection, ACE2 bound by the coronavirus will be 

cleaved by a disintegrin and metalloprotease 17 

(ADAM17, also called TNF-α converting enzyme, 

TACE), thereby reducing the concentration of ACE2 at 

the cell surface [22]. Studies have shown that the 

overall expression of ACE2 in the human body is age- 

and tissue-dependent. The concentration of ACE2, as 

 

 
 

Figure 1. The effects of aging on the organism and its relationship with COVID-19-associated deterioration. Aging patients are 

more susceptible to SARS-CoV-2, which leads to the exacerbation of COVID-19. Aging has a negative impact on the human organ system, 
causing its functional decline. The aging process is accompanied by a state of low-grade inflammation, and the elderly are more susceptible 
to SARS-CoV-2 infection. Under the influence of the virus, the damage to infected aging patients is further worsened, resulting in serious 
secondary diseases. In the figure, "↑" means the number increases, the function or effect is enhanced; "↓" means the number decreases, 
the function or effect is weakened. ERS: endoplasmic reticulum stress; ACE2: angiotensin-converting enzyme 2; TMPRSS2: transmembrane 
protease serine 2; ADAM17: a disintegrin and metalloprotease 17; ARDS: acute respiratory distress syndrome; AKI: acute kidney injury; PKC: 
protein kinase C; ROS: reactive oxygen species; CKD: chronic kidney disease; DIC: disseminated intravascular coagulation. 
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well as that of other receptors associated with SARS-

CoV-2 infection, is higher in adults than in children [23], 

which may result in a higher rate of infection. However, 

ACE2 expression in cells of pulmonary, renal, and 

cardiovascular tissue has been demonstrated to decline 

with age [24–26]. The function of ACE2 is to convert 

angiotensin (Ang) II into Ang-(1–7) and increase the 

level of superoxide dismutase (SOD), which can reduce 

cell peroxidation-related damage [27, 28]. Ang-(1–7)  

can reduce Ang II concentrations and antagonize its 

activity. Meanwhile, plasma ACE2 activity reportedly 

increases with age [29], which can increase production  

of Ang-(1–7). ACE2 shedding through ADAM17-

mediated cleavage may be associated with increasing 

Ang II levels, as well as the modulation of the renin-

angiotensin system (RAS) in cardiovascular and chronic 

diseases [30–32]. 

 

Recent evidence has suggested that SARS-CoV-2 can 

also bind to CD147 and 78-kDa glucose-regulated 

protein (GRP78) expressed on the cell surface [33, 34]; 

the levels and functions of both proteins may also be 

related to aging. Blocking CD147 has an inhibitory 

effect on SARS-CoV-2, suggesting that CD147 may 

promote SARS-CoV-2 invasion [35, 36]. The levels of 

CD147, known as a key target for malaria treatment, can 

increase with age, thereby also increasing the number of 

targets for invasion by the virus [37, 38]. Cell surface-

localized GRP78 mediates endoplasmic reticulum stress 

(ERS) and can help to activate transcription factors and 

maintain cell homeostasis. Because viral infection and 

nutrition deprivation can stimulate the ERS-associated 

unfolded protein response (UPR) [39], SARS-CoV-2 

infection will likely lead to increased GRP78 

concentrations, as recently reported [40]. However, 

GRP78 expression can decrease with aging, thereby 

lowering the ability of the endoplasmic reticulum to 

clear misfolded proteins, which is associated with poor 

prognosis in older COVID-19 patients [41].  

 

The aging immune system and low-grade 

inflammation 
 

In the elderly, COVID-19 is more likely to lead to 

complications, including the outbreak of a ―cytokine 

storm‖, acute respiratory distress syndrome (ARDS), 

multiple organ dysfunction syndrome (MODS), and 

eventually even death. Deceased patients typically 

display a sustained increase in interleukin (IL)-6, D-

dimer, lactate dehydrogenase, and serum ferritin levels 

 

 
 

Figure 2. Deaths per 1,000 COVID−19 cases by age group in major epidemic areas. Data from references [6, 101–104] have been 

amalgamated with the above data to fit the new data. After standardizing the data for each group, the probability of death at each age was 
fitted and multiplied by 1,000. The ggplot2 package in R version 4.0.0 was used to draw a line graph. Marine green represents New York, red 
represents China, blue represents South Korea, yellow represents Italy, grass green represents ISS, and purple represents the fitting data. In 
the line graph, the number of deaths per 1,000 COVID-19 patients increases with age. 
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[14, 42], suggesting that patients suffer severe 

inflammation and pathological damage before the  

end of life.  

 

An aging immune system is less capable of virus 

clearance. Thymus glands, the spleen, and lymph nodes 

undergo degeneration in aging, which interferes with 

the normal differentiation of T cells, phagocyte 

viability, and the secretion of natural killer (NK) cells 

[43, 44]. In the elderly, an aging immune system leads 

to poor recognition and elimination of viruses and 

cancer cells and an overall decline in the immune 

response of normal cells [45].  

 

Cytokine storms are more likely to occur in the elderly. 

According to the theory of immunologic dissonance, the 

imbalance of pro-inflammatory and anti-inflammatory 

forces in the elderly leads to destructive immune 

dysregulation [46, 47]. Reduced ACE2 expression 

during aging increases ovalbumin-induced eosinophil, 

lymphocyte, and neutrophil recruitment [48] and leads 

to dysregulated cytokine secretion, which ultimately 

results in damage to various organs. On the one hand, 

owing to the immaturity of the proliferative pool, the 

absolute number of neutrophils is significantly lower in 

newborns than in adults. This is manifested by the high 

expression of adhesion molecules (e.g., P-selectin) and 

the increased chemokine production by resident 

inflammatory cells [49], decreased reactivity, and 

increased extravasation. On the other hand, the absolute 

number of neutrophils is thought to be related to aging. 

Aging leads to increased expression of IL-6 and TNF-α 

in the body, which aggravates the inflammatory 

response [50], and can also lead to the upregulation of 

nuclear factor-kappa B (NF-κB), the main regulator of 

IL-6 and IL-1β, thereby altering the levels of these 

cytokines. Viral invasion aggravates inflammation, and 

inflammatory factors continue to accumulate while the 

body's immune system fails to clear these inflammatory 

factors in a timely manner [51]. The aging process is 

accompanied by a state of low-grade inflammation. The 

serum level of inflammatory mediators is significantly 

higher in the elderly than in the young. Low-grade 

inflammation can induce changes in several signaling 

pathways, and, importantly, can also lead to the 

deterioration of COVID-19 and age-related diseases 

[52, 53]. One feature of chronic inflammation due to 

aging is a change in the Ang II signaling pathway. 

Factors downstream of Ang II, such as IL-6 and TNF-α, 

promote the occurrence and development of 

inflammation. After SARS-CoV-2 invades the human 

body, the downregulation of ACE2, when combined 

with aging, will cause a large accumulation of Ang II. 

Simultaneously, Ang II can integrate mechanisms such 

as reactive oxygen species (ROS) formation, leading to 

a vicious cycle of cellular aging [27].  

An increase in the levels of Ang II disrupts the balance 

between ROS production and removal, which further 

intensifies oxidative stress [27]. ROS production 

through NOX2, a member of the NADPH oxidase 

(NOX) family of enzymes, has been demonstrated to 

play a key role in lung injury [54]. The ROS and 

hydrogen peroxide produced during oxidative stress can 

lead to tissue injury and irreversible damage to 

macromolecular proteins. ROS is indirectly responsible 

for the body's proinflammatory response and the 

accumulation of proinflammatory factors, which leads 

to a worsening of the overall condition and ultimately 

triggers cytokine storms and MODS.  

 

Lung aging and COVID-19 
 

One of the most obvious characteristics of COVID-19 

infection is viral pneumonia. Out of a group of 1,591 

patients, 88% needed respiratory support [10], similar to 

the results reported for another group of patients [55]. In 

another cohort comprising 1,099 cases, 3.4% had ARDS 

and >59% had abnormal pulmonary computed 

tomography (CT) findings [9]. The clinical features of 

ARDS, also known as acute respiratory failure (ARF), 

comprise altered respiratory system mechanics and 

hypoxemia. Middle-aged and elderly people are more 

likely to develop ARF and show a higher rate of 

intensive care unit (ICU) admittance than younger 

patients.  

 

The effect of SARS-CoV-2 on ACE2 can easily reduce 

lung function in the elderly. Reduced ACE2 expression 

due to SARS-CoV-2 infection further reduces ACE2 in 

the lungs of the elderly, but without affecting ACE 

content [22, 56]. Without ACE2, the conversion of Ang 

II into Ang-(1–7) is reduced, thereby allowing Ang-(1–

7) to exert a protective effect against pulmonary edema, 

reduce pulmonary vascular resistance, resist tissue 

damage, and reduce myeloperoxidase content in the 

lungs [48]. High levels of Ang II hyperactivate the Ang 

II type 1 receptor (AT1R) in the lungs, contributing to 

the contraction of bronchial smooth muscle cells and 

increased pulmonary capillary permeability, resulting in 

a dry cough, pulmonary edema, and difficulty breathing 

[28]. The expression of GRP78 protein decreases with 

age, which affects lung tissue repair and aggravates 

viral infection-associated damage. In the aged lung, the 

GRP78 level decreases while ERS increases, which 

causes lung fibrosis [57]. Apoptosis occurs more readily 

in older patients than in younger ones under high  

levels of ERS induced by virus infection [58]. In SARS-

CoV-2 infection, abnormal apoptosis can disrupt the 

repair and remodeling of lung tissue and disturb 

endoplasmic reticulum homeostasis, which aggravates 

the irreversible damage to the lungs and leads to 

unfavorable prognosis. 
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The respiratory function and natural defense 

mechanisms are lowered in the aging lung, which 

disrupts its ability to clear the virus and regulate 

hypoxic adaptation. The influence of advanced age on 

many aspects of lung immunity, including a series of 

structural and physiological changes to the lungs, is 

reflected in cell dysfunction and changes in innate 

immune system signals [59]. Studies have shown that 

many patients with severe COVID-19 present with 

basic pulmonary diseases. In the elderly, the lung is 

likely to develop an emphysema-like phenotype, which 

is also observed in chronic obstructive pulmonary 

disease (COPD) [60]. The effects of oxidative stress and 

mitochondrial DNA damage are obvious in the aging 

lung tissue, and lead to high levels of apoptosis in lung 

cells in COPD patients [61]. The severity of COVID-19 

is markedly increased in COPD patients [9] and may 

suggest that an emphysema-like phenotype and other 

age-associated structural changes can exacerbate 

COVID-19. In patients aged >60 years, there is an 

evident decline in the functions of the respiratory 

immune barrier, especially alveolar phagocytosis, 

ventilation, tracheal epithelial ciliary movement, and 

cough reflex, resulting in poor virus clearance [59]. In 

terms of respiratory function, the contraction and 

relaxation of the diaphragm muscles, which are closely 

related to ventilatory activities, can help to relieve the 

symptoms of hypoxia that are associated with COVID-

19. However, the function of the diaphragm muscle is 

weakened with aging, resulting in abnormalities in 

excitation–contraction coupling, organizational 

structure, and metabolism [62]. Aged lungs have a 

reduced capacity to alleviate hypoxia. Respiration will 

be affected if the nerve center is infected with the virus, 

as will diaphragm function [63]. Osteoporosis in the 

elderly also influences the shape of the chest, limiting 

lung contraction [60]. 

 

A heightened inflammatory response in aging will 

exacerbate COVID-19. Ground-glass opacity (GGO) 

and bilateral lung plaque shadow are commonly seen in 

chest CT scans of COVID-19 patients. The scope of 

lesions expands with disease aggravation. The severe 

period can quickly progress to a wide range of diffuse 

pulmonary change, and pleural effusion, so the lungs 

show large white areas in CT images [64]. In autopsies 

of COVID-19 patients, the lungs showed diffuse alveoli 

damage and hyaline membrane formation, and a large 

number of viscous secretions overflowing from the 

alveolar cells, displaying the pathological characteristics 

of ARDS [34]. A severe inflammatory reaction in the 

lung is indicated by neutrophil accumulation, causing 

deconstruction and edema of the celiac capillaries, 

which then damage the gas-blood barrier [65]. During 

aging, lungs tend to have low-grade inflammation, such 

as an increased neutrophil response [49, 65]. 

Inflammatory changes associated with aging can lead to 

increased lung infection rates in older patients [59]. In 

contrast, neutrophils flow into the lungs and the 

associated inflammatory mediators are less reactive in 

newborn and juvenile subjects. The functions of lung 

dendritic cells, NK cells, macrophages, and neutrophils 

decline with age and reduce the body’s defenses against 

external pathogenic microorganisms [59].  

 

In summary, neutrophils accumulate in the lungs of 

elderly patients and cannot be easily discharged, which 

not only damages the innate immune response of the 

alveoli but also promotes inflammation. The number of 

alveoli cells declines in this condition, causing hyaline 

membrane formation, pulmonary edema, and other lung 

injuries. The respiratory disorders caused by COVID-19 

lead to a sharp reduction in blood oxygen concentration 

and aggravate organ damage. 

 

Heart aging and COVID-19 
 

Worldwide, a large proportion of COVID-19 patients 

have cardiovascular disease. In China, one study 

reported that 15% and 2.5% of patients with COVID-19 

presented with hypertension and cardiovascular disease, 

respectively [9]; in New York, the same complications 

accounted for 57% and 11% of patients, respectively [6]. 

In a region of Italy, 49% of patients had hypertension 

and 21% had coronary heart disease, and the elderly with 

hypertension had a higher mortality rate with respect to 

ICU deaths [10]. Elderly patients have a more acute 

presentation. Some COVID-19 patients have acute heart 

injury [8] or show inflammation-related cell infiltration 

in the myocardium [66]. Deceased patients with 

myocardial injury show elevated levels of troponin [67].  

 

The impact of SARS-CoV-2 on ACE2 interferes with 

the regulation of the RAS in heart aging. As previously 

mentioned, SARS-CoV-2 infection can result in the 

downregulation of ACE2. In aging, high levels of ACE2 

can effectively protect against Ang II-induced cardiac 

fibrosis and hypertrophy [68]. However, the hearts of 

older subjects have lower ACE2 levels and fibroblast 

activation and transition to a myofibroblast phenotype 

[69]. Some COVID-19 patients typically show 

increased IL-6 and C-reactive protein levels before 

death [14, 55], indicative of the progress of 

inflammation in the COVID-19 heart. The release of 

proinflammatory factors can cause heart damage [32], 

exacerbating myocardial cell apoptosis through various 

signaling pathways [69]. Cumulative heart injury due to 

hypertension, valvular heart disease, and heart failure in 

the elderly can lead to a low-grade inflammatory 

response. Low-grade inflammation maintains RAS 

activation and oxidative stress. As the anti-peroxidation 

effect of ACE2 can protect the heart blood vessels [70], 
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the lack of ACE2 in the myocardium due to aging 

enhances oxidative damage and promotes inflammatory 

responses in the injured area. An imbalance between 

ACE and ACE2 exacerbates cellular damage among 

elderly patients when the myocardium undergoes an 

inflammatory reaction in COVID-19.  

 

Atrial fibrosis occurs as a consequence of 

cardiovascular diseases during aging and can cause 

atrial overload and stretching [69]. The downregulation 

of ACE2 is associated with the occurrence of cardiac 

fibrosis. Fibrosis-induced changes to the heart structure 

and the associated increase in the number of fibroblasts 

can lead to more frequent arrhythmias and their 

progression to persistent or permanent arrhythmias. 

Several studies have mentioned the gradually increasing 

risk of arrhythmia in aging [71, 72]. In COVID-19 

patients, the hyaline membrane can lead to a sharp drop 

in blood oxygen content [55] and puts extra strain on 

the heart. Cardiomyocyte energy metabolism can be 

damaged by the decrease in blood oxygen content. 

Right ventricular load is further increased because of 

edema and hyaline membrane formation in the aged 

lung, which increases pulmonary vascular resistance. If 

COVID-19 patients have an underlying heart condition 

and hypertension that have already damaged the 

cardiomyocytes, heart failure or arrhythmia can easily 

and rapidly occur in an already damaged lung. 

 

Aging can decrease the tolerance to COVID-19 

treatment in an aged heart. The use of chloroquine or 

hydroxychloroquine leads to an extension of the Q-T 

interval [73]. This finding indicates that the use of these 

drugs will also increase the risk of arrhythmia. 

Considering the decline that occurs in the pump 

function of the heart in the elderly, special attention 

should be paid to changes in the electrocardiography 

reads of these patients when selecting COVID-19 drug 

treatment. In patients with pneumonia, right heart 

failure and elevated levels of NT-ProBNP (a marker of 

heart failure) [74] are suggestive of a worsening of the 

condition and are associated with a significant increase 

in the fatality rate [75], which should also be considered 

when administering COVID-19 treatment. 

 

Kidney aging and COVID-19 
 

Patients with severe COVID-19 are more likely to have 

kidney injury. One study showed that approximately 

15% of COVID-19 patients had acute kidney injury 

(AKI) [14]. Aging, comorbidities, and medical 

intervention predispose elderly patients to AKI [76]. In 

SARS-CoV infections, viral particles were found in the 

kidney, suggesting that the virus can infect this organ 

[77]. Given that SARS-CoV-2 has a higher affinity for 

humans than SARS-CoV [17], the kidneys are more 

likely to be a target of infection for SARS-CoV-2, 

resulting in AKI in elderly patients. 

 

Elderly patients are considerably more likely to have an 

AKI in COVID-19 because the renal tubular function 

can be damaged by free radicals produced in the aging 

body [78]. The kidney tissue structure displays a 

reduced number of healthy nephrons, changes to the 

tubulointerstitium, thickening of the glomerular 

basement membrane, and increased glomerulosclerosis. 

Increased Ang II activity in the elderly leads to the 

accumulation of proinflammatory cells, thereby 

exacerbating the injury to renal tubular endothelial cells. 

In aging, the kidney lacks ACE2 and Ang-(1–7), 

resulting in glomerular sclerosis, which limits the role 

of proximal tubular cells and podocytes in resisting 

oxidative stress and cell proliferation [32, 78]. A 

cytokine storm caused by COVID-19 increases 

circulating IL-6 levels in the body; hence, the 

proinflammatory effects, combined with a lack of renal 

ACE2 protection, leads to a severe functional injury to 

the kidneys. 

 

CKD (affected 5% of the 5,700 COVID-19 patients in 

the New York study [6]), hypertension, and heart failure 

are all comorbidities that increase the risk of AKI and 

are commonly coexisting illnesses in COVID-19 

patients [9]. Patients with CKD usually have increased 

levels of AT1R in peripheral leukocytes [79], indicating 

that continuous Ang II activation can exacerbate kidney 

injury [80]. Uremic conditions due to CKD promote the 

excessive activation of monocyte ACE levels and 

inhibition of ACE2, thereby promoting endothelial 

adhesion and migration and possibly also 

atherosclerosis development [79]. The changes in blood 

flow in renal atherosclerosis reduce kidney elasticity 

and thicken the tunica intima, leading to prerenal AKI 

[76]. Renin secreted by glomerular cells is a key 

hormone for the production of Ang II, and glomerular 

cells are regulated by the RAS. As previously 

mentioned, coronavirus infection can reduce the 

concentrations of ACE2 on the cell surface, including in 

renal cells, which can lead to abnormal metabolism in 

the kidneys, and even in the whole body.  

 

Because the excretory function of the kidney is lowered 

in aging, its capacity to excrete drugs and harmful 

metabolites is reduced. Electrolyte disturbances, such as 

hypokalemia, often occur as a result of fever, 

gastrointestinal symptoms, and reduced ACE2 levels in 

COVID-19 [81]. The aging kidney can undergo 

morphological and anatomical changes and display 

reduced filtration capacity [78], leading to increased 

drug-associated toxicity in the body. The disease 

process promotes an unstable internal environment and 

is more likely to result in a serious acid–base imbalance 
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in the elderly, and even result in severe conditions. In 

terms of treatment, clinicians should be cautious  

when administering drugs that are excreted through  

the kidneys, especially in patients with a preexisting 

kidney injury. 

 

Aging and vascular injury in COVID-19  
 

Patients with COVID-19 have a high incidence of 

vasculitis and thrombosis in the lungs [82]. Some can 

also have Kawasaki disease [83], petechiae, tiny 

bruises, and/or transient livedoid eruptions in the skin 

[84]. Biochemical indicators such as prothrombin time, 

activated partial thromboplastin time, fibrinogen, and 

D-dimer are significantly increased or decreased [55], 

indicating that SARS-CoV-2 also affects the blood 

system and induces disseminated intravascular 

coagulation (DIC). 

 

Vascular disease, a significant problem in the elderly, 

can easily cause serious endothelial damage during 

COVID-19 evolution. Aging arteries are characterized 

by changes in microRNA expression patterns, 

autophagy, smooth muscle cell migration and 

proliferation, and dynamic calcification [68], while 

vasculopathy is associated with increased ROS 

production, oxidative stress and deficiency of 

peroxidase [85]. Increased blood pressure, elevated 

blood sugar, obesity, low-density lipoprotein 

cholesterol, and sodium intake in the elderly can all 

influence endothelial function through oxidative stress 

and inflammatory disorders. The arterial walls develop 

atherosclerotic plaques and have increased rigidity and 

stiffness, leading to a reduction in arterial compliance 

[68]. Pathological changes during blood vessel aging 

play a role in the initial stages of DIC. Endothelial 

cells function to promote vasodilation, fibrinolysis, 

and suppress aggregation, and can inhibit the 

formation of thrombosis [28]. Endothelial cell 

dysfunction can facilitate the occurrence of 

microthrombosis [68, 86, 87]. Because ACE2 can 

increase the activity of endothelial cells, in the absence 

of ACE2 in COVID-19 and aging, Ang II activation 

causes smooth muscle contraction, induce high 

expression of proinflammatory factors, promote 

vascular contraction and endothelial dysfunction, all of 

which contribute to increased vascular permeability 

and eventually become predisposing factors for DIC 

[28]. A proinflammatory status in aging leads to 

enhanced plasma concentrations of inflammatory 

proteins [68]. When suffering from a COVID-19-

associated cytokine storm, the anti-inflammatory 

properties of aging arteries decrease; this, when 

coupled with the presence of SARS-CoV-2 virus 

within the endothelial cells [82], is more likely to 

cause widespread coagulation throughout the body. 

CD147, is expressed on the surface of blood cells [36]. 

Increased CD147 expression can occur during platelet 

activation or some inflammation-related responses [37], 

suggesting that the expression of CD147 may increase 

after SARS-CoV-2 infection. The combination of these 

factors can render the elderly more prone to systemic 

edema and congestion when suffering from COVID-19-

related pneumonia, and is more likely to cause 

functional changes in organs with rich blood flow such 

as the kidneys, lungs, heart, and brain. 

 

Aging of the nervous system and COVID-19  
 

Many patients with COVID-19 have clear neurological 

symptoms such as cerebrovascular disease, 

unconsciousness, and skeletal muscle tremors [88], and 

at least one study reported the presence of SARS-CoV-2 

mRNA in the cerebrospinal fluid of patients [89].  

 

Elderly patients are more likely to be infected by 

SARS-CoV-2 in the central nervous system. Two other 

coronaviruses—SARS-CoV and MARS-CoV—display 

neuronal tropism [90, 91], which suggests that SARS-

CoV-2 may have the same feature. Increased Ang II 

levels resulting from inflammatory responses such as 

the cytokine storm will lead to an increase in the 

permeability of blood vessels in the brain, increasing 

the possibility that the virus may reach the brain. 

Oxidative stress resulting from aging and inflammation 

also upregulates Ang II expression in the brain [92]. 

Thus, increased Ang II levels during aging can enlarge 

the site and scope of the infection among the elderly. 

When SARS-CoV-2 invades the brain stem, respiratory 

failure and organ disorders can become much more 

common symptoms of COVID-19.  

 

Nerve aging and chronic disease are associated with the 

production of the proinflammatory factors IL-6 and IL-

1β by microglia. The most common manifestations of 

deteriorating COVID-19 pneumonia in elderly patients 

are severe ARDS and MODS, both of which display 

increased circulating IL-6 levels. The dependence of the 

brain on a high oxygen concentration, unsaturated fatty 

acids, and strong mitochondrial metabolism lead to 

obvious high oxidative stress- and mitochondrial-related 

damage as a result of aging and microglial priming [93]. 

Brain damage in hypoxia due to COVID-19 leads to 

excessive activation of microglia and release of 

proinflammatory factors [93], which further aggravates 

the brain injury. SARS-CoV invasion of the brain was 

reported to increase the density of microglia [91]. This 

suggests that SARS-CoV-2 infection can also promote 

the overactivation of microglia, leading to a more 

severe inflammatory response, and even an 

―intracerebral storm‖ of inflammatory factors. SARS-

CoV-2 infection may further reduce the availability of 
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ERS-associated proteins, as well as that of GRP78 and 

other chaperone proteins, in the elderly brain. This will 

cause apoptosis [58] and exacerbate brain damage. 

 

Patients with COVID-19 often have increased bronchial 

secretions [42], and aspiration pneumonia may also be a 

possible cause for disease aggravation. Blockages 

caused by the secretions can lead to severe hypoxemia 

and lung tissue injury. In COVID-19 patients, hypoxia 

and the impact of SARS-CoV-2 on neurons reduce 

nerve responses, whereby the bronchial secreta cannot 

be effectively discharged through coughing and 

swallowing reflexes. Several neurodegenerative 

diseases can lead to slower reflexes in elderly patients 

when compared with young patients, which means that 

the nerve responses in the elderly can be more easily 

reduced. A recent study [94] reported that the use of an 

ACE inhibitor can alleviate pneumonia in stroke 

patients by reducing the effects of Ang II on the brain as 

well as substance P and bradykinin metabolism. These 

effects can enhance the cough reflex, prevent aspiration, 

and ultimately reduce the risk of pneumonia in the 

elderly; however, further evidence is required with 

respect to the risks and benefits of ACE inhibitor 

application. 

  

Diabetes in the elderly and susceptibility to 

COVID-19 
 

In the elderly, aging is associated with diabetes, which 

can lead to chronic diseases such as hypertension, 

atherosclerosis, and kidney injury [95]. Zhou et al. 

reported a 19% incidence rate of diabetes among 

COVID-19 patients [14], similar to that reported in 

other studies [6, 9, 10]. This suggests that diabetes is an 

underlying risk of developing severe COVID-19.  

 

Diabetes is one of the most commonly diagnosed age-

related comorbidities, and promotes inflammation and 

SARS-CoV-2 infection in the aging body. 

Hyperglycemia decreases proximal tubule ACE2 by 

activating the process of ACE2 shedding through 

ADAM17-mediated cleavage described in the previous 

[30]. The virus can attach to the shedding ACE2 and 

spread throughout the body. Hyperglycemia-induced 

ACE2 glycosylation can also lead to a decline in ACE2 

function. Meanwhile, in type 2 diabetes, insulin can 

activate vascular ACE activity in vascular smooth 

muscle cells, and inhibit angiotensinogen and renin 

expression. In aging, the diabetes can enhance the 

sensitivity of local cells to inflammatory mediators and 

activate toll-like receptors to cause insulin resistance 

[95]. Hyperglycemia can enhance Ang II concentrations 

in cardiomyocytes and fibroblasts, which promotes the 

release of inflammatory mediators. Hyperglycemia also 

induces increased expression of CD147 [36], leading to 

an increased probability of SARS-CoV-2 infection. 

Because of the close link between matrix 

metalloproteinases (MMPs) and CD147 [37], 

hyperglycemia can influence the migration of 

monocytes and the function of fibroblasts, as well as the 

release of TNF-α, vascular endothelial growth factor 

(VEGF), and IL-1β. Elevated expression of MMPs can 

also promote pulmonary inflammation, causing a 

cytokine storm, which is difficult to suppress, and result 

in systemic injury.  

 

Concomitantly, diabetes and islet aging can affect the 

whole body in patients with deteriorating COVID-19. 

Strong ACE2 protein immunostaining was observed in 

the islet cells of patients with SARS-CoV infection: the 

higher the level of immunostaining, the greater the 

damage to the organs [96]. This suggests that the 

pancreas can also be attacked and damaged by SARS-

CoV-2. This damage to pancreatic islet cells leads to 

abnormal insulin secretion, exacerbates the endocrine 

disorder in patients, and aggravates the damage to other 

organs [97]. COVID-19 may further lead to organ and 

tissue dysfunction because of the increased risk of 

cardiovascular disease and stroke resulting from 

diabetic nephropathy and diabetes [98]. High levels of 

insulin exert growth stimulatory effects on vascular 

cells and increase the formation of atherosclerotic 

plaques [99]. In a review of the relationship between 

GRP78 and aging [58], insulin secretion and insulin-like 

growth factor (IGF-1)-mediated regulation of GRP78 

appeared to enhance the adaptive capacity of the UPR 

under ERS conditions. Aging can cause impaired 

autophagy in islet cells, which can lead to impaired β-

cell function. The accumulation of misfolded and 

aggregated proteins can activate the UPR [100]. GRP78 

also plays a role in glucose homeostasis and has 

antiobesity properties. If the activity of GRP78 changes 

under the influence of COVID-19, the steady-state of 

insulin and ERS will change, resulting in an ERS-

induced decline in immune resistance.  

 

SUMMARY 
 

The SARS-CoV-2 virus outbreak is ongoing since 

December 2019. Numerous studies have attempted to 

clarify the relevant characteristics of the virus. 

However, the exact mechanisms underlying the high 

mortality rate of patients with chronic diseases and 

older patients requires further in-depth analysis. To 

date, the vaccine for the SARS-Cov-2 is still in 

development, and there is no specific drugs targeting 

the virus. Therefore, in clinical practice, it is necessary 

to pay close attention to changes in the condition of 

elderly patients, make accurate judgments, and prevent 

cytokine storms and multiple organ failure in as timely 

a manner as possible. Timely prevention and correct 
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treatment at the time of disease onset can prevent 

disease progression and the deterioration of patients, 

thereby reducing mortality. 
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