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INTRODUCTION 
 

Periodontitis is a chronic inflammatory disease in 

periodontium caused by infection from dental biofilm 

[1]. If not treated properly, periodontitis could cause the 

formation of the periodontal pocket, absorption of 

alveolar bone, attachment loss and even tooth loss. 

Moreover, it has been linked to some systemic diseases 

such as diabetes, cardiovascular diseases and 

rheumatoid arthritis [2]. Being the sixth most prevalent 

health condition, periodontitis has been a great burden 

for the economy and society due to its high costs of 

treatment and productivity loss such as pain and 

chewing problems [3]. It is now widely believed that 

instead of being a disease resulting from an individual 

pathogen, periodontitis is the consequence of dysbiosis 

and the disturbance in the local immune homeostasis 

[4]. Dysregulation of innate and adaptive immune 
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ABSTRACT 
 

The relationship between autophagy and immunity has been thoroughly investigated. However, little is known 
about the role of autophagy in shaping the immune-microenvironment of periodontitis. Thus, we aim to 
explore the impact of autophagy on the immune-microenvironment of periodontitis. The expression 
distinctions of autophagy genes between healthy and periodontitis samples have been investigated. The 
connections between autophagy and immune characteristics including infiltrating immunocyte, immune 
reaction and human leukocyte antigen (HLA) gene were evaluated. The distinct autophagy-mediated expression 
patterns were identified and immune characteristics under distinct patterns were revealed. Autophagy 
phenotype-related genes were identified. 16 autophagy genes were dysregulated and a ten-autophagy 
classifier was constructed that can well distinguish periodontitis and healthy samples. Immune characteristics 
were closely related to autophagy: higher expression of EDEM1 positively relates to infiltrating activated B cell; 
NCKAP1 negatively relates to monocyte; CXCR4 enhances BCR Signaling Pathway and PEX3 decreases the 
activity of TNF Family Members Receptors; positive expression correlation of EDEM1-HLADOB and negative 
correlation of RAB11A-HLADOB were observed. Two distinct autophagy expression patterns were identified 
which demonstrated different immune characteristics. 4309 autophagy phenotype-related genes were 
identified, and 219 of them were related to immunity, whose biological functions were found to be involved in 
immunocyte regulations. Our study revealed the strong impact of autophagy on the immune-
microenvironment of periodontitis and brought new insights into the understanding of the pathogenesis of 
periodontitis. 
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reactions plays a pivotal role in the etiology of 

periodontitis. The presence of bacterial antigens 

initiates the immune and inflammatory responses to 

eliminate pathogens. However, the long-standing 

inflammatory responses, especially in older individuals, 

might trigger T- or B- cell dysregulation, DNA damage, 

cellular aging, and oxidative stress, potentially 

immunodeficiency and opportunistic infections [5]. This 

in turn could provide an opportunity for the invasion of 

herpesviruses, which results in cytotoxic effects and 

immunopathology. To suppress this destructive 

reaction, regulatory T cells and noncoding RNAs seek 

to retain the recessive inflammation [6].  

 

Recent studies have suggested that autophagy might 

involve in the pathogenesis of periodontitis, including 

mediation of the infection in the periodontium, immune 

and inflammatory responses from the host, as well as 

alveolar bone metabolism [7]. Autophagy is an 

evolutionarily highly conserved degradation process 

through lysosome, during which the cytoplasmic 

denatured protein, organelle and pathogens are 

transported into the lysosome for further degradation. 

There are in general four classes of autophagy, 

including microautophagy, macroautophagy, 

chaperone-mediated autophagy, and non-canonical 

autophagy, the most common form of which is 

macroautophagy [8]. The process of autophagy starts 

with the intermediate organelle called the 

autophagosome, which is a bilayer vesicle that 

sequestered a small portion of cytoplasm, containing 

soluble substances and organelles. The autophagosome 

then fuses with the lysosome to form an autolysosome 

so that materials can be degraded inside of it [9]. 

Autophagy is a fundamental pathway for immunity, it is 

considered to be the primary form of innate immunity 

for eukaryotic cells against microorganisms. There are 

four main aspects autophagy plays in immunity: the 

direct elimination of microorganisms, the regulation of 

inflammation, the regulation of innate immunity, the 

regulation of adaptive immunity [10]. Over the years, 

the fundamental role autophagy has in periodontitis has 

caught researchers’ attention. As the sensor of infection 

in cells, dysfunction of autophagy will sabotage the 

defense of cells against pathogens. Most of the 

infections would enhance autophagy thus accelerating 

the elimination of pathogens. However, some of the 

periodontal pathogens could escape from the 

identification of autophagy molecules and even interfere 

with the formation of the autophagosome. For instance, 

Bélanger M et al. discovered that P. gingivalis could 

activate autophagy to provide autophagosome for it to 

hide inside to escape the identification from the host 

[11]. On the other hand, autophagy as well as innate 

immunity are regarded as the first line of defense 

against periodontal pathogens. Under the stimulation of 

periodontal pathogens, pattern-recognition receptors 

such as Toll-like receptors and NOD-like receptors 

recognize pathogen-associated molecular patterns and 

damage associated molecular patterns, which triggers 

immune reactions and autophagy to wipe out the 

microorganisms, while autophagy in turn could regulate 

the extent of inflammation [12].  

 

Although studies have been carried out to research 

autophagy in periodontitis, most of them only focused 

on one pathway or one molecule, and systematic 

research on autophagy on periodontitis through a large 

scale of samples and how autophagy could influence the 

immune characteristic are yet to be resolved. Thus, in 

our study, we systematically evaluated the role of 

autophagy in the immune microenvironment of 

periodontitis. The expression status of autophagy genes 

can well distinguish healthy and periodontitis samples. 

Using the most significantly altered autophagy genes, 

we managed to establish an autophagy-related model 

which can well distinguish samples between healthy 

and periodontitis. Next, to explore the relationship of 

immune microenvironment and periodontitis, the 

immunocyte, immune reaction and HLA status in 

periodontitis were revealed, and significant correlations 

were found with autophagy. To further understand how 

autophagy might shape the immune microenvironment 

in periodontitis, we applied unsupervised clustering of 

autophagy genes in periodontitis which identified 2 

distinct autophagy-mediated regulation patterns in 

periodontitis. The 2 subtypes demonstrated diverse 

immune and clinical characteristics. Furthermore, 

WGCNA was applied to the gene expression values of 

the periodontitis samples and the brown module was 

found to be significantly correlated with subtype-2. Our 

findings indicate that autophagy plays a fundamental 

role in the microenvironment of periodontitis. 

 

RESULTS 
 

The landscape of autophagy gene alterations in 

periodontitis  

 

We obtained 208 autophagy genes from http://www. 

autophagy.lu/ to explore their expression status in 

periodontitis. The underlying function of autophagy 

function in periodontitis immune microenvironment 

was summarized in Figure 1A. Principle component 

analysis (PCA) revealed a diverse expression patterns 

between healthy and periodontitis samples (Figure 1B). 

The differential analysis revealed that there were 16 

significantly dysregulated autophagy genes whose 

expression alterations were presented in the boxplot and 

heatmap (Figure 1C–1E, Supplementary Table 1). To 

reveal the interactions between these autophagy genes, 

the protein-protein network was constructed (Figure 1F) 

http://www.autophagy.lu/
http://www.autophagy.lu/
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and through correlation analysis, we found that EDEM1 

and DNAJB9 were the most correlated autophagy genes 

(Figure 1G–1I).  

 

Autophagy genes can well distinguish healthy and 

periodontitis samples  

 

To find out crucial autophagy genes in periodontitis, a 

series of bioinformatic algorithms were employed on 

the 16 significantly dysregulated autophagy genes. To 

investigate the relationships between significantly 

altered autophagy genes and periodontitis, univariate 

logistic regression analysis was employed (Figure 2A, 

Supplementary Table 2). Next, LASSO regression was 

performed for feature selection and dimension reduction 

on the 16 significantly dysregulated autophagy genes 

and 10 periodontitis-related autophagy genes were 

found (Figure 2B, 2C). The 10 periodontitis-related 

autophagy genes were then passed onto multivariate 

logistic regression analysis for the model construction, 

and we obtained the risk scores for each of the samples  

(Figure 2D, 2E, Supplementary Table 3). Furthermore, 

PCA analysis demonstrated that the expression values 

of the 10 critical autophagy genes can well distinguish 

periodontitis and healthy samples (Figure 2F), 

suggesting autophagy gene FOS may make the greatest
 

 
 

Figure 1. Expression landscape autophagy genes in periodontitis. (A) The overview of autophagy in regulating dynamic homeostasis 
of the immune microenvironment in periodontitis. (B) Principal component analysis (PCA) of 208 autophagy genes between healthy and 
periodontitis. The two first principal components (PC1, PC2) which could explain most of the variables are plotted, suggesting there are 
diversity regulation patterns of autophagy between healthy and periodontitis. (C) The volcano-plot shows the summary of expression 
changes of 208 autophagy genes between healthy and periodontitis samples and the most significant 16 autophagy genes are labeled. (D, E) 
The box-plot and heatmap-plot demonstrated the transcriptome expression status of 16 significantly dysregulated autophagy genes between 
healthy and periodontitis samples. (F) The 16 significant dysregulated autophagy gene protein-protein interactions are presented. (G) 
Correlations among the expression of 16 significantly dysregulated autophagy genes in all samples and periodontitis samples. (H, I) The two 
scatter-plots demonstrated the most correlated two autophagy genes: EDEM1 and DNAJB9. 
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contribution to distinguish periodontitis samples from 

healthy (Supplementary Figure 1 and Supplementary 

Table 12). The receiver operating characteristic curve 

was plotted and the results showed that the autophagy 

model has excellent discrimination ability (Figure 2G). 

The validation was performed in another dataset 

GSE10334 which generated a similar result, which 

indicated the robustness of the model (Supplementary 

Figure 2). 

 

The correlation between periodontitis immune 

microenvironment and autophagy 

 

As mentioned earlier, the immune microenvironment 

was crucial in the pathogenesis of periodontitis and was 

also closely linked to autophagy. Thus, to further 

explore their relationship, the overview of the immune 

microenvironment in periodontitis was portrayed. 

ssGSEA was applied to calculate the relative 

enrichment of each immunocyte in each sample, as was 

shown in Figure 3A, dramatic changes of immunocytes 

occurred in periodontitis samples, most of the 

immunocytes were upregulated in periodontitis such as 

activated B cell, suggesting a great change of immune 

microenvironment was happening in periodontitis. 

Using this immunocyte composition matrix we 

obtained, we can then explore the correlation of 

immunocyte with autophagy genes (Figure 3B, 

Supplementary Tables 4, 5). The most positively 

correlated immunocyte-autophagy gene pair is EDEM1-

Activated B cell, and a higher expression of EDEM1 

and a higher score of Activated B cell were found in 

periodontitis (Figure 3C); while the most negatively 

correlated pair is NCKAP1-Monocyte, and a lower 

expression of NCKAP1 and a higher level of Monocyte 

population could be found in periodontitis (Figure 3D). 

Likewise, the activity of immune-related pathways and 

expression levels of HLA was calculated and significant 

changes could be observed between healthy and 

periodontitis samples (Figures 4A, 5A). Their 

 

 
 

Figure 2. Autophagy genes can distinguish healthy and periodontitis samples. (A) Univariate logistic regression investigated the 
relationship between dysregulated autophagy genes and periodontitis. (B) Least absolute shrinkage and selection operator (LASSO) 
coefficient profiles of 16 periodontitis-related autophagy genes. (C) Ten-fold cross-validation for tuning parameter selection in the LASSO 
regression. The partial likelihood deviance is plotted against log (λ), where λ is the tuning parameter. Partial likelihood deviance values are 
shown, with error bars representing SE. The dotted vertical lines are drawn at the optimal values by minimum criteria and 1-SE criteria. (D) 
Distinguishing signature with 10 autophagy genes was developed by multivariate logistic regression and the risk scores for periodontitis were 
calculated. (E) The risk distribution between healthy and periodontitis, where periodontitis has a much higher risk score than healthy 
samples. (F) Principal component analysis (PCA) of 10 periodontitis-related autophagy genes between healthy and periodontitis. The two first 
principal components (PC1, PC2) which could explain most of the variables are plotted. (G) The discrimination ability for healthy and 
periodontitis samples by autophagy genes was analyzed by the ROC curve and evaluated by AUC value. 
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correlations with autophagy were also fully explored 

(Figures 4B, 5B, Supplementary Tables 6–9). For 

immune pathways, the most positively correlated pair is 

CXCR4-BCR Signaling Pathway, and a higher 

expression of CXCR4 and more BCR Signaling 

Pathway reaction were found in periodontitis (Figure 

4C); while the most negatively correlated pair is PEX3-

TNF Family Members Receptors and a lower 

expression of PEX3 and more active TNF Family 

Members Receptors reaction were found in periodontitis 

(Figure 4D). For HLA, the most positively correlated 

HLA-autophagy pair is EDEM1-HLADOB, and a 

higher expression of EDEM1 and HLA-DOB was 

observed in periodontitis (Figure 5C); while the most

 

 
 

Figure 3. The correlation between infiltrating immunocytes and autophagy genes. (A) The difference in the abundance of each 
immune microenvironment infiltrating cells between healthy and periodontitis samples. (B) The dot-plot demonstrated the correlations 
between each dysregulated immune microenvironment infiltration cell type and each dysregulated autophagy genes. (C) The most positive 
correlated immunocyte-autophagy gene pairs are EDEM1-Activated B cell and the expression status or fraction status are presented by violin-
plot at the left panel, indicating a higher expression of EDEM1 and a higher fraction of Activated B cell were found in periodontitis. (D) The 
most negatively correlated immunocyte-autophagy gene pairs are NCKAP1-Monocyte and the expression status or fraction status are 
presented by violin-plot at the right panel, indicating there is a lower expression of NCKAP1 in periodontitis and a higher level of the 
monocyte population. 
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negatively correlated pair is RAB11A-HLADOB, 

indicating a lower expression of RAB11A and a higher 

expression of HLA-DOB could be observed in 

periodontitis (Figure 5D). 

 

Identification of different autophagy expression 

patterns 
 

To further explore the impact of autophagy in the 

immune microenvironment of periodontitis, we applied 

unsupervised clustering of 208 autophagy genes in 

periodontitis, which identified two subtypes with 

distinct autophagy expression patterns based on 

“majority rule”(Figure 6A–6C, Supplementary Figure 3, 

Supplementary Table 10). PCA analysis of the 

transcriptome profile of the two subtypes revealed that 

there was a remarkable difference in transcriptome 

between the two expression patterns (Figure 6D). Then, 

we compared the clinical characteristics between the 

two subtypes and found that gender significantly varied 

 

 
 

Figure 4. The correlation between immune reaction gene-sets and autophagy genes. (A) The difference in the activity of each 
immune reaction gene-set between healthy and periodontitis samples. (B) The dot-plot demonstrated the correlations between each 
dysregulated immune reaction gene-set and each dysregulated autophagy gene. (C) The most positive correlated pair is CXCR4-BCR Signaling 
Pathway and the expression status or activity status is presented by violin-plot at the left panel, indicating a higher expression of CXCR4 and 
more active BCR Signaling Pathway reaction were found in periodontitis. (D) The most negatively correlated pair is PEX3-TNF Family Members 
Receptors and the expression status or activity status is presented by violin-plot at the right panel, indicating a lower expression of PEX3 and 
more active TNF Family Members Receptors reactions in periodontitis. 
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between the two subtypes, and there were more female 

in subtype-2 (Figure 6E). Next, we compared the 

expression of the subtype-specific autophagy genes in 

the two subtypes, and all of them significantly changed 

between the two subtypes (Figure 6F), and unsupervised 

clustering of 13 subtype-specific autophagy genes in the 

two subtypes demonstrated distinct expression patterns 

(Figure 6G).  

Distinct immune characteristics were observed in the 

two autophagy expression patterns 

 

To explore the immune characteristics between the two 

subtypes, we compared the relative enrichment score of 

immunocytes, activity of immune pathways, and 

expression of HLA, and as expected, the two subtypes 

demonstrated very different immune characteristics, 

 

 
 

Figure 5. The correlation between HLA and autophagy genes. (A) The difference in the transcriptome expression of each HLA gene 
between healthy and periodontitis samples. (B) The dot-plot demonstrated the correlations between each dysregulated HLA gene and each 
dysregulated autophagy gene. (C) The most positive correlated HLA-autophagy pair is EDEM1-HLA DOB and the expression is presented by 
violin-plot at the left panel, indicating there is a higher expression of EDEM1 and HLA-DOB in periodontitis. (D) The most negatively 
correlated HLA-autophagy pair is RAB11A-HLADOB and the expression status is presented by violin-plot at the right panel, indicating low 
expression of RAB11A and higher expression of HLA-DOB in periodontitis. 
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revealing autophagy-mediated distinct immune 

characteristics (Figure 7A–7C). For example, more 

activated CD4 T cells, and interferon receptors and 

lower expression of HLA-J were observed subtype-1. 

There are more infiltrating immunocytes, more active 

immune reactions and higher HLA gene expression, 

suggesting subtype-1 represents immune enrichment. 

Besides, immune characteristics among healthy and 

autophagy-based periodontitis subtypes were also 

investigated (Supplementary Figure 4). We also 

conducted a “gsva” algorithm to calculate the 

enrichment scores for autophagy subtypes and the 

relationship between the autophagy subtypes and 

periodontitis subtypes were investigated. The results 

revealed subtype-1 presented more macrophage, CMA, 

and mitophagy, while the subtype-2 is mainly related to 

microautophagy (Supplementary Figure 5). 

 

Biological functions behind autophagy expression 

patterns 

 

Apart from different immune characteristics in the two 

subtypes, we wonder if other distinct biological 

functions could be found in these two subtypes. GSVA 

analysis was employed to calculate the enrichment 

score of HALLMARK and KEGG pathway of the two 

subtypes, and a lot of pathways were enriched in 

subtype-2, such as APICAL JUNCTION and TIGHT 

JUNCTION (Figure 8A, 8B). The simplified GSEA 

GO-BP terms between the two subtypes with de-

redundancy were also performed (Supplementary 

Figure 6, Supplementary Table 13). To further 

understand the role of autophagy in immunity, we 

identified autophagy phenotype-related genes which are 

the differentially expressed common genes between the 

two subtypes. 4309 genes were regarded as autophagy 

phenotype-related genes and GO-BP enrichment 

analysis revealed that they were mostly involved in 

cellular component disassembly, autophagy and process 

utilizing autophagic mechanism (Figure 8C, 

Supplementary Table 11). Next, the GO-BP enrichment 

analysis was carried out for the autophagy phenotype-

related genes that participate in immunity, and 

regulation of innate immune response was significantly 

enriched, suggesting the fundamental role autophagy 

has in innate immune regulation (Figure 8D). Next, a 

comprehensive gene landscape correlated to each 

autophagy expression patterns were constructed, and 

gene-gene modules related to distinct autophagy 

regulations were identified by WGCNA (Figure 9A, 

9B). 16 gene modules were determined and different 

expression pattern matched their related genes (Figure 

9C), such as autophagy expression pattern-2 is closely 

related to genes in brown modules (Figure 9D). These 

 

 
 

Figure 6. Unsupervised clustering of 208 autophagy genes identifying 2 distinct autophagy-mediated regulation pattern 
subtypes in periodontitis. (A) Consensus clustering cumulative distribution function (CDF) for k = 2–7. (B) Relative change in area under 
the CDF curve for k = 2–7. (C) Heatmap of the matrix of co-occurrence proportions for periodontitis samples. (D) Principal component 
analysis for the transcriptome profiles of 2 autophagy regulation patterns, showing a remarkable difference in transcriptome between 
different regulation patterns. (E) Comparing of age, gender, periodontitis range and periodontitis type among 2 autophagy regulation 
patterns. The heatmap illustrates the association of different clinical characters with the 2 subtypes. (F) The expression status of subtype-
specific autophagy genes in the two subtypes. (G) Unsupervised clustering of 13 subtype-specific autophagy genes in the 2 regulation 
patterns. 
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Figure 7. Diversity of immune microenvironment characteristics among distinct autophagy-mediated regulation patterns. (A) 
The abundance differences of each immune microenvironment infiltrating immunocytes in 2 autophagy regulation patterns. (B) The activity 
differences of each immune reaction gene-sets in 2 autophagy regulation patterns. (C) The expression differences of each HLA gene in 2 
autophagy regulation patterns.  
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results can shed light on the gene expression regulation 

network mediated by autophagy. 

 

DISCUSSION 
 

Autophagy is a process in which cytoplasmic contents 

are being devoured and degraded by lysosome. It has 

long been recognized as a coping mechanism of 

eukaryotic cells under the stress of nutrition deprivation 

and immune response [13]. Being a bridge that links 

innate and adaptive immunity, autophagy is thought to 

play important roles in antigen presentation, 

maintenance of lymphocyte homeostasis, and regulation 

of cytokine production [14]. Dysregulation of innate 

and adaptive immune reactions plays fundamental roles 

in the etiology of periodontitis [15]. If the host’s 

immune response went out of control, it might generate 

an unceasing pathogenic cycle in which inflammatory 

response and dysbiosis reinforce each other, causing 

chronic inflammation and destruction in periodontium 

[16]. Knowing that autophagy is indispensable in 

immune reactions, we believe that autophagy must have 

a significant impact on shaping the immune 

microenvironment of periodontitis. Therefore, we aim 

to further dig into immunity in periodontitis from a new 

aspect of autophagy to see how it might shape the 

immune microenvironment of periodontitis. To answer 

these questions, we systematically investigated the 

autophagy expression patterns in the immune 

microenvironment of periodontitis. To reveal the effects 

of autophagy in immune microenvironment, including 

the composition of immunocytes and activity of 

immune related pathways, a series of bioinformatic 

algorithms were performed and we made the following 

discoveries. First, dysregulated autophagy genes were 

found in periodontitis which correlated and interacted 

with each other, revealing a regulatory network of 

autophagy in periodontitis. To see if dysregulated 

autophagy genes have well discrimination ability to 

distinguish periodontitis samples, univariate logistic 

 

 
 

Figure 8. The underlying biological characteristics diversity among 2 autophagy-mediated regulation patterns. (A, B) The 
differences of the HALLMARKS pathway and KEGG pathway enrichment score between autophagy-mediated pattern 1 and pattern 2 (A for 
HALLMARKS pathway and B for KEGG pathway). (C) GO-BP functional enrichment analysis revealed the biological characteristics of autophagy 
phenotype-related genes. (D) The GO-BP enrichment analysis for the autophagy phenotype-related immune genes uncovers the relationship 
between autophagy and immune regulations. GO categories are grouped according to functions.  
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regression analysis, LASSO regression analysis and 

multivariate regression analysis were performed to 

construct a classifier based on 10 periodontitis-related 

autophagy genes. Second, to catch a glimpse of the 

immune microenvironment of periodontitis, we used the 

ssGSEA algorithm to establish a matrix to evaluate the 

composition of immune cells, activity of immune 

pathways, and the expression of HLA genes were also 

taken into consideration. Then, their correlations with 

autophagy genes were fully explored. We found that the 

expression of CXCR4 was significantly positively 

correlated with Myeloid-derived suppressor cells 

(MDSC) and the expression of RAB11A were 

negatively correlated with activated dendritic cell. In 

colorectal cancer, it was found that overexpression of 

CXCR4 could promote the infiltration of myeloid- 

 

 
 

Figure 9. Gens and gene modules related to autophagy-mediated patterns (A) The sample clustering was based on the expression data of all 
samples. The top 25% of variation genes were used for the analysis by WGCNA and outlier samples were excluded. (B) Gene dendrogram 
obtained by average linkage hierarchical clustering. The color row underneath the dendrogram shows the module assignment determined by 
the Dynamic Tree Cut, in which 16 modules were identified. (C) Heatmap of the correlation between module eigengenes and the autophagy-
mediated regulation patterns. (D) A scatterplot of gene significance (GS) for autophagy-mediated pattern-2 versus module membership 
(MM) in the brown module. GS and MM exhibit a very significant correlation, implying that hub genes of the green module also tend to be 
highly correlated with autophagy-mediated regulation pattern-2. 
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derived suppressor cells (MDSCs) [17]. MDSC 

functions as immune suppressor cells, whose population 

grows under the stimulus of chronic inflammation and in 

turn contributes to immunosuppression and oxidative 

stress [18]. Besides, we found that CXCR4 is positively 

correlated with BCR Signaling Pathway and PEX3 is 

negatively correlated with TNF Family Members 

Receptors; EDEM1 is positively correlated with 

HLADOB and RAB11A is negatively correlated with 

HLADOB. Some of these correlations haven’t been 

found in any other previous studies yet, which means 

that they might be novel approaches to understand the 

role of autophagy in periodontitis. Since a tight 

correlation was observed between autophagy and the 

immune microenvironment in periodontitis, we wonder 

if we cluster the samples according to their autophagy 

expression profile, the clusters might demonstrate 

distinct immune characteristics. The findings proved our 

point. The two subtypes were very different in terms of 

immunocyte composition, immune pathways and HLA 

gene expression. For instance, higher fractions of 

regulatory T cells were observed in subtype-1, and 

regulatory T cells were essential to ensure the immune 

homeostasis and control tissue damage during 

periodontitis, which could be the key to immunotherapy 

for the treatment of periodontitis [19]. The two 

autophagy subtypes harboring diverse immune profiles 

could support the hypothesis that autophagy was 

involved in the immune reactions in periodontitis. In 

detail, we conducted unsupervised clustering to separate 

the periodontitis samples based on the expression of 

autophagy genes, generating subtypes with the most 

distinct autophagy expression profiles. Furthermore, 

very distinct immune characteristics were also observed 

between the two subtypes with different autophagy 

expression patterns. It can be concluded that autophagy 

had a strong impact on the immune microenvironment 

so that different immune characteristics were 

demonstrated between the two subtypes. In addition, this 

classification strategy for the autophagy subtype can 

help us understand the underlying mechanism of 

immune regulation with autophagy so that precise 

therapeutic methods can be applied and periodontitis can 

be subtyped  molecular level or immune level not only 

the phenotype level. Studies have shown that autophagy 

is active in Treg cells to support their lineage stability 

and survival fitness [20]. Significant changes of the TNF 

family and their receptors were observed between the 

two subtypes. The most famous member of the family is 

TNF-α, which is a pro-inflammatory cytokine that 

contribute to acute and chronic inflammation and tissue 

injury [21], it could promote osteoclast activity, thus 

enhance bone resorption in periodontitis [22]. In patients 

with rheumatoid arthritis, autophagy is activated by 

TNF-α, which induces osteoclast-mediated bone 

resorption [23]. To reveal the biological features that 

cause the difference between the 2 autophagy expression 

patterns, we employed the GSVA algorithm and GO-BP 

functional enrichment analysis on the two sub-types and 

autophagy phenotype related genes. Interestingly, we 

find the most significantly enriched pathway in the 

autophagy phenotype related immune genes was the 

regulation of innate immune response, which suggested 

the hypothesis that autophagy is the primary form of 

innate immunity for eukaryotic cells [10]. Besides, we 

also identified gene modules related to autophagy-

mediated patterns.  

 

Our study was the first to systematically analyze the 

relationship between autophagy and the immune 

microenvironment in periodontitis. And we have obtained 

findings that were either reported in other diseases or 

brand new and required attention. These findings could 

well enlighten the development of immunotherapy from 

the aspect of autophagy in periodontitis. Besides, we have 

identified two distinct autophagy expression patterns that 

are different from any other classification standards in 

periodontitis. The autophagy expression pattern could 

help us enhance the understanding of autophagy in 

periodontitis and how it could shape the immune 

microenvironment. We speculated that there are deep 

connections between autophagy and the immune 

microenvironment, and we believe that these findings 

could inspire researchers to further dig into autophagy in 

periodontitis and reveals the mysteries that are yet 

unsolved. However, we acknowledge that there are indeed 

some shortcomings in this study. First, our study mainly 

focused on methodology, an experiment in vitro and in 

vivo is needed to confirm these results. Second, the data 

of the periodontitis we have obtained was incomplete. 

Since follow-up information, precise clinical classification 

data and many other clinicopathological data were 

missing, relevant analysis cannot be performed so that we 

weren’t able to find out if there were other distinct 

clinicopathological characteristics between the 2 

autophagy expression patterns. Last, the measurements for 

immunocytes and pathway activation are based on the 

GSVA score, which is calculated by gene expression at 

the mRNA level, and it cannot reflect the changes 

occurring on the protein level. This leads to poor 

performance in measurements of protein reaction-based 

pathway activation, for example, the inconsistency 

between the molecular pathway and directly related 

cellular activities (the enrichment of TCR Signaling 

Pathway was not significantly different between the two 

subtypes while significant differences in the enrichment 

scores of effector T cells were observed). Nevertheless, 

our findings indicated the strong impact autophagy has on 

the immune microenvironment of periodontitis, and have 

provided new insights into understanding the pathogenesis 

of periodontitis. Our study were the first to systematically 

reveal the underlying connections between autophagy and 
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immune microenvironment in periodontitis, the findings 

might offer clues for other researchers to further uncover 

the mechanisms of autophagy in periodontitis.  

 

CONCLUSIONS 
 

In conclusion, our study revealed the underlying 

mechanism of the impact of autophagy on the immune 

microenvironment of periodontitis. The systematic 

analysis of the diverse autophagy expression pattern 

will enhance the understanding of the pathogenesis of 

periodontitis and will inspire researchers to continue 

this direction of research. 

 

MATERIALS AND METHODS  
 

Data preparation  

 

The data used in this study included 310 samples (69 

healthy samples and 241 periodontitis samples), which 

came from 120 patients who underwent periodontal 

surgery in a previous study of Kebschull et al [24].  The 

sample processing and RNA extraction protocol were 

described in a previous study [24]. The gene expression 

was detected by Affymetrix Human Genome U133 Plus 

2.0 Array microarray according to the manufacturer's 

instructions. The data was reserved in the GEO database 

under the serial number GSE16134 (https://www.ncbi. 

nlm.nih.gov/geo/query/acc.cgi?acc=gse16134). The 

data was obtained by the R package “GEOquery”. CEL 

files in the series were processed using a package 

named “RMA” in R using “justRMA” with default 

parameters. Probes were annotated as gene symbols, 

and probes without matching gene symbols or had 

multiple matching gene symbols were excluded. The 

gene expression of duplicate gene symbols was 

calculated as the median value. The expression value 

was processed by “normalizeBetweenArrays” in the R 

package “limma”. The 208 autophagy genes analyzed in 

this study were obtained from the database http://www. 

autophagy.lu/. 

 

Variation analysis of autophagy between 

periodontitis and healthy samples  
 

The differential analysis of autophagy genes between 

healthy and periodontitis samples was carried out using 

the Wilcox test, and autophagy genes with adj.P.Val<0.01 

and |logFC|>0.5 were considered as significantly 

dysregulated autophagy genes. The protein-protein 

network was constructed using the STRING database 

(https://string-db.org/). Correlation analysis of the 16 

significantly dysregulated autophagy genes was carried 

out using Spearman correlation analysis in periodontitis 

samples as well as all samples. The periodontitis-related 

autophagy genes were identified by univariate logistic 

regression with the cut-off criteria of FDR < 0.01 and 

were then passed on to LASSO regression for feature 

selection and dimension reduction. Multivariate logistic 

regression was used to construct the periodontitis 

classifier using the periodontitis-related autophagy genes. 

Risk-scores are calculated by “predict” function according 

to gene expression and multivariate logistic coefficient, 

defined as the risk of suffering from periodontitis. ROC 

curve was plotted to assess the classification performance 

of the classifier.  

 

Correlation analysis between periodontitis immune 

microenvironment and autophagy  
 

The relative enrichment of infiltrating immunocytes and 

the activity of immune pathways were determined by 

single-sample gene set enrichment analysis (ssGSEA). 

The gene sets used to determine the composition of 

immunocytes were obtained from the previous study 

[25]. The gene sets used to evaluate the activity of 

immune-related pathways were obtained from the 

database ImmPort (http://www.immport.org) [26]. The 

relative fraction of immunocytes, enrichment score of 

immune pathways and expression of HLA genes 

between healthy and periodontitis samples were 

compared using the Wilcox test. The correlation 

analysis of the relative fraction of immunocytes, 

enrichment score of immune pathways and expression 

of HLA genes between autophagy genes were done by 

Spearman correlation analysis.  

 

Identification of autophagy expression patterns  
 

Unsupervised clustering analysis was conducted to 

identify distinct autophagy expression patterns 

according to the expression of 208 autophagy genes. A 

consensus clustering algorithm was used to evaluate the 

cluster numbers and robustness [27, 28]. The R package 

“ConsensuClusterPlus” implement the above steps for 

1000 iterations for guaranteeing the robustness of 

classification [29]. The optimal number of clusters was 

evaluated by 30 indices according to the majority rule, 

which was performed by the “NbClust” function in the 

NbClust R package [30]. The comparison of expression 

of the periodontitis-related autophagy gene, 

immunocyte relative fraction, activity of immune 

pathways and expression of HLA genes between the 

two subtypes were conducted using the Wilcox test.  

 

Functional enrichment analysis of the two autophagy 

expression patterns 

 

We used HALLMARKS and KEGG pathway to reflect 

biological changes that occurred in the two subtypes. 

Using the GSVA algorithm [31], the activity of each 

pathway was obtained, and was compared between two 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse16134
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse16134
https://string-db.org/
http://www.immport.org/
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subtypes using the R package “limma”. Pathways with 

adjust adj.P.Val < 0.01 were considered to be 

significant. The gene-sets of “h.all.v7.0.symbols” and 

“c2.cp.kegg.v7.0.symbols” were downloaded from 

MSigDB database for GSVA analysis. The biological 

characteristics of autophagy phenotype-related genes 

and autophagy phenotype-related immune genes were 

uncovered by GO-BP enrichment analysis using the R 

package “clusterProfiler”.  

 

Identification of autophagy expression pattern 

related gene modules  

 

To screen for autophagy expression pattern related 

genes, differentially expressed genes between two 

subtypes were identified using the R package “limma”. 

The criterion for DEGs was adjusted-p-value < 0.00001. 

The autophagy expression pattern related genes and 

gene modules were identified by WGCNA using the R 

package “WGCNA”  [32, 33]. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Contribution of autophagy genes in PCA analysis. (A) The distribution dotplot for contribution of 
autophagy genes in every principle component. (B) The total contribution to PC1 and PC2 is calculated. (C) The most important (or, 
contributing) variables can be highlighted on the correlation plot. 

 

 
 

Supplementary Figure 2. External dataset validation by ten periodontitis-related autophagy genes generated from training 
set. (A) The risk distribution between healthy and periodontitis in validation set, in which the risk scores of periodontitis samples are much 
higher than that of healthy samples. (B) The discrimination ability of autophagy genes in validation set was analyzed by the ROC curve and 
evaluated by AUC value. 
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Supplementary Figure 3. (A) Elbow method suggesting 4 clusters solution may be the optimal. (B) Silhouette method suggesting 3 clusters 
solution may be the optimal. (C) Gap method suggesting 1 cluster solution may be the optimal. (D) Frequency distribution for 30 indices of 
choosing the best number of clusters. According to the majority rule, the best number of clusters is 2. 
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Supplementary Figure 4. The comparison of immune characteristics among healthy samples and autophagy-based periodontitis subtypes 
for infiltrating immunocytes abundance (A), immune reaction activity (B) and HLA gene expression (C). 
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Supplementary Figure 5. The relationship between autophagy gene-based periodontitis subtypes and existing classifications 
of autophagy subtypes. 

 

 
 

Supplementary Figure 6. GSEA revealed the difference of biological process between the two subtypes with de-redundancy 
for GO terms. (A) The top 5 significant GO terms for subtype-2. (B) The top 5 significant GO terms for subtype-1. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 4, 7, 9, 10, 11, 13. 

 

Supplementary Table 1. Expression diversity of autophagy regulators. 

 

Supplementary Table 2. Univariate logistic regression results. 

id OR low95 high95 pvalue fdr 

CXCR4 8.95905197 5.508081451 15.94238744 4.21E-16 6.73E-15 

SERPINA1 37.1972771 16.01824489 97.39303017 3.08E-15 2.46E-14 

BNIP3 0.034982189 0.0139458 0.078698436 2.53E-14 1.15E-13 

PRKCQ 43.73270504 17.46588255 123.4575199 2.87E-14 1.15E-13 

DRAM1 40.10742684 15.94380918 113.0215206 1.22E-13 3.91E-13 

DNAJB9 7.128247166 4.305372072 12.67598588 8.17E-13 1.87E-12 

EDEM1 18.06813529 8.580894317 42.00052636 7.36E-13 1.87E-12 

RAB11A 0.034505725 0.011671209 0.0893268 8.25E-11 1.32E-10 

FOS 2.32563562 1.831553852 3.027552655 3.80E-11 6.76E-11 

CCR2 14.73484889 6.995711839 33.97905752 2.14E-11 4.29E-11 

IL24 8.398271685 4.5837483 16.86532237 1.35E-10 1.96E-10 

PEX3 0.099562649 0.046212042 0.197872389 4.53E-10 6.05E-10 

ERN1 9.581845379 4.888393721 20.59546091 6.34E-10 7.81E-10 

CFLAR 5.220795947 3.06131357 9.363578845 6.11E-09 6.52E-09 

CD46 3.479525428 2.295185926 5.46201312 1.47E-08 1.47E-08 

NCKAP1 0.197881267 0.112177806 0.333252775 4.75E-09 5.43E-09 

 

Supplementary Table 3. Multivariate logistic regression results. 

ID OR low95 high95 pvalue 

CXCR4 1.703476996 0.695891318 4.405843902 0.255737151 

SERPINA1 0.953392859 0.231013398 4.122617736 0.947745907 

BNIP3 0.249283753 0.070428319 0.816072448 0.025651892 

PRKCQ 2.575233452 0.5503442 12.47583488 0.232242842 

DRAM1 2.065272898 0.510172942 9.058183167 0.319707889 

DNAJB9 2.21023794 0.955796135 5.515358496 0.075930725 

RAB11A 0.461663318 0.094176447 1.986802152 0.318746505 

FOS 1.615067805 1.057860578 2.544333493 0.031683274 

IL24 1.574290888 0.709086092 3.688380212 0.276347786 

PEX3 0.395537241 0.109585244 1.428728845 0.154151451 

 

Supplementary Table 4. Correlations between autophagy regulators and immunocytes. 
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Supplementary Table 5. Diversity of immunocytes between healthy and periodontitis samples. 

ID control treat FC pvalue 

Activated_B_cell 0.028682337 0.303307441 10.57471168 1.96E-24 

Activated_CD4_T_cell 0.203188255 0.325499403 1.601959733 1.91E-15 

Activated_CD8_T_cell 0.325510633 0.422979084 1.299432462 9.02E-17 

Activated_dendritic_cell 0.373875382 0.425813289 1.138917699 3.38E-18 

CD56bright_natural_killer_cell 0.396470546 0.40462237 1.020560983 0.001557049 

Eosinophil -0.07644482 0.010637701 -0.139155292 2.70E-13 

Gamma_delta_T_cell 0.450834647 0.479424376 1.063415112 4.93E-09 

Immature_B_cell -0.073652561 0.118068177 -1.603042393 6.97E-21 

Immature_dendritic_cell 0.509927853 0.526558794 1.032614302 6.67E-09 

Macrophage 0.075804796 0.143624938 1.89466821 6.11E-24 

Mast_cell 0.166162005 0.18754276 1.128674155 0.006638189 

MDSC 0.369494303 0.52998994 1.434365659 6.91E-25 

Monocyte 0.426397056 0.452043959 1.060147935 1.85E-11 

Natural_killer_cell 0.219708722 0.273328792 1.244050709 4.00E-19 

Natural_killer_T_cell 0.132520668 0.19501585 1.471588195 5.22E-22 

Neutrophil 0.160179802 0.185920142 1.160696541 0.001640532 

Plasmacytoid_dendritic_cell 0.502117698 0.543308302 1.082033763 8.03E-17 

Regulatory_T_cell 0.1973633 0.299154638 1.515756162 3.78E-19 

T_follicular_helper_cell 0.307432516 0.348413561 1.133300945 7.73E-19 

Type_1_T_helper_cell 0.146449915 0.219138288 1.496336059 1.73E-22 

Type_17_T_helper_cell -0.016246414 0.001577097 -0.097073533 1.27E-08 

 

 

Supplementary Table 6. Diversity of immune reaction gene-sets between healthy and periodontitis samples. 

ID control treat FC pvalue 

Antigen_Processing_and_Presentation 0.232829877 0.244056786 1.048219366 1.63E-11 

Antimicrobials 0.126458956 0.146051936 1.154935491 2.33E-19 

BCRSignalingPathway 0.189246934 0.239929328 1.26781091 3.77E-24 

Chemokine_Receptors 0.026075673 0.069281699 2.656947727 4.14E-21 

Chemokines 0.083089047 0.115883381 1.394689002 1.59E-15 

Cytokine_Receptors 0.035330253 0.054365591 1.538782966 2.50E-20 

Cytokines -0.028409514 -0.007951884 0.279902151 3.46E-17 

Interferon_Receptor 0.447356591 0.497679544 1.112489576 1.28E-19 

Interleukins -0.04306784 -0.019413374 0.450762661 4.14E-13 

Interleukins_Receptor 0.074911976 0.093326464 1.245815001 7.93E-13 

NaturalKiller_Cell_Cytotoxicity 0.107220427 0.139171684 1.29799598 1.15E-22 

TCRsignalingPathway 0.12608018 0.149229687 1.183609404 1.48E-17 

TGFb_Family_Member -0.079328228 -0.060743855 0.765728118 2.42E-10 

TGFb_Family_Member_Receptor 0.110681235 0.101014205 0.912658812 0.005018149 

TNF_Family_Members -0.067819813 -0.030722486 0.453001626 4.61E-12 

TNF_Family_Members_Receptors 0.129777052 0.171192354 1.31912654 7.56E-16 

 

Supplementary Table 7. Correlations between autophagy regulators and immune reaction gene-sets. 
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Supplementary Table 8. Diversity of HLA gene expression between healthy and periodontitis samples. 

ID control treat FC pvalue 

HLA-E 9.900019815 10.11765558 1.021983367 2.58E-08 

HLA-C 11.69971094 12.22933332 1.045267989 1.41E-18 

HLA-J 9.613263411 9.882935586 1.028052095 1.00E-06 

HLA-DQB2 7.20374812 6.728334111 0.934004632 7.14E-09 

HLA-A 11.9206991 12.29871027 1.031710486 1.18E-13 

HLA-DMA 7.984399658 8.792908871 1.101261115 2.13E-21 

HLA-DOB 5.742159729 6.504613522 1.132781711 4.02E-23 

HLA-DRB1 11.09291326 11.50098747 1.036786929 2.46E-12 

HLA-B 11.56687536 12.04355889 1.041211088 1.12E-12 

HLA-DOA 5.999200736 6.189431203 1.031709302 0.000198157 

HLA-DPB1 7.367720578 7.646295694 1.037810217 1.83E-07 

HLA-DRA 10.54226396 11.19533093 1.061947507 1.09E-14 

HLA-DRB6 5.370241867 5.509055221 1.025848622 2.16E-06 

HLA-F 9.349617249 9.805435584 1.04875262 2.67E-13 

HLA-G 9.848227181 10.22515294 1.038273463 3.07E-11 

HLA-DMB 7.885631024 8.430186322 1.069056655 1.55E-15 

HLA-DPA1 9.46803567 10.07641674 1.064256313 9.78E-15 

 

Supplementary Table 9. Correlations between autophagy regulators and HLA gene. 

 

Supplementary Table 10. Autophagy regulation patterns. 

 

Supplementary Table 11. Autophagy related genes. 

 

Supplementary Table 12. The full list of principle component in PCA analysis of Figure 1B. 

 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

PRKCQ 0.1397 -0.09422 0.022391 -0.06532 0.048928 -0.54474 0.273899 -0.39277 -0.08853 0.656177 

DNAJB9 0.345465 -0.33409 -0.63874 -0.04296 0.440131 0.340012 0.063081 -0.21405 0.001548 -0.0088 

DRAM1 0.14386 -0.09659 0.039521 -0.08886 -0.02423 -0.29794 -0.72556 -0.44278 0.31688 -0.21966 

CXCR4 0.611874 -0.17105 -0.1426 0.44258 -0.48675 -0.17527 -0.0626 0.293805 -0.14555 -0.03275 

FOS 0.527227 0.81033 0.038151 -0.17636 0.103776 0.115244 0.025634 -0.08867 0.012183 0.011059 

IL24 0.265895 -0.32752 0.213464 -0.79559 -0.28834 0.171744 0.003583 0.141461 -0.09415 0.044437 

SERPINA1 0.198778 -0.15699 0.276432 0.042715 0.047002 -0.17034 0.593059 -0.24131 0.312026 -0.56486 

RAB11A -0.15361 0.130599 -0.33015 -0.2238 -0.05045 -0.38302 0.032281 -0.11086 -0.66425 -0.44322 

PEX3 -0.14421 0.155415 -0.54113 -0.26589 -0.18659 -0.32471 0.132196 0.335942 0.566407 0.011688 

BNIP3 -0.18297 0.105645 -0.21059 0.058722 -0.65795 0.379767 0.140478 -0.55343 0.046242 0.047822 

 

Supplementary Table 13. The full list of difference of biological process between the two subtypes with de-
redundancy for GO terms for GSEA. 


