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INTRODUCTION 
 

Triple-negative breast cancer (TNBC) is 

immunohistochemically defined as estrogen receptor 

(ER)-negative, progesterone receptor (PR)-negative, 

and human epidermal growth factor receptor 2 (HER2) 

nonamplified breast cancer. TNBC composes nearly 

15% of all breast cancers [1]. TNBC is aggressive and 

has the worst prognosis among all breast cancer 

subtypes. Despite significant advances in breast cancer 

treatment, TNBC still has a higher relapse rate, shorter 

overall survival (OS), and limited therapeutic options 

compared with other subtypes. The median OS for 

advanced TNBC is about 1 year [2–4]. The molecular 
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ABSTRACT 
 

The aim of this study was to establish a novel competing endogenous RNA (ceRNA) network able to predict 
prognosis in patients with triple-negative breast cancer (TNBC). Differential gene expression analysis was 
performed using the GEO2R tool. Enrichr and STRING were used to conduct protein-protein interaction and 
pathway enrichment analyses, respectively. Upstream lncRNAs and miRNAs were identified using miRNet and 
mirTarBase, respectively. Prognostic values, expression, and correlational relationships of mRNAs, lncRNAs, and 
miRNAs were examined using GEPIA, starBase, and Kaplan-Meier plotter. It total, 860 upregulated and 622 
downregulated differentially expressed mRNAs were identified in TNBC. Ten overexpressed and two 
underexpressed hub genes were screened. Next, 10 key miRNAs upstream of these key hub genes were 
predicted, of which six upregulated miRNAs were significantly associated with poor prognosis and four 
downregulated miRNAs were associated with good prognosis in TNBC. NEAT1 and MAL2 were selected as key 
lncRNAs. An mRNA-miRNA-lncRNA network in TNBC was constructed. Thus, we successfully established a novel 
mRNA-miRNA-lncRNA regulatory network, each component of which is prognostic for TNBC. 
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mechanisms involved in the occurrence and 

development of TNBC are still not clear. Thus, it is 

imperative to determine the mechanisms of TNBC to 

uncover valid treatment avenues and new prognostic 

biomarkers. 

 

Numerous studies have revealed that competitive 

endogenous RNAs (ceRNAs) are vital molecules that 

regulate a variety of pathological processes [5–7]. The 

hypothesis of ceRNA, proposed by Salmena et al. [7], 

suggests a distinct molecular regulatory mechanism for 

posttranscriptional regulation. The key noncoding 

RNAs in this hypothesis are miRNAs, which are usually 

negative regulators of gene expression. ceRNAs can 

crosstalk by competing for microRNA binding and form 

a regulatory network across the transcriptome. Recently, 

it has been reported that the lncRNA-miRNA-mRNA 

ceRNA network might be a crucial factor in 

carcinogenesis and cancer development [8–10]. 

Through microRNA response elements (MREs), 

lncRNAs act as ceRNAs that sponge miRNA, thereby 

influencing gene expression of targeted mRNAs. 

However, the clinical significance of an lncRNA-

miRNA-mRNA ceRNA network in TNBC has not been 

investigated. 

 

In this study, we examined differentially expressed 

mRNAs (DE-mRNAs) in TNBC tissues, other breast 

cancer subtype tissues, and normal tissues by mining 

two Gene Expression Omnibus (GEO) data sets 

(GSE45827 and GSE6519). Functional enrichment 

analysis was conducted for these common DE-mRNAs. 

Next, we performed a protein-protein interaction (PPI) 

analysis to identify the hub genes. Combining the 

results of the expression analysis and prognosis analysis 

for hub genes in breast cancer, we selected 10 

upregulated genes and two downregulated genes for 

further study. We then identified potential upstream 

lncRNAs and miRNAs and assessed the expression and 

prognostic value of these lncRNAs and miRNAs in 

breast cancer. The correlations between mRNAs, 

miRNAs, and lncRNAs were investigated according to 

the ceRNA hypothesis. Thus, we established a novel 

lncRNA-miRNA-mRNA ceRNA network, the 

components of which can be used to predict prognosis 

or serve as treatment targets in TNBC. 

 

RESULTS 
 

Identification of candidate DE-mRNAs in TNBC 
 

We screened the gene expression microarrays related to 

TNBC in the GEO database, and the GSE45827 and 

GSE65194 data sets were ultimately included. Next, we 

identified differentially expressed genes between TNBC 

tissues, tissues of other subtypes of breast cancer, and 

normal breast tissues using GEO2R (|log2FC| > 1 and P 
value < 0.05). DE-mRNAs in those data sets are shown 

as volcano plots in Figure 1A. In the GSE45827 data 

set, 4760 overexpressed mRNAs and 2422 under-

expressed mRNAs were identified in the TNBC tissues 

relative to normal control samples. In addition, 1225 

overexpressed and 1269 underexpressed genes were 

found in TNBC tissues relative to other breast cancer 

subtype tissues. In the GSE65194 data set, 4776 

mRNAs were overexpressed and 2611 mRNAs were 

underexpressed in TNBC tissues compared with normal 

control samples. In addition, 1222 genes were 

overexpressed and 1244 genes were underexpressed in 

TNBC tissues compared with other breast cancer 

subtype tissues. After overlapping the genes, 860 

upregulated (Figure 1B) and 622 downregulated (Figure 

1C) common genes were identified. These DE-miRNAs 

are listed in Supplementary Table 1 and were chosen for 

further study. 

 

GO functional and KEGG pathway enrichment 

analysis 

 

We performed Gene Ontology (GO) functional 

annotation and pathway enrichment analysis using the 

Enrichr database to examine the functions of the DE-

mRNAs. GO analysis was conducted as three sublevels: 

cellular component (CC), biological process (BP), and 

molecular function (MF). For pathway enrichment, 

KEGG‟s cell signaling pathway was conducted. As 

shown in Figure 2, overexpressed DE-mRNAs were 

dramatically enriched in terms of cell division and 

proliferation, such as centromere complex assembly, 

mitotic sister chromatid segregation, and DNA 

replication in the BP category; centromeric region, 

chromosome, and spindle in the CC group; and DNA 

helicase activity, DNA replication origin binding, and 

ATPase activity in the MF category. Besides cell cycle 

and DNA replication, signaling pathways related to cell 

death appeared in the top 10 enriched KEGG pathways 

for upregulated DE-mRNAs, including the p53 signaling 

pathway, mismatch repair, cellular senescence, and 

ferroptosis. For downregulated DE-mRNAs, the enriched 

GO functions included regulation of cellular response to 

growth factor stimulus, insulin-like growth factor 

receptor signaling pathway, and phosphate ion 

homeostasis in the BP category; vesicle, platelet granule 

membrane, and contractile actin filament bundle in the 

CC category; and insulin-like growth factor receptor 

binding, insulin receptor binding, oxidoreductase activity, 

and transmembrane transporter activity in the MF 

category. Subsequently, KEGG pathway analysis 

indicated that these downregulated DE-mRNAs were 

considerably enriched in several pathways associated 

with many cancers, such as prostate cancer and small-cell 

lung cancer, and proteoglycans. 
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Figure 1. Identified differentially expressed mRNAs (DE-mRNAs) among triple-negative breast cancer (TNBC) tissues, tissues 
of other types of breast cancer, and normal samples in two Gene Expression Omnibus data sets. (A) The volcano plots of DE-
mRNAs in the GSE45827 and GSE65194 data sets. The x-axis stands for log2 (fold change) of gene expression, and y-axis represents log-
transformed P value. The red dots and green dots indicate the significantly overexpressed and underexpressed genes, respectively. The black 
dots indicate genes with no significant differential expression. |log2FC| > 1 and P value < 0.05 were the cutoff criteria. (B) The intersection of 
upregulated DE-mRNAs. (C) The intersection of downregulated DE-mRNAs. a: TNBC compared with normal samples in GSE45827; b: TNBC 
compared with normal samples in GSE65194; c: TNBC compared with tissues of other subtypes of breast cancer in GSE45827; d: TNBC 
compared with tissues of other subtypes of breast cancer in GSE65194.  
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Establishment of PPI network and detection of hub 

genes 

 

To explore the protein interaction networks, we used the 

STRING database to construct the PPI networks of the 

identified DE-mRNAs, as shown in Figure 3A, 3B. 

Based on the node degree, the top 20 hub genes in the 

downregulated and upregulated DE-mRNAs were 

identified using Cytoscape software and are listed in 

Table 1. To visualize better, the interactions of the top 

20 hub genes were reconstructed and are presented in 

Figure 3C, 3D. The top 10 of these 20 hub genes were 

selected for further analyses.  

 

Analysis of expression and prognosis of hub genes in 

breast cancer 
 

To further examine the expression of the hub genes in 

TNBC, the expression of the top 10 upregulated and top 

10 downregulated hub genes was analyzed using the 

GEPIA database. All of the 10 upregulated hub genes 

(CDK1, CCNB1, CCNA2, CDC20, TOP2A, CCNB2, 

MAD2L1, BUB1, KIF11, and RRM2) were dramatically 

upregulated in breast cancer, whereas five of the 10 

downregulated hub genes (ESR1, IGF1, PDGFRB, PXN, 

and ZEB1) were significantly downregulated in breast 

cancer. The ability of the hub genes to predict prognosis 

in TNBC was evaluated using the Kaplan-Meier (KM) 

plotter database. The 10 upregulated hub genes correlated 

significantly with poor disease outcome. Of the 

downregulated hub genes, only ESR1 and IGF1 were 

correlated with favorable prognosis in TNBC. Expression 

boxplots and survival curves are shown separately in 

Figure 4. Thus, these 10 overexpressed and two under-

expressed hub genes were selected for further 

investigation. In addition, the expression of the 12 key 

genes was verified in TNBC samples from The Cancer 

Genome Atlas (TCGA) (Supplementary Table 2). 

 

 
 

Figure 2. Functional enrichment analysis for key DE-mRNAs. The top 10 enriched molecular function (MF), cellular component (CC), 
biological process (BP), and KEGG pathways of the upregulated and downregulated significant DE-mRNAs. 
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Validation and prediction of upstream key miRNAs 

 
Key miRNAs that regulate the 12 identified hub genes 

were predicted using miRTarBase. In view of the 

credibility of the predicted results, only microRNA–

target gene interactions proved by reporter assay were 

selected. As presented in Figure 5 and Supplementary 

Table 3, 11 miRNAs that could possibly modulate five 

of the key upregulated genes (CCNA2, MAD2L1, 

CDK1, RRM2, and CCNB1) and 32 miRNAs that could 

potentially modulate the two key downregulated genes 

(ESR1 and IGF1) were identified. Upstream potential 

miRNAs of five key genes (CDC20, TOP2A, MAD2L1, 

BUB1, and KIF11) were not included. We then 

evaluated the expression pattern and prognostic value of 

the predicted miRNAs in breast cancer patients using 

the starBase and KM plotter databases according to the 

inverse regulation between miRNA and mRNA. 

Consequently, for upregulated hub genes, four miRNAs 

(hsa-let-7b-5p, hsa-miR-10b-3p, hsa-let-7a-5p, and hsa-

miR-410-3p) were not only downregulated but also 

linked to favorable disease outcomes in patients with 

breast cancer. For downregulated hub genes, six 

miRNAs (hsa-miR-19a-3p, hsa-let-7e-5p, hsa-miR-

130b-3p, hsa-miR-98-5p, hsa-miR-18b-5p, and hsa-

miR-222-3p) were significantly upregulated and 

correlated with poor prognosis (P < 0.05). The 

expression boxplots and survival curves of the 10 key 

miRNAs are provided in Supplementary Figures 1, 2, 

respectively.  

 

 
 

Figure 3. The top 20 hub genes selected from the PPI networks. (A) The PPI network of the upregulated significant DE-mRNAs. (B) 
The PPI network of the downregulated significant DE-mRNAs. (C) The top 20 hub genes of the upregulated significant DE-mRNAs. (D) The 20 
hub genes of the downregulated significant DE-mRNAs. 
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Table 1. The top 20 hub genes in the PPI networks. 

Overexpressed gene  Underexpressed gene  

Gene symbol Degree Gene symbol Degree 

CDK1 113 ESR1 13 

CCNB1 108 IGF1 10 

CCNA2 105 PDGFRB 8 

CDC20 104 PXN 7 

TOP2A 103 ZEB1 6 

CCNB2 102 MMP2 6 

MAD2L1 99 IRS1 6 

BUB1 96 BCL2 5 

KIF11 94 PPID 4 

RRM2 89 ITGA3 3 

CDC45 89 RUNX1T1 3 

EXO1 86 NEGR1 3 

CHEK1 85 PDGFD 3 

MELK 84 MEIS1 3 

NDC80 84 PBX1 3 

UBE2C 83 FRS2 2 

TYMS 82 ALCAM 2 

CENPA 82 TOX3 2 

KIF23 80 WISP2 2 

MCM2 80 RTN1 2 

 

Validation and prediction of upstream key lncRNAs 
 

Studies have demonstrated that lncRNAs suppress 

miRNA expression by acting as miRNA sponges [11–

13]. As a result, we predicted the important upstream 

lncRNAs that could possibly bind to the 10 vital 

miRNAs (hsa-let-7b-5p, hsa-miR-10b-3p, hsa-let-7a-5p, 

hsa-miR-410-3p, hsa-miR-19a-3p, hsa-let-7e-5p, hsa-

miR-130b-3p, hsa-miR-98-5p, hsa-miR-18b-5p, and 

hsa-miR-222-3p) using the online miRNet database. In 

total, 374 lncRNA-miRNA pairs were identified 

(Supplementary Table 4). According to the ceRNA 

hypothesis, expression of these lncRNAs was evaluated 

using the GEPIA database. When compared with 

normal controls, nine lncRNAs (AC018766.4, 

CROCCP2, CTD-3092A11.2, LINC00342, RP11-

553L6.5, XXbac-B461K10.4, NEAT1, RP11-228B15.4, 

and RP11-311C24.1) that target to upregulated miRNAs 

showed lower expression in breast cancer, whereas five 

lncRNAs (HOTAIR, LINC00467, RECQL4, 

LINC00665, and MAL2) that target to downregulated 

miRNAs were significantly upregulated in breast cancer 

(Supplementary Figure 3). Subsequent survival analysis 

using the KM plotter database revealed that patients 

with low NEAT1 expression and high MAL2 

expression had an unfavorable prognosis. Thus, NEAT1 

and MAL2 were recognized as key lncRNAs (Figure 6). 

 

Establishment of the mRNA-miRNA-lncRNA 

regulatory prognostic network in TNBC 

 

We applied bioinformatics to develop a key lncRNA-

miRNA-mRNA ceRNA network in TNBC. As depicted 

in Figure 7, the network includes 11 miRNA-mRNA 

pairs (miR-19a-3p-ESR1, miR-18b-5p-ESR1, miR-222-

3p-ESR1, let-7e-5p-IGF1, miR-130b-3p-IGF1, miR-98-

5p-IGF1, miR-18b-5p-IGF1, let-7b-5p-CCNA2, miR-

10b-3p-CCNA2, let-7a-5p-RRM2, and miR-410-3p-

CCNB1), five miRNA-lncRNA pairs (let-7e-5p-

NEAT1, miR-98-5p-NEAT1, let-7a-5p-MAL2, miR-

410-3p-MAL2, and let-7b-5p-MAL2), and four mRNA-

lncRNA pairs (IGF1-NEAT1, RRM2-MAL2, CCNB1-

MAL2, and CCNA2-MAL2). Based on the ceRNA 

hypothesis, lncRNA works as a ceRNA to compete for 

shared miRNA and sequester miRNA away from 

mRNA. LncRNA has an inverse co-expression 
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Figure 4. Screening of key genes in TNBC. Key genes were identified from the top 10 hub genes of the significant dysregulated DE-
mRNAs by merging the prognosis and expression analyses using Kaplan Meier-plotter and GEPIA databases. Expression boxplots and survival 
curves (overall survival [OS]) of 12 key genes, including 10 upregulated hub genes (CDK1, CCNB1, CCNA2, CDC20, TOP2A, CCNB2, MAD2L1, 
BUB1, KIF11, and RRM2) and two downregulated hub genes (ESR1 and IGF1) in TNBC are presented. 
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relationship with miRNA but a positive co-expression 

relationship with mRNA. Therefore, the correlations 

between mRNA-lncRNA, miRNA-lncRNA, and 

mRNA-miRNA pairs in the constructed network were 

assessed using the starBase database, and results are 

shown in Table 2. Except for one miRNA-lncRNA pair 

(let-7e-5p-NEAT1), the other pairs were all fitted with 

the ceRNA mechanism. By considering the three levels, 

 

 
 

Figure 5. The mRNA-miRNA network established by Cytoscape software. 
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a novel mRNA-miRNA-lncRNA triple subnetwork, 

including four mRNA-miRNA-lncRNA axes (IGF1-

miR-98-5p-NEAT1, RRM2-let-7a-5p-MAL2, CCNB1-

miR-410-3p-MAL2, and CCNA2-let-7b-5p-MAL2), 

was ultimately constructed and possessed significant 

prognostic value in TNBC. 

DISCUSSION 
 

Breast cancer is associated with high mortality in 

women, and incidence is increasing worldwide. TNBC 

is the most fatal subtype of breast cancer. In addition, 

the therapeutic options for TNBC are limited.  

 

 
 

Figure 6. The prognostic values of NEAT1 and MAL2 in TNBC determined by the Kaplan-Meier plotter. (A) The prognostic value 
(overall survival [OS]) of NEAT1 in TNBC. (B) The prognostic value (relapse-free survival [RFS]) of NEAT1 in TNBC. (C) The prognostic value (OS) 
of MAL2 in TNBC. (D) The prognostic value (RFS) of MAL2 in TNBC.  
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Chemotherapy remains the primary therapy for 

advanced TNBC. Because it is believed that 

development of TNBC is regulated by sophisticated 

signaling networks, revealing the specific molecular 

mechanism of TNBC could result in development of 

effective treatments and novel prognostic biomarkers. 

 

Recently, a novel mechanistic function of lncRNAs, 

known as ceRNAs, has been reported. lncRNAs sponge 

miRNAs to regulate their expression, thereby 

contributing to various pathological processes, 

including the development of cancer [12–14]. For 

example, Zhang et al. reported that a downregulated 

lncRNA, MT1JP, affected the progression of gastric 

cancer by competitively binding to miR-92a-3p and 

regulating FBXW7 expression [15]. A study by Wang 

et al. determined that the lncRNA HOXD-AS1 can bind 

to miR-130a-3p and inhibit SOX4 degradation, thus 

activating MMP2 and EZH2 expression and promoting 

the metastasis of hepatocellular carcinoma [16]. Wu et 

al. observed that, in papillary thyroid carcinoma, the 

lncRNA SNHG15 can serve as a ceRNA and thus 

modulate YAP1-Hippo signal transduction by sponging 

miR-200a-3p [17]. Luan et al. found that there is 

crosstalk between the lncRNA XLOC_006390 and 

miR-338-3p and miR-331-3p expression, which 

aggravates cervical cancer [18]. Studies have also 

suggested that ceRNA influences the pathogenesis of 

breast cancer. Zhao et al. suggested that the lncRNA 

TUSC8 may affect epithelial-mesenchymal transition 

(EMT)-associated protein levels by functioning as a 

ceRNA of myosin regulatory light chain interacting 

protein (MYLIP) as it binds miR-190b-5p, leading to 

the suppression of breast cancer progression [19]. Lu et 

al. found that lncARAP1-AS promotes tumorigenesis 

by enhancing the proliferative and migratory abilities of 

breast cancer cells by modulating the miR-

2110/HDAC2/PLIN1 axis [20]. However, there are 

different breast cancer subtypes, including HER2-

positive breast cancer, luminal A and B breast cancer, 

and TNBC, and comprehensive studies on the ceRNA 

networks in each breast cancer subtype are limited, 

particularly regarding the identification of their specific 

molecular mechanisms.  

 

 
 

Figure 7. The mRNA-miRNA-lncRNA competing endogenous RNA (ceRNA) network related to the prognosis of TNBC. 
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Table 2. The correlation between mRNA, miRNA, and lncRNA according to the starBase database. 

miRNA mRNA R P value 

hsa-miR-19a-3p ESR1 –0.426 5.47e-49 

hsa-miR-18b-5p ESR1 –0.276 1.85e-20 

hsa-miR-222-3p ESR1 –0.306 6.71e-25 

hsa-let-7e-5p IGF1 –0.058 5.80e-2 

hsa-miR-130b-3p IGF1 –0.304 1.25e-24 

hsa-miR-98-5p IGF1 –0.182 1.58e-9 

hsa-miR-18b-5p IGF1 –0.092 2.45e-3 

hsa-let-7b-5p CCNA2 –0.239 1.62e-15 

hsa-miR-10b-3p CCNA2 –0.301 3.88e-24 

hsa-let-7a-5p RRM2 –0.306 5.49e-25 

hsa-miR-410-3p CCNB1 –0.189 3.49e-10 

miRNA lncRNA R P value 

hsa-let-7e-5p NEAT1 0.057 5.85e-02 

hsa-miR-98-5p NEAT1 –0.198 5.24e-11 

hsa-let-7a-5p MAL2 –0.066 2.96e-02 

hsa-miR-410-3p MAL2 –0.144 2.01e-06 

hsa-let-7b-5p MAL2 –0.007 8.28e-1 

mRNA lncRNA R P value 

IGF1 NEAT1 0.142 2.04e-06 

RRM2  MAL2 0.139 3.77e-06 

CCNB1  MAL2 0.223 7.46e-14 

CCNA2 MAL2 0.207 4.11e-12 

 

In this study, we identified 1482 DE-mRNAs in TNBC 

and then constructed a unique lncRNA-miRNA-mRNA 

network based on the ceRNA hypothesis. To our 

knowledge, we are the first to identify the specific 

ceRNA network involved in TNBC using a stepwise 

reverse prediction from mRNA to lncRNA, instead of 

using the lncRNA-miRNA-mRNA pattern. In addition, 

each component in this network is significantly 

associated with breast cancer prognosis, providing 

potential therapeutic targets and prognostic biomarkers.  

 

First, we screened for significantly dysregulated 

mRNAs in TNBC tissues compared with normal control 

tissue and non-TNBC breast cancer tissue in two GEO 

data sets (GSE36259 and GSE42568). A total of 860 

upregulated mRNAs and 622 downregulated mRNAs 

were selected as specific DE-mRNAs in TNBC. GO 

analysis [21] indicated that these DE-mRNAs are 

significantly enriched in some factors of cell division, 

proliferation, and response, such as centromere complex 

assembly [22], mitotic sister chromatid segregation and 

DNA replication [23], insulin-like growth factor 

receptor signaling pathway [24], and transmembrane 

transporter activity [25, 26]. Subsequently, KEGG 

pathway analysis indicated that these dysregulated DE-

mRNAs were remarkably enriched in damage repair, 

cell death, and cancer-related pathways, including the 

p53 signaling pathway [27, 28], mismatch repair [29, 

30], cellular senescence [31], ferroptosis [32, 33], 

prostate cancer, and small-cell lung cancer. Therefore, 

these DE-mRNAs identified through the intersection of 

two GEO data sets were found to be closely associated 

with the pathogenesis of TNBC. 

 

To explore the potential association among these 

identified DE-mRNAs, two PPI networks were 

established via the STRING database and exhibited a 

variety of interactions among the DE-mRNAs, 

especially in the upregulated group. Genes that have a 

greater node degree in the PPI network typically play 

vital roles. Thus, the hub genes in the two PPI networks 

we screened had node degree calculated by Cytoscape 
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software. In addition, the top 10 overexpressed and 

underexpressed hub genes were chosen for survival and 

expression analyses to identify key genes in TNBC. All 

10 upregulated hub genes (CDK1, CCNB1,  

CCNA2, CDC20, TOP2A, CCNB2, MAD2L1, BUB1, 

KIF11, and RRM2) and two downregulated hub genes 

(ESR1 and IGF1) were found to affect progression of 

TNBC (ie, they are key genes). Interestingly, based on 

previous reports, in addition to breast cancer, most of 

these hub genes are also related to other cancers. For 

example, in pancreatic ductal adenocarcinoma, 

overexpression of CDK1 indicates poor prognosis [34], 

and CCNA2 is considered a possible biomarker for 

progression (eg, growth and apoptosis) of colorectal 

cancer [35]. Evidence indicates that CCNB1 can  

predict the prognosis of ER-positive breast cancer, as 

well as the efficacy of hormonal therapy [36]. ESR1 

mutation results in acquired endocrine resistance in 

breast cancer [37]. 

 

We initially predicted the miRNAs of the hub genes as 

described previously based on the ceRNA mechanism. 

After the expression and survival analyses, we 

identified 10 key miRNAs, among which six 

upregulated miRNAs (hsa-let-7e-5p, hsa-miR-19a-3p, 

hsa-miR-130b-3p, hsa-miR-18b-5p, hsa-miR-98-5p, and 

hsa-miR-222-3p) were significantly associated with 

poor prognosis and four downregulated miRNAs (hsa-

let-7b-5p, hsa-miR-10b-3p, hsa-let-7a-5p, and hsa-miR-

410-3p) were associated with better prognosis in breast 

cancer. Aberrant expression patterns of these key 

miRNAs contribute to the progression and prognosis of 

many cancers. For instance, the upregulation of MiR-

98-5p enhances the progression of non-small-cell lung 

cancer, as well as breast cancer [38, 39]. In addition, the 

upregulation of miR-18a-5p enhances the ability of lung 

adenocarcinoma cells to proliferate via the miR-18b-

5p/VMA21 axis [40]. The miR-18b-5p/DOCK4 axis 

inhibits the EMT and migratory capacity of breast 

cancer cells [41]. Let-7b-5p suppresses the motility and 

proliferation of squamous cell carcinoma cells [42]. 

miR-10b-3p expression facilitates the pathogenesis of 

liver cancer by interacting with CMTM5 [43]. Yang et 

al. conducted bioinformatics analysis and reported that 

miR-10b-3p can act as a prognostic biomarker in 

colorectal cancer [44]. MiR-130b-5p was also found to 

contribute to the occurrence of pancreatic ductal 

adenocarcinoma [45]. 

 

In our study, we conducted further analysis to identify 

upstream lncRNAs for the key miRNAs. By combining 

survival analysis and expression validation, only two 

lncRNAs (NEAT1 and MAL2) were selected as the key 

lncRNAs. Overexpression of NEAT1 has been observed 

in various tumors and has been associated with tumori-

genesis and poor prognosis [46–48]. Li et al. implicated 

the ERα-NEAT1-FOXN3/NEAT1/SIN3A-GATA3 axis 

in the metastasis of breast cancer [49]. The oncogenic 

effects of NEAT1 have been reported to be influenced 

by the CDC5L-AGRN transcriptional regulation circuit 

in prostate cancer [50]. Some studies have shown that 

MAL2 functions as an oncogene in various malignant 

tumors [51]. Bhandari et al. demonstrated that MAL2 is 

elevated in breast cancer tissues and that the 

upregulation of MAL2 was related to the lowest OS rate 

in the TCGA cohort, suggesting that MAL2 could be an 

oncogene for breast cancer [52]. 

 

This study has some limitations. After identification of 

candidate DE-mRNAs in TNBC tissues, the screening 

of key mRNAs, miRNAs, and lncRNAs was performed 

according to their expression and prognostic values 

among the whole breast cancer group instead of the 

TNBC subgroup. Expressions of 12 key genes was 

further confirmed in TNBC samples from TCGA. The 

limited TNBC samples in both the GEO and TCGA 

data sets limited our ability to perform statistically 

significant analysis of the expression and prognosis of 

key genes in TNBC. Therefore, we did not stratify the 

tumor samples and predicted them based on all breast 

cancers. In addition, both the expression and prognostic 

values were considered during screening, which could 

have resulted in our missing some valuable molecules. 

 

In conclusion, we successfully established a novel 

mRNA-miRNA-lncRNA regulatory network in TNBC 

using comprehensive bioinformatics analysis. Each 

component of the network has significant prognostic 

predictive value for TNBC. Co-expression analysis for 

all of the RNA pairs in the network revealed that four 

mRNA-miRNA-lncRNA axes (IGF1-miR-98-5p-

NEAT1, RRM2-let-7a-5p-MAL2, CCNB1-miR-410-

3p-MAL2, and CCNA2-let-7b-5p-MAL2) act as key 

ceRNA subnetworks and can be used to predict 

prognosis or serve as treatment targets in TNBC. 

Experimental validation of the network should be 

conducted in future trials. 

 

MATERIALS AND METHODS 
 

Gene expression profile data 

 

To compare genome-wide gene expression profiles 

among TNBC tissues, non-TNBC tissues, and normal 

tissues, data sets from the GEO (https://www.ncbi.nlm. 

nih.gov/geo/) database were searched according to our 

selection criteria. Data sets containing the mRNA 

expression profiling on triple-negative primary breast 

cancer (TNPBC) tissues, non-TNPBC tissues such as 

luminal and HER2-positive breast cancer, and normal 

tissues were exclusively enrolled. Each of the three 

groups contains no less than 10 samples. Details of the 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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data sets, including the summary and overall design, 

were further evaluated. Finally, the GSE45827 

(including 41 TNBC samples, 89 non-TNBC samples, 

and 11 normal tissue samples) and GSE65194 

(including 55 TNBC samples, 98 non-TNBC samples, 

and 11 normal tissue samples) data sets were chosen for 

subsequent study. To enhance the reliability of 

screening results, the TNBC TCGA data sets were 

added as validation data sets. 

 

Differential expression screening 
 

Upregulated or downregulated DE-mRNAs in the two 

selected data sets between TNPBC tissues and the other 

two groups (non-TNPBC tissues and normal tissues) 

were assessed using the online analytic tool GEO2R 

(https://www.ncbi.nlm.nih.gov/geo/geo2r/), and the 

cutoff criteria were set as |log2FC| > 1 and P value < 

0.05 when analyzing differential expression. Next, 

Venn diagrams were constructed using VENNY 2.1.0 

(http://bioinfogp.cnb.csic.es/tools/venny/index.html). In 

all four differential expression analyses, the commonly 

dysregulated DE-mRNAs were redefined as the 

significant DE-mRNAs and were chosen for further 

study.  

 

The clinical and RNA sequencing raw data from 113 

normal samples and 1109 breast cancer tumor samples 

were obtained from TCGA database, and 149 TNBC 

tissues and 12 paired paracancer tissues were selected. 

The raw data were first standardized using the method 

of log2(x + 1). Then, the normalized processing of data 

was conducted using the normalize Between Array 

function from R package LIMMA. Subsequently, the 

LIMMA package in R (version 3.4.1) was used to 

identify DE-mRNAs between TNBC tissues and normal 

breast tissues in TCGA data sets, and the cutoff criteria 

were set as adjusted P < 0.05 and |logFC| >1. 

 

Functional enrichment analysis 
 

For the commonly identified DE-mRNAs, GO 

functional annotation and analysis of biological 

pathways based on the KEGG pathway database were 

conducted using Enrichr, a comprehensive gene set 

enrichment analysis (http://amp.pharm.mssm.edu/ 

Enrichr/). The top 10 enriched GO items and pathways 

were visualized and downloaded directly from the 

webpage. 

 

Construction of a PPI network and screening for 

hub genes 
 

To assess the interactions between DE-mRNAs, the PPI 

interaction networks were explored using the Search 

Tool for the Retrieval of Interacting Genes (STRING) 

database (https://string-db.org/) [53]. The interactors 

with a combined confidence score ≥ 0.4 were used to 

generate the PPI network, and the comprehensive 

interaction pair information of these differentially 

expressed genes was downloaded from STRING. Based 

on the connection degree, the hub genes in the PPI 

networks were subsequently selected using the 

Cytoscape plugin, CytoHubba [54]. Finally, the top 20 

genes of the common DE-mRNAs were found in 

Cytoscape (Version 3.6.1), identified as hub genes, and 

ranked by node degree. 

 

Gene expression analysis 
 

The Gene Expression Profiling Interactive Analysis 

(GEPIA; http://gepia.cancer-pku.cn/detail.php) database 

contains RNA sequencing expression data from 8587 

normal samples and 9736 tumors obtained from 

Genotype-Tissue Expression data set projects and 

TCGA [55]. We used the GEPIA database, which 

contains 1085 breast cancer samples and 291 normal 

controls, to identity DE-mRNAs and lncRNAs in 

TNBC. P < 0.05 was chosen as the cutoff value for 

statistical significance. 

 

Survival analysis 
 

Prognostic values of mRNAs, lncRNAs, and miRNAs 

in TNBC were analyzed using the Kaplan-Meier (KM) 

plotter database (http://kmplot.com) [56], a commonly 

used website tool to simultaneously integrate gene 

expression and clinical data retrieved from the GEO, 

EGA, and TCGA. Subsequently, the potential of these 

biomarkers to determine the prognosis of cancer was 

examined. First, the mRNAs, lncRNAs, and miRNAs 

were entered into the database. Next, KM graphs were 

generated using the KM plotter database. The log-rank 

P value and hazard ratio (HR) with 95% confidence 

intervals were calculated. Log-rank P < 0.05 was 

considered statistically significant. 

 

Prediction of miRNA 
 

To predict the upstream miRNAs of key DE-mRNAs, 

we obtained miRNA-mRNA interactions from 

miRTarBase (http://mirtarbase.mbc.nctu.edu.tw) in 

which the interactions between miRNA targets were 

confirmed using reporter assay, quantitative 

polymerase chain reaction, next-generation sequenc-

ing, western blot, and microarray experiments [57]. 

To identify more reliable candidate results, only the 

miRNA-target interactions verified by reporter assay 

were collected for further study. Then, the expression 

of the target miRNA in breast cancer and normal 

tissues was exported using starBase v3.0, an online 

platform to investigate the differential expression 

https://www.ncbi.nlm.nih.gov/geo/geo2r/
http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
https://string-db.org/
http://gepia.cancer-pku.cn/detail.php
http://kmplot.com/
http://mirtarbase.mbc.nctu.edu.tw/
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analysis of miRNAs data from the TCGA [58]. 

Statistical significance was set at P < 0.05. 

 

Prediction of lncRNA 
 

The miRNet database, which incorporates data from 11 

integrated microRNA databases, was used to determine 

the upstream lncRNAs of miRNA [59]. Selection 

criteria were „„target type-lncRNAs” and “Organism-

H.sapies.” Expression of the candidate target lncRNAs 

was further assessed using the GEPIA database. 

 

Correlation analysis 
 

After miRNA-mRNA, mRNA-lncRNA, and miRNA-

lncRNA pairs were obtained, the starBase database 

(http://starbase.sysu.edu.cn/), which contains ncRNA 

data sets, was used to investigate the correlations [58] 

between the pairs in invasive breast carcinoma. P < 0.05 

was set as the cutoff for statistical significance. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The expression of 10 key miRNAs in breast cancer. (A) hsa-let-7b-5p. (B) hsa-miR-10b-3p. (C) hsa-let-7a-
5p. (D) hsa-miR-410-3p. (E) hsa-miR-222-3p. (F) hsa-miR-19a-3p. (G) hsa-let-7e-3p. (H) hsa-miR-130b-3p. (I) hsa-miR-98-5p. (J) hsa-miR-18-5p. 
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Supplementary Figure 2. The prognostic value (overall survival [OS]) of 10 key miRNAs in breast cancer. (A) hsa-let-7b-5p.  
(B) hsa-miR-10b-3p. (C) hsa-let-7a-5p. (D) hsa-miR-410-3p. (E) hsa-miR-222-3p. (F) hsa-miR-19a-3p. (G) hsa-let-7e-3p. (H) hsa-miR-130b-3p.  
(I) hsa-miR-98-5p. (J) hsa-miR-18-5p. 
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Supplementary Figure 3. The expression of key lncRNAs in breast cancer. (A) AC018766.4. (B) CROCCP2. (C) CTD-309A11.2.  
(D) LINC00342. (E) RP11-553L6.5. (F) XXbac-B461K10.4. (G) NEAT1. (H) RP11-228B15.4. (I) RP11-311C24.1. (J) HOTAIR. (K) LINC00467.  
(L) RECQL4. (M) LINC00665. (N) MAL2. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 4. 

 

 

Supplementary Table 1. Common differentially expressed mRNAs in the GSE45827 and GSE65194 datasets. 

 

Supplementary Table 2. The expression of 12 hub genes in TNBC from TCGA. 

Gene symbol logFC P  Adjusted P  

CDK1 3.72 1.51e-21 1.22e-18 

CCNB1 2.83 4.95e-19 2.30e-16 

CCNA2 3.65 6.00e-20 3.30e-17 

CDC20 4.75 1.31e-26 6.04e-23 

TOP2A 4.18 1.90e-19 9.41e-17 

CCNB2 3.92 2.09e-23 2.81e-20 

MAD2L1 2.51 3.93e-11 3.44e-09 

BUB1 4.39 8.99e-23 1.01e-19 

KIF11 3.09 6.10e-17 1.84e-14 

RRM2 4.41 1.66e-26 6.71e-23 

ESR1 –4.79 5.11e-14 8.00e-12 

IGF1R –1.34 0.00754 0.046499 
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Supplementary Table 3. The mRNA-miRNA pairs predicted by miRTarBase. 

mRNA miRNA 

CCNA2 hsa-let-7b-5p 

CCNA2 hsa-miR-10b-3p 

CCNA2 hsa-miR-130b-3p 

CCNA2 hsa-miR-27b-3p 

CCNA2 hsa-miR-22-3p 

MAD2L1 hsa-miR-192-5p 

MAD2L1 hsa-miR-28-5p 

CDK1 hsa-miR-31-5p 

CDK1 hsa-miR-24-3p 

RRM2 hsa-let-7a-5p 

CCNB1 hsa-miR-410-3p 

ESR1 hsa-miR-302c-3p 

ESR1 hsa-miR-206 

ESR1 hsa-miR-193b-3p 

ESR1 hsa-miR-18b-5p 

ESR1 hsa-miR-22-3p 

ESR1 hsa-miR-19a-3p 

ESR1 hsa-miR-19b-3p 

ESR1 hsa-miR-20b-5p 

ESR1 hsa-miR-221-3p 

ESR1 hsa-miR-222-3p 

ESR1 hsa-miR-130a-3p 

ESR1 hsa-miR-26a-5p 

ESR1 hsa-miR-145-5p 

ESR1 hsa-miR-26b-3p 

ESR1 hsa-miR-192-5p 

IGF1 hsa-miR-1-3p 

IGF1 hsa-miR-27a-3p 

IGF1 hsa-miR-483-3p 

IGF1 hsa-let-7e-5p 

IGF1 hsa-miR-190b 

IGF1 hsa-let-7i-5p 

IGF1 hsa-miR-199a-3p 

IGF1 hsa-miR-190a-5p 

IGF1 hsa-miR-29a-3p 

IGF1 hsa-miR-133a-3p 

IGF1 hsa-miR-18b-5p 

IGF1 hsa-miR-28-5p 

IGF1 hsa-miR-603 
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IGF1 hsa-miR-15b-3p 

IGF1 hsa-miR-130b-3p 

IGF1 hsa-miR-98-5p 

IGF1 hsa-miR-26b-5p 

IGF1 hsa-miR-129-5p 

IGF1 hsa-miR-128-3p 

IGF1 hsa-miR-26a-5p 

 

Supplementary Table 4. The lncRNA-miRNA pairs predicted by miRNet database. 

 

 


