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INTRODUCTION 
 

Despite vaccine and antiviral therapies, hepatitis B virus 

(HBV) infection remains a global health concern. Over 

240 million people worldwide are chronically infected 

with HBV, which is responsible for 620,000 deaths per 

year [1, 2]. The disease is slowly progressive in 

approximately 30% of cases as cirrhosis and 54% of 

cases as hepatocellular carcinoma [3]. According to 

current international practice guidelines, the disease 

phase of chronic hepatitis B (CHB) can be defined by 

three clinical laboratory parameters that determine the 

indication for antiviral treatment: alanine amino-

transferase (ALT), HBV e antigen (HBeAg), and HBV 

DNA levels [2]. The factors that determine liver disease 

severity and their relative importance are not fully 

defined. Assessment of HBV DNA and ALT might be 

underrepresented in patients during distinct phases, such 

as the immune tolerate phase [4–8]. Furthermore, the 

European Association for the Study of the Liver (EASL) 

2017 Clinical Practice Guidelines on the management of 

hepatitis B virus infection recently published that the 

―immune tolerant phase‖ is no longer mentioned in the 

natural history or new nomenclature for the chronic states 

[9]. 

 

HBV replicates non-cytopathically in hepatocytes and 

the virus-related diseases are due to chronic, immune-
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ABSTRACT 
 

We generated an Immuno-Clinic score (ICS) model to evaluate T cell immunity based on the clustering of antiviral 
cytokines and inhibitory molecules in 229 naïve chronic hepatitis B (CHB) patients. 126 patients receiving antiviral 
therapy were used to validate the model for predicting antiviral therapy effectiveness. Through receiver-operator 
characteristic curve analysis, the area under the curve, sensitivity, and specificity of the ICS model were 0.801 
(95%CI 0.703-0.900), 0.727, and 0.722, respectively. The cut-off value was 0.442. Re-evaluation of T cell immunity 
in different phases of CHB showed that patients in the immune tolerant phase had the lowest percentage of ICS-
high (15%), while patients in the inactive carrier phase had the highest percentage of ICS-high (92%). Patients in 
the immune active and gray zone phases had 17% and 56% ICS-high, respectively. Elevation of ICS as early as four 
weeks after treatment could predict the effectiveness of hepatitis B virus (HBV) DNA loss and normalization of 
alanine aminotransferase, while eight weeks after treatment could predict HBV surface antigen decline. Thus, this 
ICS model helps clinicians choose an optimal time for initiating antiviral therapy and predicting its efficacy. 
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mediated inflammatory events [10]. While the innate 

branch of immunity is designed for the early stage of 

infection, T cell immune pathogenesis is the main 

mechanism for inducing liver injury over a long 

infection period [11–16]. It is well documented both in 

vitro and in vivo that antiviral T cell function is more 

efficient in patients who can control infection either 

partially, such as inactive HBV surface antigen 

(HBsAg) carriers with low levels of virus replication, 

or completely, such as patients who achieve HBsAg 

loss either spontaneously or after antiviral therapy 

[17]. In contrast, a much weaker and barely detectable 

T cell response is observed during chronic HBV 

infection. Chronic inflammation alters the access and 

function of HBV-specific T cells in the liver 

parenchyma, and also the ability of cytokines to 

activate antiviral mechanisms [18–22]. Persistent 

exposure of T cells to HBV antigens is important for 

maintaining depressed T cell functionality. Loss of 

cytotoxicity and interleukin-2 (IL-2) production are 

generally the first to go, followed by tumor necrosis 

factor-α (TNF-α) and interferon-γ (IFN-γ) production, 

and ultimately T cell deletion [12]. Besides decreased 

T cell quantity, negative inhibitory molecules are 

highly expressed on the functionally exhausted HBV-

specific T cells and represent another main cause of 

dysfunction. These inhibitory molecules include 

programmed death-1 (PD-1), cytotoxic T-lymphocyte 

Antigen 4 (CTLA4), lymphocyte activation gene-3 

(LAG-3), T cell immunoglobulin domain, and mucin-3 

(Tim-3), leukocyte-associated immunoglobulin-like 

receptor-1 (LAIR-1), and natural killer cell receptor 

2B4 (2B4) [23–25]. 

 

Although many studies have shown both functional T 

cells and their inhibitory molecules decide cellular 

immunity and thus influence clinical and virological 

features, there is a lack of quantifiable means to identify 

T cell immunity in clinical practice. We previously 

developed a practical model to evaluate NK cell 

immunity in CHB patients [26]. Similarly, in this work 

we construct a practical Immuno-Clinic score (ICS) 

model for evaluating T cell status and predicting antiviral 

therapy efficacy in patients with CHB. 

 

RESULTS 
 

Antiviral cytokine and exhausted T cell profiles 

 

To display an overall picture of T cell immunity in 

naïve CHB, we investigated the detailed immune 

phenotypes of antiviral cytokines and inhibitory 

molecules in different disease phases. The disease 

phases of the training cohort were divided into immune 

tolerant (IT, n=17), immune active (IA, n=120), inactive 

carriers (IC, n=20), and gray zone (GZ, n=72) phases 

according to the American Association for the Study of 

the Liver guidelines, Supplementary Table 1 [2]. The 

frequencies of antiviral cytokines (IFN-γ, TNF-α, IL-2) 

and inhibitory molecules (PD-1, LAG-3, Tim-3, 

CTLA4, and LAIR-1) of T cells are shown in Figure 1. 

A significant difference was observed in the frequency 

of IFN-γ produced by CD4+ T cells, with more 

frequency in the IA patients than in the IT patients (P = 

0.007). No significant difference in the levels of T cells 

producing IFN-γ was found between the IA, GZ, and IC 

groups. Also, TNF-α+ CD4+ and CD8+ T cells were 

not different in CHB patients for all disease phases. 

TNF-α+ CD8+ T cells of patients in all disease phases 

were lower than the healthy controls (P = 0.001,0.004, 

0.04, and 0.01 in cohorts of IT, IA, IC, and GZ, 

respectively, Figure 1A). IL-2+ CD4+ and CD8+ T 

cells were not statistically different between the IT, IA, 

IC and GZ patients. 

 

To analyze whether CHB had distinct frequencies of 

exhausted T cells at different disease phases, we 

measured the inhibitory receptor PD-1, LAG-3, Tim-3, 

CTLA4, and LAIR-1 expression on CD4+ and CD8+ T 

cells. Figure 1B shows lower expressions of CTLA4 

and LAG-3 in patient groups of IT and IC, and higher 

expressions of 2B4 in IA, IC and GZ patients than that 

of the healthy controls. Comparable levels of PD-1 and 

Tim-3 by T cell subsets were found among the CHB 

cohort regardless of disease phase and healthy controls.  

 

Taken together, these data suggest that antiviral 

cytokines combined with co-inhibitory molecules 

affects the immuno-dominance in HBV infection across 

CHB disease phases. Therefore, we explored an 

evaluation model to distinguish comprehensive T cell 

immunity with both antiviral cytokines and co-

inhibitory molecules in CHB. 

 

Clustering of CHB T cell immunity into immuno-

high or immuno-low 

 

To compare the T cell immunity status of individual 

CHB patients, we used K-means cluster analysis. 

Before clustering, the correlation was tested among 16 

immune markers for CD4+ and CD8+ T cells, including 

five pairs of co-inhibitory molecules and three pairs of 

antiviral cytokines. The data shows that 13 immune 

markers were independent of each other (r<0.8) and 

were then used to construct a T cell evaluation model 

(Figure 2A). Clustering was used to classify 229 

patients into two groups of immuno-high or immuno-

low. We found significantly greater levels of antiviral 

cytokines by CD4+ and CD8+ T cells—including IFN-

γ, TNF-α, and IL-2—in the immuno-high group than in 

the immuno-low group (Supplementary Table 2). In 

contrast, we observed that the expression of exhausted 
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T cell molecules—including PD-1 and 2B4—was 

higher in the immune-low group. These results suggest 

that the clustering model could help differentiate 

between high and low T cell immunity in CHB. The 

number of patients in the immuno-high group (47, 21%) 

was less than immuno-low group (182, 79%), indicating 

that most of the CHB patients’ comprehensive T cell 

immunity was low (Figure 2B). 

 

 
 

Figure 1. Expression of three pairs of antiviral cytokines and five pairs of inhibitory molecules by CD4+ and CD8+ T cells from 
naïve CHB patients. (A) Expression of antiviral cytokines IFN-γ, TNF-α, and IL-2 by CD4+ and CD8+ T cells derived from the indicated patient 

groups. The levels were compared among patients in the IT, IA, GZ, IC phases and healthy controls. (B) Expression of inhibitory molecules PD-
1, Tim-3, LAG-3, CTLA4, and 2B4 were measured on CD4+ and CD8+ T cells derived from the indicated patient groups. The levels were 
compared among patients in the IT, IA, GZ, IC phases and healthy controls. Differences between multiple groups were evaluated by the 
Wilcoxon rank sum test. Data is presented as the median (indicated by a red line). *P < 0.05. 
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Figure 2. K-means cluster of CHB patients with three pairs of antiviral cytokines (IFN-γ, TNF-α, and IL-2) and five pairs of 
inhibitory molecules (PD-1, Tim-3, LAG-3, CTLA4, and 2B4) produced by CD4+ and CD8+ T cells. (A) Correlations among the three 

pairs of antiviral cytokines and five pairs of inhibitory molecules produced by CD4+ and CD8+ T cells were measured by the Spearman 
correlation. P<0.05 is colored, and the pseudocolors indicate correlation levels from negative (-1) to positive (1), ranging from a weak (white) 
to strong (red or blue) association strength. (B) Representative image of CHB patient clustering with three pairs of antiviral cytokines and five 
pairs of inhibitory molecules simultaneously produced by CD4+ and CD8+ T cells. The green balls represent patients of immuno-high 
(expressing high levels of antiviral cytokines and low levels of inhibitory molecules), and the red balls represent patients of immuno-low 
(expressing low levels of antiviral cytokines and high levels of inhibitory molecules), respectively. All of the 229 patients were divided into 
these two groups. 
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ICS model 

 

Using clustering plots, we classified patients into 

immuno-high and immuno-low groups and 

constructed the ICS model. First, we assessed the 

clinical characteristics that correlated with immune-

markers: Age, body mass index (BMI), HBeAg, 

Fibroscan value, Log HBV DNA, quantitative 

hepatitis B surface antigen (qHBsAg), and HBV 

genotype (Figure 3A). Second, we incorporated the 

clinical variables into the ICS model. Discrimination 

was evaluated by analyzing the area under the 

receiver-operator characteristic (ROC) curve (Figure 

3B). We selected the optimal cut-off for the scores 

based on the clinical variables using the Youden 

Index. The area under the curve (AUC) of 0.801 (95% 

CI 0.703-0.900) was generated to discriminate 

individuals with high T cell immunity from low T cell 

immunity, with a sensitivity of 72.7% and a 

specificity of 72.2%. Third, a validated formula was 

derived for use in clinical practice: ICS= -1.577 + 

0.181 Age + 0.088 BMI - 0.373 Fibroscan + 1.363 

Sex - 0.250 Log HBV DNA - 0.188 qHBsAg + (1.026 

Genotype C + 1.084 Genotype NA - 0.408 Genotype O). 

 

 
 

Figure 3. Development of an ICS model for the evaluation of comprehensive T cell immunity. (A) Correlations of antiviral 
cytokines (IFN-γ, TNF-α, and IL-2) and inhibitory molecules (PD-1, Tim-3, LAG-3, CTLA4, and 2B4) produced by CD4+ and CD8+ T cells with 18 
clinical-virological characteristics were measured. Seven clinical-virological variables (Age, Fibroscan value, BMI, HBV genotype, Log HBV DNA, 
HBeAg, and qHBsAg) showed significant association with different immune variables. The Spearman correlation or Wilcoxon rank sum test 
was used to test the correlation. P < 0.05 is shown in color, and the red hue depth represents the degree of statistical difference. NS=not 
significant. (B) ROC curve analysis of different ICS models in all CHB patients. Four ROC curves are shown by different clinical-virological 
variables based on classifications from all CHB patients, and the ROC curve for the selected ICS model is displayed in green (+ Sex). AUC, 
sensitivity, and specificity of this ROC curve were 0.801 (95% CI 0.703-0.900), 0.727, and 0.722, respectively, and the cut-off value was 0.442. 
(C) Re-evaluation of T cell comprehensive immunity with the ICS model in patients at different CHB phases. Numbers in the blue and red 
proportion indicate the percentage of ICS-low and ICS-high patients, respectively. 
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The accuracy of the ICS model was 77.7% by cross-

validation (leaving out one validation). The cut-off 

value for discriminating T cell immuno-high from 

immuno-low was 0.442. Table 1 shows the scores for 

each item in the formula. Re-evaluation of T cell 

immunity was performed by the ICS model for patients 

in different phases of CHB (Figure 3C). In IT patients, 

15% were ICS-high and 85% were ICS-low, similar to 

the percentage of patients in the IA phase where 17% of 

patients were ICS-high and 83% were ICS-low. In GZ 

patients, the percentage of ICS-high was 56%, while in 

IC patients, the percentage of ICS-high was 92%—the 

highest among the four CHB phases.  

 

Application of the ICS model to predict antiviral 

therapy efficacy 

 

We applied the model to predict antiviral therapy efficacy 

by longitudinally analyzing the ICS 48 weeks after 

therapy in 126 CHB patients, including 77 treated with 

nucleoside analogs [NAs, 70 with Entecavir (ETV), 6 

with Telbivudine (LDT), and 1 with Tenofovir (TDF) 

and 49 with PEG-interferon (PEG-IFN)] (Supplementary 

Table 3). Figure 4A, 4B shows a progressive increase in 

the proportion of ICS-high patients during treatment. 

 

Analyses of serologic response revealed that 50 out of 

126 patients achieved HBV DNA <20 IU/ml at week 

48. Longitudinal data showed a significant increase in 

ICS as early as week 4, and was found in patients 

achieving HBV DNA <20 IU/ml at week 48, compared 

with those who did not (P<0.001, Figure 4C). By 48 

weeks, 82 out of 126 patients achieved normalization of 

ALT levels. A significant increase in ICS as early as 

week 4 was found in patients achieving normalization 

of ALT levels, compared with those who did not 

(P<0.001, Figure 4C). By weeks 24 and 48, 64 and 68 

out of 126 patients achieved a >0.5 log HBsAg IU/ml 

reduction, respectively. A significant increase in ICS at 

week 8 was found in patients with a >0.5 log HBsAg 

IU/ml reduction by week 24 or week 48 compared with 

those who did not (P=0.001, P=0.015, respectively, 

Figure 4C). By week 48, 25 out of 70 patients had 

HBeAg loss after treatment. However, longitudinal data 

showed that no significant change of ICS at week 4 was 

found to correlate with HBeAg loss (Figure 4C). 

 
The main purpose of this study was to construct a 

practical ICS model to evaluate patients’ comprehensive 

T cell immunity and use it to predict antiviral efficacy, 

however, given that both of the HBV DNA and HBsAg 

levels were included into the ICS model, we compared 

the prediction efficacy of ICS with HBV DNA and 

HBsAg levels. The results showed that although the 

ROCs predicting for HBV DNA and HBsAg decline 

constructed by HBV DNA and HBsAg themselves had 

more advantages than ICS, the AUC for ALT 

normalization at week 48 constructed by Δ0-8w ICS 

(0.714) was higher than that constructed by Δ0-8w 

HBV DNA (0.710) and HBsAg levels (0.648). The 

ROC curve constructed by the Δ0-4w ICS nearly 

predicted the HBeAg sero-conversion at week 48 

(p=0.068, Supplementary Table 4). 

 

These results indicate that a robust increase of ICS as 

early as week 4 in CHB patients may predict a better 

outcome of antiviral therapy. 

 

DISCUSSION 
 

Our data illustrated the different patterns of T cell 

immunity in 229 CHB patients. By way of clustering, 

we divided patients into groups of high immunity 

(immuno-high group) or low immunity (immuno-low 

group). An ICS model was constructed from the clinical 

variables. This ICS model can be used to evaluate 

comprehensive T cell immunity and predict antiviral 

efficacy, providing liver clinicians an opportunity to 

identify candidates who would benefit from close 

supervision or starting antiviral therapy.  

 

We showed that there was consistency between the ICS 

model evaluation results and CHB disease phases. The 

patients in the IT phase were thought to be immune 

tolerant. In the model results, the proportion of ICS-low 

patients was the highest in the IT phase (85%), 

indicating that T cell immunity for most IT patients was 

low. Most of the patients in IC phase (92%) were 

evaluated as ICS-high, consistent with the traditional 

concept of IC phase patients. The percentage of ICS-

high patients in the IA and GZ phases was in the middle 

of the four disease phases (17% and 56%, respectively). 

Re-evaluation results indicated that there were still 15% 

ICS-high patients in the IT phase, suggesting that 

although most of the IT patients were ICS-low, there 

were still ICS-high patients who possessed competent T 

cell immunity. We found that almost all of the IC phase 

patients were ICS-high according to the ICS model, 

which might contribute to the low virus load and normal 

transaminase seen in IC phase patients. 

 

T cells, including global and HBV-specific cells, play 

an important role in HBV clearance and are related to 

liver inflammation from HBV infection [13, 27, 28]. 

This suggests that evaluating the comprehensive 

immunity of T cell might benefit disease supervision 

and antiviral therapy strategies in CHB. Questions 

regarding treatment initiation and threshold have 

become more important and controversial [4, 29]. It is 

widely assumed that waiting to initiate antiviral therapy 

until the occurrence of clinically active liver disease is 
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Table 1. Scores for the selected variables of the ICS model. 

Variable Parameter Score 

Age (y) < 30 1 

 
≥ 30 and < 40 2 

 
≥ 40 and < 50 3 

 
≥ 50 4 

BMI (kg/m
2
) < 18.5 1 

 
≥ 18.5 and < 25 2 

 
≥ 25 3 

Sex Female 1 

 
Male  2 

Fibroscan (Kpa) < 6 1 

 
≥ 6 and ≤ 9 2 

 
> 9 3 

Genotype B {0,0,0} 

 
C {1,0,0} 

 
NA {0,1,0} 

 
O {0,0,1} 

Log HBV DNA (IU/ml) < 4 1 

 
≥ 4 and < 7 2 

 
≥ 7 3 

qHBsAg (IU/ml) 
  

 
< 1500 1 

 
≥ 1500 and < 5000 2 

 
≥ 5000  3 

Immuno-Clinic score = - 1.577 + 0.181 Age + 0.088 BMI - 0.373 Fibroscan + 1.363 Sex - 0.250 Log HBV DNA - 0.188 qHBsAg + 
(1.026 Genotype C + 1.084 Genotype NA - 0.408 Genotype O). 
BMI, body mass index; qHBsAg, quantitative HBV surface antigen; HBV genotype: O-Other included C + D, B + D, B + C, D; NA-
not detected. 
 

 

an adequate standard of care. However, symptoms are 

often not apparent until the patient has terminal liver 

damage. One of the important reasons for not including 

other HBV-infected individuals beyond the current 

guidelines is the lack of immune activity or the presence 

of immunological tolerance. We arbitrarily assumed 

that ICS-high patients should be given an earlier 

treatment intervention before irreversible liver damage 

occurred.  

 

Similar to previous studies that showed HBV DNA and 

HBsAg as the main factors causing T cell exhaustion 

[18, 22, 30–33], in the ICS model, HBV DNA and 

HBsAg also negatively contributed to the model. The 

ROC results among ICS, HBV DNA and HBsAg levels 

showed that although HBV DNA and HBsAg had more 

advantages in predicting their own decline than ICS,  

the AUC of ICS was higher in predicting ALT 

normalization, HBeAg sero-conversion, HBV DNA and 

HBsAg decline than that of HBV DNA or HBsAg 

alone. Studies have shown that obesity is correlated 

with T cell immunity. Obese adipose tissue can recruit 

adaptive immune response-linked CD8+ T cells in mice 

fed a high fat diet [34]. Inflammatory cells can also 

accumulate in obesity and result in inflammation. CD4+ 

and CD8+ T cell infiltration and inflammatory 

cytokines are also increased in non-alcoholic fatty liver 

disease (NAFLD) patients [35]. The BMI in the ICS 
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model also positively contributed to the score. Patients 

who had NAFLD were excluded from our study. In 

research by Kennedy et al., T cells expressed more PD-

1 and secreted less IFN-γ in patients older than 30 [8]. 

Our study was partly inconsistent with this finding. Age 

contributed positively to the model, possibly because of 

younger patients having higher virus loads and levels of 

HBsAg, both of which depress T cell immunity and 

negatively contributed to the model. 

 

Sex affects the immune status, especially since the 

majority of CHB patients are male, and the main 

endpoint of CHB is also significantly related to sex. 

There may be two reasons for sex showing no obvious 

association with immune variables. One was our limited 

case number (n=229). Chen et al. found that males were 

associated with elevated baseline HBV DNA levels in a 

large study (n= 3653) [36]. The other reason is that the 

immune indicators were analyzed by sex separately, 

while the model investigated the effect of sex on the 

global immune status, which could be more informative 

to show that sex has an impact on immunity. Despite 

that sex did not show a significant correlation with 

immune markers, but it still contributed to the global T 

cell immune cluster, increased the AUC, and made the 

model more realistic. These results indicate that the ICS 

model could reflect the advantages of analysis in global 

T cell immunity. 

 

 
 

Figure 4. Application of the ICS model in predicting antiviral therapy efficacy. (A) Evaluation of Immuno-Clinic scores at different 

time points during antiviral therapy within NAs, PEG-IFN, or total CHB patients. Data are presented as mean ± SEM. (B) The percentage of 
ICS-high or ICS-low patients at different time points during antiviral therapy are shown. Numbers in the blue and red proportion indicated 
the percentage of ICS-low and ICS-high patients, respectively. (C) Comparison of the ICS values between patients with different antiviral 
efficacy. In the upper panel, ΔICS at weeks 4 or 8 relative to week 0 were calculated. Data are presented as mean ± SEM. ***P < 0.001; *P < 
0.05; NS=not significant. In the lower panel, pairs of the original Immuno-Clinic scores for each individual at weeks 4 or 8 and week 0 are 
shown. 
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HBeAg is regarded as a marker for HBV replication and 

may affect host immunity. HBeAg induces the expansion 

of monocytic myeloid-derived suppressor cells to 

dampen T cell function in CHB patients [37] or induce 

NKG2A natural killer cell dysfunction via regulatory T 

cell-derived IL-10 in chronic HBV infection [38]. 

Therefore, the differences of cytokines and exhaustion 

markers between groups might be explained by the 

differences in HBeAg levels, as the results showed that 

HBeAg was correlated with T cell immune indicators. 

When constructing the ICS model, HBeAg correlated 

with HBsAg and HBV DNA levels, but did not 

contribute to the ICS model as much as the latter two. 

Given that HBeAg is a qualitative variable, it was not 

adopted into the model. However, HBeAg still affected 

the ICS and changes in the score could also be explained 

by a decrease in HBeAg levels during treatment. 

 

With the licensing of PEG-IFN and nucleotide 

analogues for the treatment of CHB [2, 39], the choice 

of antiviral therapy has simultaneously become more 

important and complex. The pros and cons of these 

drugs as well as patients-specific characteristics should 

be taken into consideration. Characteristics of ICS-high 

patients evaluated by the ICS model had low expression 

of exhausting markers but high secretion of antivirus 

cytokines, suggesting that PEG-IFN antiviral therapy 

might be more effective in these patients because their 

T cell function is preserved, allowing easier induction 

of antiviral cytokines by interferon.  Nucleoside 

antiviral therapy might be a better choice than interferon 

for ICS-low patients with a high expression of 

exhausting markers and low production of antivirus 

cytokines, because of its weaker antiviral cytokine 

production potential. 

 

There are some limitations in out study: (1) HBV-specific 

T cells play a very important role in HBV infection, 

while the immune response against HBV was not 

analyzed in this study. We only detected the cytokines 

and inhibitory molecules of bulk CD4/8 T cells and built 

an ICS model as a preliminary try based on what we 

found so far.  In future studies, more focus on HBV-

specific T cells is needed. (2) Bystander activation of 

EBV/CMV/FLU affects host immunity and need to be 

tested in every patient in ideal. It is really a pity that we 

did not examine these viruses in the study, although none 

of the patients showed symptoms of EBV/CMV/FLU 

infection at least at the time of blood samples drawing. 

 

The strengths of this study include the following: (1) Our 

immune cluster evaluated T cell immunity by combining 

exhausting markers and antiviral cytokines, which could 

significantly improve its evaluation ability and integrity. 

(2) The ICS model was developed from immune clusters 

of large samples combined with readily available 

clinical-virological parameters. Our model also avoids 

the use of expensive and complicated immune tests. (3) 

ROC analysis indicated that the ICS model evaluation 

sensitivity was 72.7%, suggesting that most patients with 

high T cell immunity would be identified by the model. 

This proportion of patients may benefit from antiviral 

therapy or being placed under close observation. (4) 

Longitudinal analysis of antiviral therapy with the ICS 

model showed that the elevation of Immuno-Clinic 

scores as early as week 4 could predict the effectiveness 

of HBV DNA loss, ALT normalization, and HBsAg 

decline. 

 

In conclusion, we provide a practical ICS model to 

evaluate T cell immunity in CHB patients. This model 

can be easily used in clinical practice and serve as a 

tool to help physicians choose an optimal time for 

initiating antiviral therapy treatment and predict 

efficacy. Our immunological data provides a new 

argument to suggest that patients who preserve a high 

immune response to viral antigens may be suitable 

candidates for treatment. 

 

MATERIALS AND METHODS 
 

Subjects 

 

Adult patients were recruited from a hepatitis clinic at 

the Third Affiliated Hospital of Sun Yat-sen 

University. Written informed consent was obtained 

from all patients. The study was approved by the Sun 

Yat-sen University Institute Review Board. Patients 

were excluded if they received antiviral treatment 

(interferon or nucleoside analogs [NAs]) within the 

previous 6 month, had human immunodeficiency virus 

(HIV), hepatitis C virus, hepatitis D virus co-infection, 

end-stage liver insufficiency, autoimmune disorders, 

fatty liver disease, immunosuppressive treatment, 

cirrhosis, or malignancies. 

 

Two groups of patients were used in the study. The study 

group (training cohort) included 229 patients with 

different disease phases for the purpose of developing the 

above-mentioned T cell profile model. The external 

group (application cohort) included 126 patients 

receiving antiviral therapy to confirm this model. The 

clinical characteristics of these subjects are listed in Table 

2 and Supplementary Table 3. In the external group, 

sequential HBV DNA, HBsAg, HBeAg, and ALT were 

tested at 4, 8, 12, 24, and 48 weeks after the start of 

treatment. 

 

Clinical and serologic parameters 
 

HBV e antibody (HBeAb) was tested using commercial 

kits (Abbott Laboratories, North Chicago, IL). HBV 
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Table 2. Characteristics of patients and healthy controls included in the study. 

Characteristics CHB (n = 229) HC (n=16) 

Age, years, median (quartile) 29 (25, 34) 27 (25, 44) 

Sex n (%)   

    Male 161 (70.3) 11 

    Female 68 (29.7) 5 

BMI, median (quartile) 21.5 (19.4, 23.4) 20.8 (19.1, 24.0) 

ALT, U/L, median (quartile) 31.0 (23.0, 54.3) 16.0 (13.2, 19.0) 

ALB, g/L, median (quartile) 46.1(44.2, 47.9) 45.7 (44.2, 48.0) 

TBIL, μmol/L, median (quartile) 13.4 (10.4, 17.0) 9.0 (8.4, 11.8) 

Fibroscan, Kpa, median (quartile) 5.2 (4.4, 6.3) 4.5 (4.0, 5.0) 

HBeAg status, n (%)  - 

    Negative 123 (53.7)  

    Positive 106 (46.3)  

HBV DNA, Log IU/ml, median (quartile) 5.1 (3.2, 8.2) - 

qHBsAg, Log IU/ml, median (quartile) 3.6 (3.0, 4.5) - 

HBV genotype, n (%)   

    B 121 (52.8) - 

    C 50 (21.8) - 

    O 15 (6.6) - 

    NA 43(18.8) - 

Vertical Transmission, n (%)  - 

    No 177 (77.3) - 

    Yes 30 (13.1) - 

    Missing 22 (9.6) - 

Smoker, n (%)   

    No 203 (88.6) 10 (100) 

    Yes 26 (11.4) 0 (0) 

CHB: chronic hepatitis B. HC: healthy control. ALT, alanine aminotransferase; HBsAg, HBV surface antigen; HBeAg, HBV e 
antigen. HBV genotype: O-Other included C + D, B + D, B + C, D; NA-not detected. 
 

genotype was determined by direct sequencing. 

Quantitative hepatitis B surface antigen (qHBsAg)  

was measured by the Elecsys HBsAg II Quant  

reagent kits (Roche Diagnostics, Indianapolis, IN) 

according to the manufacturer’s instructions. HBV core 

antibody (HBcAb) levels were quantified with a 

chemiluminescence immunoassay (Roche Diagnostics, 

Indianapolis, IN). Serum HBV DNA levels were 

measured by Roche COBAS Ampliprep/COBAS 

Taqman HBV test v2.0 (dynamic range from 20 to 

1.7E+08 IU/ml, Roche Molecular Diagnostics, 

Branchbug, NJ). Fibrosis was defined by liver stiffness 

measurements (Fibroscan, Echosens, Paris, France). 

 

Cell surface and intracellular staining 

 

Peripheral blood mononuclear cells (PBMCs) were 

isolated using Ficoll density gradients. For the 

phenotypic analysis, PBMCs were stained with FITC-

LAG-3, FITC-CD8, PE-2B4, PE-CD8, PE-CTLA4, PE-

CF594-CD3, PE-CY7-CD4, BV421-PD-1, V450-CD8 

(BD Biosciences, Franklin Lakes, NJ), and APC-Tim-3 

(eBioscience, San Diego, CA, USA). For cytokine 

analysis, PBMCs were stimulated with a Leukocyte 

Activation Cocktail (eBioscience, San Diego, CA, USA), 

at 37° C for 4 h prior to intracellular staining using 

Pharmingen's staining protocol. Anti-human monoclonal 

antibodies against FITC-IFN-γ, PE-TNF-α (eBioscience), 

and PB-IL-2 (Biolegend, San Diego, CA, USA) were 

used. Corresponding isotype-matched controls were 

purchased from BD Biosciences and eBioscience. Data 

was acquired on a Gallios instrument (Beckman Coulter, 

Brea, CA, USA) and analyzed with FlowJo software 

(Ashland, OR, USA). The gating strategy for cytokines 

and exhaustion markers is shown in Supplementary 

Figure 1. 

 

Statistical analysis 

 

We used a 6-step strategy to develop and validate the 

ICS model. In step 1, we plotted antiviral cytokines and 

T cell exhausted molecules in different CHB disease 

phases by the Wilcoxon rank sum test for continuous 

variables and χ2 test for categorical variables. In  
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step 2, we tested correlations among 16 immune 

parameters to identify independent indicators that 

influenced T cell immunity using the Spearman 

correlation. In step 3, we used the K-means cluster 

analysis based on the above selected immune 

parameters to group parameters with similar patterns 

of T cell immunity (all the selected immune 

parameters were scaled in K-means cluster analysis). 

This method allowed us to partition the data into two 

groups and develop a T cell evaluation model for 

classifying individual patients as having high or low T 

cell immunity. The model was checked through the 

comparison of immune parameters between the high 

and low T cell immunity groups. In step 4, the 

Spearman correlation or Wilcoxon rank sum test was 

used to test the correlation between the clinical 

variables and the 16 immune parameters, generating 

potential clinical variables to be used in the next step. 

In step 5, discrimination analysis was used to build 

the ICS models based on the above potential clinical 

variables and the immunity groups (high or low T cell 

immunity in step 3), resulting in the Immuno-Clinic 

scores. The Immuno-Clinic scores and the immunity 

groups were then used to build the receiver-operator 

characteristic (ROC) curve. We selected the optimal 

cut-off for the scores based on the clinical variables 

using the You den Index. The area under the curve 

(AUC), sensitivity, and specificity were also 

computed and compared between the different ICS 

models. Leave one out validation was also used to 

confirm the models. In step 6, the selected ICS model 

was applied to predict the efficacy of antiviral therapy 

in a longitudinal cohort of CHB patients. ICS model 

construction and all the other statistical tests were 

done with R software version 3.2.2 and SAS 9.2. 

Statistical significance was set at 0.05. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. The gating strategy for cytokines and exhaustion markers of T cells. 
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Supplementary Tables 

 

Supplementary Table 1. Disease phase classification criteria. 

Classification ALT HBV DNA HBeAg 

Immune tolerance (IT) Normal > 1 million IU/mL Positive 

Immune active (IA) Elevated >20,000 IU/mL Positive 

  > 2,000 IU/mL Negative 

Inactive CHB (IC) Normal Low HBV DNA level Negative 

Grey zone (GZ) Not classified as IC, IT or IA 

Upper limit of normal (ULN) of ALT: 30 U/L for males and 19 U/L for females. 
ALT, alanine aminotransferase; HBeAg, HBV e antigen. 

 

Supplementary Table 2. Expression levels of immunological variables in the immuno-high and immuno-low clusters 
through four clustering methods. 

Variable immuno-high immuno-low P 

CD4_PD-1 21.32 ± 0.82 26.13 ± 0.89 0.03  

CD4_Tim-3 73.73 ± 1.47 72.79 ± 1.45 0.79  

CD4_2B4 19.51 ± 1.10 28.45 ± 1.53 0.00  

CD4_LAG-3 3.96 ± 0.40 3.78 ± 0.48 0.87  

CD4_CTLA4 43.82 ± 0.71 36.96 ± 0.79 0.00  

CD4_IFN-γ 19.77 ± 0.48 14.85 ± 0.53 0.00  

CD4_TNF-α 37.46 ± 1.05 31.56 ± 1.11 0.03  

CD4_IL-2 19.45 ± 0.45 3.03 ± 0.21 0.00  

CD8_PD-1 21.38 ± 0.98 22.62 ± 0.83 0.56  

CD8_Tim-3 72.38 ± 1.40 71.26 ± 1.46 0.76  

CD8_2B4 43.58 ± 1.89 42.97 ± 2.03 0.90  

CD8_LAG-3 7.17 ± 0.76 6.23 ± 0.64 0.56  

CD8_CTLA4 9.77 ± 0.25 8.04 ± 0.29 0.01  

CD8_IFN-γ 38.35 ± 0.97 27.76 ± 1.01 0.00  

CD8_TNF-α 42.76 ± 1.20 29.04 ± 1.19 0.00  

CD8_IL-2 2.83 ± 0.11 0.63 ± 0.04 0.00  

Expression levels indicate the percentage of positive cell. Data are presented as mean ± SEM.  
Abbreviation: SEM, standard error of mean. 
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Supplementary Table 3. Selected clinical-virological characteristics of a longitudinal cohort for the ICS model 
application. 

Characteristics 0W 4W 8W 12W 24W 48W P value 

Treatment: PEG/NAs (ETV, 

LDT, TDF) 

49/77(70, 6,1)       

Age, years, median (quartile) 31 (26, 36)       

    < 30, n (%) 51 (40.5)       

    ≥ 30 and < 40, n (%) 55 (43.7)       

    ≥ 40 and < 50, n (%) 16 (12.7)       

    > 50, n (%) 4 (3.2)       

BMI, median (quartile) 21.1 (19.4, 23.7)       

    < 18.5, n (%) 19 (15.1)       

    ≥ 18.5 and < 25, n (%) 86 (68.3)       

    ≥ 25, n (%) 21 (16.7)       

Fibroscan, Kpa, median 

(quartile) 

8.7 (6.6, 13.1)       

    < 6, n (%) 18 (14.3)       

    ≥ 6 and <9, n (%) 50 (39.7)       

    ≥ 9, n (%) 58 (46)       

HBV genotype        

    B, n (%) 77 (61.1)       

    B + C, n (%) 3 (2.4)       

    C, n (%) 46 (36.5)       

HBsAg, IU/ml, median (quartile) 9696 (3472,  

25710) 

4375 (1821, 

15262) 

3636 (1551, 

8845) 

2947 (1332, 

8350) 

2348(1040, 

7728.) 

2185 (579, 

5830) 

< 0.001 

HBsAb status       0.102 

    Negative, n (%) 113 (89.7) 103 (81.7) 111 (88.1) 112 (88.9) 106 (84.1) 107 (84.9)  

    Positive, n (%) 9 (7.1) 14 (11.1) 13 (10.3) 13 (10.3) 20 (15.9) 19 (15.1)  

    Missing, n (%) 4 (3.2) 9 (7.1) 2 (1.6) 1 (0.8)    

HBeAg status       < 0.001 

    Negative, n (%) 14 (11.1) 21 (16.7) 21 (16.7) 22 (17.5) 26 (20.6) 39 (31)  

    Positive, n (%) 112 (88.9) 105 (83.3) 105 (83.3) 104 (82.5) 100 (79.4) 87 (69)  

AST, U/L, median (quartile) 81 (57, 129) 58 (39, 91) 41 (31, 60) 36 (28, 55) 29 (23, 41) 26 (21, 38) < 0.001 

ALT, U/L, median (quartile) 143 (97, 259) 86 (56, 145) 51 (36, 90) 43 (27, 71) 31 (21, 58) 26 (19, 43) < 0.001 

TBIL, μmol/L, median (quartile) 16 (13, 21) 14 (11, 17) 13 (11, 16) 14 (11, 17) 13 (11, 16) 12 (10, 15) < 0.001 

HBV DNA, Log IU/ml, median 

(quartile) 

7.96 (6.92, 8.23) 4.61 (3.79, 5.87) 3.6 (2.88, 5) 2.99 (2.33, 4.43) 2.24 (1.61, 3.51) 1.87 (1.3, 3.01) < 0.001 

    < 4, n (%) 6 (4.8) 37 (29.4) 80 (63.5) 90 (71.4) 103 (81.7) 106 (84.1)  

    ≥ 4 and < 7, n (%) 29 (23) 72 (57.1) 34 (27) 24 (19) 15 (11.9) 11 (8.7)  

    ≥ 7, n (%) 91 (72.2) 18 (14.2) 12 (9.5) 12 (9.5) 8 (6.3) 9 (7.1)  

qHBsAg, IU/ml, median 

(quartile) 

      < 0.001 

    < 1500, n (%) 10 (7.9) 27 (21.4) 30 (23.8) 36 (28.6) 42 (33.3) 49 (38.9)  

    ≥ 1500 and < 5000, n (%) 33 (26.2) 38 (30.2) 46 (36.5) 44 (34.9) 44 (34.9) 42 (33.3)  

    ≥ 5000, n (%) 83 (65.9) 61 (48.4) 50 (39.7) 46 (36.5) 40 (31.7) 35 (27.8)  

ALT, alanine aminotransferase; HBsAg, HBV surface antigen; HBsAb, HBV surface antibody; HBeAg, HBV e antigen. 
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Supplementary Table 4. Receiver-operating characteristic (ROC) curve comparison among ICS, HBV DNA and HBsAg. 

ROC 
ALT normalization at week 48 

HBV DNA<20 IU/ml at 

week 48 
 

HBeAg sero-conversion 

at week 48 
 
HBsAg decline>0.5Log IU/ml 

At week 24 
 

HBsAg decline>0.5Log IU/ml 

At week 48 

AUC Sen Spe P  AUC Sen Spe P  AUC Sen Spe P  AUC Sen Spe P  AUC Sen Spe P 

Δ0-4W 

HBV 

DNA 

0.702 0.763 0.585 <0.001  0.729 0.721 0.723 <0.001  0.490 0.821 0.290 0.861  0.524 0.275 0.813 0.610  0.505 0.617 0.471 0.909 

Δ0-8W 

HBV 

DNA 

0.710 0.732 0.642 <0.001  0.722 0.656 0.734 <0.001  0.453 0.811 0.258 0.428  0.597 0.313 0.893 0.038  0.576 0.679 0.514 0.107 

Δ0-4W 

HBsAg 

0.651 0.469 0.784 0.003  0.543 0.656 0.527 0.372  0.444 0.779 0.300 0.350  0.842 0.792 0.840 <0.001  0.752 0.722 0.768 <0.001 

Δ0-8W 

HBsAg 

0.648 0.474 0.818 0.003  0.520 0.377 0.769 0.683  0.420 0.981 0.067 0.184  0.931 0.818 0.933 <0.001  0.847 0.797 0.797 <0.001 

Δ0-4W 

ICS 

0.663 0.742 0.509 0.001  0.618 0.361 0.840 0.013  0.608 0.745 0.484 0.068  0.552 0.800 0.307 0.276  0.515 0.063 0.987 0.757 

Δ0-8W 

ICS 

0.714 0.474 0.906 <0.001  0.612 0.492 0.777 0.019  0.517 0.991 0.194 0.779  0.653 0.686 0.627 0.001  0.609 0.646 0.592 0.026 

Sen, sensitivity; Spe, specificity; ICS, Immune-Clinical Score; ALT, Alanine aminotransferase; HBsAg, HBV surface antigen; 
HBeAg, HBV e antigen. 

 


