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INTRODUCTION 
 

Dilated cardiomyopathy (DCM) is a non-ischemic 

heart muscle disease with structural and functional 

myocardial abnormalities characterized by dilation of 

the ventricular chamber and impaired contraction [1]. 

Myocardial damage triggers inflammation followed 

by the recruitment of immune cells to the injured site 

and the release of cytokines [2, 3]. 

 

Furthermore, aging is considered to be a risk factor for 

cardiovascular diseases and to have a negative impact 
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ABSTRACT 
 

Dilated cardiomyopathy (DCM) belongs to the myocardial diseases associated with a severe impairment of cardiac 
function, but the question of how sex and age affect this pathology has not been fully explored. Impaired energy 
homeostasis, mitochondrial dysfunction, and systemic inflammation are well-described phenomena associated 
with aging. In this study, we investigated if DCM affects these phenomena in a sex- and age-related manner.  
We analyzed the expression of mitochondrial and antioxidant proteins and the inflammatory state in DCM 
heart tissue from younger and older women and men. 
A significant downregulation of Sirt1 expression was detected in older DCM patients. Sex-related differences were 
observed in the phosphorylation of AMPK that only appeared in older males with DCM, possibly due to an 
alternative Sirt1 regulation mechanism. Furthermore, reduced expression of several mitochondrial proteins 
(TOM40, TIM23, Sirt3, and SOD2) and genes (cox1, nd4) was only detected in old DCM patients, suggesting that 
age has a greater effect than DCM on these alterations. Finally, an increased expression of inflammatory markers 
in older, failing hearts, with a stronger pro-inflammatory response in men, was observed. Together, these findings 
indicate that age- and sex-related increased inflammation and disturbance of mitochondrial homeostasis occurs in 
male individuals with DCM. 
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on ventricular function [4–7]. On the molecular level, 

aging is accompanied by a disturbance in energy 

homeostasis, mitochondrial dysfunction, and increased 

inflammation [4]. Importantly, sex differences in the 

mitochondrial function in several pathologies, including 

cardiovascular diseases, have been demonstrated [8]. 

Mitochondrial biogenesis and respiration are regulated 

by PGC-1α, a transcriptional coactivator, and its 

downregulation has been shown to lead to hypertrophy 

and heart failure [9–11]. Furthermore, the reduced 

activity of PGC-1α itself, as well as its modulators, 

especially AMP-activated kinase (AMPK) among 

others, has been associated with aging [12]. A decline in 

AMPK activity, a crucial regulator of energy metabolic 

homeostasis, has been shown in older subjects, and 

increasing this AMPK activity may extend lifespans 

[13]. Sirtuins (Sirt), a conserved family of global 

metabolic regulators with NAD
+
-dependent deacetylase 

activity [14], and Sirt1 (an evolutionarily conserved 

AMPK partner) in particular [15, 16], have been widely 

reported to protect against age-associated diseases and 

therefore, to increase health span and life span [17–21]. 

Consistent reduction of NAD
+
 levels in older mice is 

accompanied by a decrease in Sirt1 activity, while its 

genetic or pharmacological restoration promotes 

longevity [18, 22, 23].  

 

Among other factors, AMPK and Sirt1 play essential 

roles in mitochondrial biology. Particularly, AMPK and 

Sirt1 promote PGC-1α activity and, thus, mitochondrial 

biogenesis. Furthermore, AMPK controls mitochondrial 

clearance, i.e., mitophagy [24] and a decline in the 

AMPK activity leads to impaired mitophagy, 

accumulation of dysfunctional mitochondria, and ROS 

formation, which may trigger inflammation- and aging-

related diseases [4, 25, 26]. Additionally, the release of 

mtDNA from damaged mitochondria into the cytosol 

may lead to an inflammatory response, via Toll-like 

receptors and STING-dependent inflammasome 

activation [25]. Similarly, emerging data have suggested 

that Sirt1 may play an anti-inflammatory role [27–29]. 

 

In addition to Sirt1, Sirt3 is another sirtuin playing an 

essential role in mitochondrial biology. Sirt3 is the main 

mitochondrial-localized deacetylase that maintains the 

activity of numerous mitochondrial enzymes, e.g. 

SOD2, and thus, supports metabolic and redox balance 

in mitochondria [30]. Both we and others have shown a 

decline in Sirt3 expression in older human myocardium 

[31, 32]. It is important to note that an anti-

inflammatory role of mitochondria-localized Sirt3 has 

been reported [33, 34].  

 

Sex is another potential risk factor associated with 

cardiovascular diseases. Men have an increased 

incidence and severity of atherosclerosis, myocardial 

infarction, heart failure, and DCM [35–37], whereas 

women with DCM have better chances of survival than 

men [38]. Heart failure is associated with 

cardiomyocyte hypertrophy, apoptosis, inflammation, 

and interstitial fibrosis, which all occur in a sex-specific 

manner [39]. Estrogen (E2) seems to play a protective 

role, as a decline in its levels is associated with 

deleterious left ventricle remodeling and cardiac 

dysfunction [40]. 

 

Altogether, sex and age have significant impacts on 

cardiomyopathy, however, there is still a large gap in 

the research about signaling in heart diseases dependent 

on age or sex. Here, we investigated age- and sex-

related alterations in the expression of metabolic 

regulators, i.e., AMPK and Sirt1, mitochondrial bio-

genesis, and inflammation parameters in patients with 

DCM. The analyses revealed a decreased Sirt1 and Sirt3 

expression in older DCM patients in both sexes, 

whereas the activity of AMPK was increased only in 

men. Sex differences were also found in mitochondrial 

antioxidant capacity, e.g., SOD2. DCM in the hearts of 

older patients was associated with a reduced expression 

of mitochondrial proteins and increased inflammation, 

which were both sex dependent and independent.   

 

RESULTS 
 

DCM-related Sirt1 and AMPK alterations in older 

patients 

 

Sirt1 and AMPK are key regulators of metabolic 

pathways. Previously, we observed a decreased 

expression of Sirt1 and AMPK in older individuals [32]; 

however, age- and sex-related differences in patients 

with DCM remained unexplored. Therefore, in the 

present study, the expression of Sirt1, AMPK, and 

pAMPK in control (non-diseased) and diseased human 

cardiac tissue from young and old male and females 

was analyzed.  

 

In older individuals, Sirt1 expression was significantly 

decreased in the DCM group when compared to the 

control (Figure 1A).  Both Sirt1 and AMPK share many 

common target molecules and interact with each other 

[15]. To test whether the Sirt1 downregulation is 

associated with the alteration of AMPK activity 

(indirectly highlighted by the phosphorylation rate), the 

pAMPK/AMPK ratio was analyzed. A significant 

increase in AMPK phosphorylation in older men with 

DCM, but not in women, in the presence of unchanged 

total AMPK content, was observed (Figure 1B, 1C). 

Surprisingly, the pAMPK/AMPK ratio was markedly 
reduced in younger individuals (Supplementary Figure 

1C). The linear regression analysis revealed a 

significant dependence of the DCM-related alteration in 
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the AMPK phosphorylation on age, with the threshold 

appearing at 40 years (Figure 1D). Therefore, DCM 

seems to have an opposite effect on AMPK 

phosphorylation in younger (downregulation) and older 

(upregulation) patients (Figure 1D).  

 

No significant changes in Sirt1 or in AMPK expression 

in younger individuals with DCM were found 

(Supplementary Figure 1A, 1B).  

 

DCM-related expression of mitochondrial and anti-

oxidative enzymes in older patients 
 

Disturbance of mitochondrial homeostasis, e.g., 

biogenesis, is a hallmark and a trigger of heart failure 

[41]. Therefore, markers of mitochondrial biogenesis 

were analyzed in cardiac tissue.  

 

PGC-1α is a key transcription co-activator involved in 

mitochondrial biogenesis and a direct target of Sirt1 

[42]. It has been shown that downregulation of Sirt1 

may impair PGC-1α activity [42], and, in turn, 

mitochondrial biogenesis [43].  

 

In the present study, the protein level of PGC-1α was 

affected neither in an age- nor in a sex-specific manner 

(Figure 2A and Supplementary Figure 2A). 

Nevertheless, the expression of several mitochondrial 

proteins (TOM40, TIM23, and Sirt3), as well as mRNA 

(cox1, mt-nd4) was markedly reduced in older but not in 

younger DCM patients (Figures 2, 3, Supplementary 

Figure 2 and Supplementary Figure 3, respectively). Of 

note is the significant reduction of the expression of a 

key anti-oxidative mitochondrial enzyme SOD2 solely 

in older male DCM patients (Figure 2E). In contrast, the 

expression of cytosolic anti-oxidative enzyme catalase 

was significantly upregulated in older DCM individuals 

of both sexes (Figure 2F). Taken together, our data 

suggest a disturbance in mitochondrial biogenesis and 

anti-oxidative defense in hearts with DCM.   

 

 
 

Figure 1. Effects of DCM on Sirt1 expression and AMPK phosphorylation in older patients. Expression analysis of Sirt1 mRNA (A), 

total AMPK (B) and phosphorylated AMPK (Thr172) (C) performed with human cardiac tissue lysates from old control (non-diseased) and 
DCM men (♂) and women (♀). Data are means ± SEM (n= 5). Representative imaging of western blot analysis; the lanes were run in two gels. 
All data were normalized to the corresponding control and expressed in relative units (r.u.). (D) Linear regression analysis between 
pAMPK/AMPK ratio (dependent variable) and age (explanatory variable) was performed with function lm() in R. pAMPK/AMPK values were 
obtained from old and young male and female hearts diagnosed with DCM.  
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DCM-related pro-inflammatory state alterations in 

older patients 
 

The cardiac pro-inflammatory state is expanded during 

aging processes [44]. Downregulation of Sirt1 and 

AMPK, along with mitochondrial dysfunction, may 

significantly contribute to the initiation and perpetuation 

of inflammation in the heart [45, 46]. Thus, we 

examined the data for alterations in the Sirt1 and 

AMPK signaling and mitochondrial homeostasis that 

were accompanied by a pro-inflammatory response in 

older DCM patients.  

 

The number of cardiac CD68 immune-reactive cells was 

markedly increased in older hearts with DCM when 

compared to the older control hearts (Figure 4A and 

Supplementary Figure 4). In accordance with this finding, 

the NF-κB expression was also significantly elevated in 

older male DCM hearts (Figure 4B). It has been suggested 

that FOXO1 is involved in the polarization of 

macrophages [47]. FOXO1 expression was significantly 

increased in older DCM patients (Figure 4C), further 

suggesting a DCM-related pro-inflammatory state.  

In contrast to these findings, the mRNA of pro-

inflammatory cytokines, e. g.  TNF-α was not changed in 

older DCM hearts (data not shown), and the IL-1β was 

significantly reduced in older DCM hearts in comparison 

to control hearts (Figure 4D). In contrast, IL-12 mRNA 

expression was significantly elevated in older male hearts. 

(Figure 4E). In addition, the mRNA of the anti-

inflammatory cytokine IL-10 was reduced in older male 

and female hearts (Figure 4F). Further analysis of the 

IL12/IL10 ratio revealed a significantly higher ratio in 

older male and female DCM hearts (ratio= 4.2 and 2.3) 

compared to control male or female hearts (1.0). (Figure 

4G) Altogether, the pro-inflammatory response in DCM is 

stronger in older male hearts.   

 

DISCUSSION 
 

In the current study, we investigated age- and sex-

related alterations in metabolic, mitochondrial, and 

inflammatory markers in DCM patients. The main 

findings are as follows: 1) In older patients, DCM is 

associated with significant Sirt1 downregulation in both 

sexes, while pAMPK/AMPK ratio upregulation only

 

 
 

Figure 2. DCM-related alterations in expression of mitochondrial proteins and anti-oxidative enzymes in older patients. 
Western blot analysis of PGC1-α (A), TOM40 (B), TIM23 (C), Sirt3 (D), SOD2 (E) and catalase (F) expression performed with human cardiac 
tissue lysates from old control (non-diseased) or DCM men (♂) and women (♀). Representative imaging of western blot analysis; the lanes 
were run in two gels. All data were normalized to the corresponding control and expressed in relative units (r.u.).  Data are means ± SEM 
(n= 5).  
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Figure 3. DCM-related alterations in expression of mitochondrial genes in older patients. Real-time PCR analysis for the 
mitochondrial-encoded genes cox1 (A, B) and mt-nda (C, D) as well as the nuclear-encoded genes ndusf1 (E, F), performed with human 
cardiac tissue lysates from old control (non-diseased) or DCM men (♂) and women (♀). Data are shown as the mean ± SEM (n= 5).    

 

 
 

Figure 4. DCM effects on the pro-inflammatory state. Immunohistological analysis of CD-68 immuno-reactive cells (A). Western blot 
analysis of NF-κB (B), FOXO1 (C) as well as the real-time PCR analysis of IL-1β (D), IL-12 (E), and IL-10 (F) mRNA expression performed with 
human cardiac tissue lysates from old control (non-diseased) or DCM men (♂) and women (♀). (G) Ratio of IL-12/IL-10. Representative 
imaging of western blot analysis. All data were normalized to the corresponding control and expressed in relative units (r.u.). Data are shown 
as the mean ± SEM (n= 5).  
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appeared in males; 2) expression of several 

mitochondrial proteins (TOM40, TIM23, and Sirt3), 

including a main mitochondrial antioxidant SOD2, and 

mRNA (cox1, nd4) is reduced in older but not in 

younger DCM patients; 3) expression of the 

inflammatory markers in older hearts with DCM is 

increased, with a stronger pro-inflammatory response in 

older males with DCM. Taken together, these findings 

indicate a disturbance of metabolic sensing, impairment 

of mitochondrial biogenesis, and increased inflam-

mation in older individuals with DCM in both sex-

dependent and -independent manners. 

 

The crucial role of Sirt1 in inflammation, DNA repair, 

apoptosis, and aging has already been investigated  

[48, 49]. Its reduced expression and activity have been 

associated with various pathologies, e.g., diabetes, 

Alzheimer's disease and coronary artery disease  

[50–52]. Sirt1 activation by resveratrol tends to 

decelerate aging processes and the onset of chronic 

diseases [53–55]. In the present study, the Sirt1 

expression was significantly diminished in DCM hearts 

in older individuals in a sex-independent manner, while 

no alterations were observed in younger DCM patients. 

In accordance with our data, consistent reduction of 

Sirt1 expression was reported in older mice [56] as well 

as in control hearts of older women. Likewise, Sirt1-

deficient mice showed a progressive DCM strongly 

associated with mitochondrial dysfunction [57]. 

Furthermore, reduced Sirt1 expression was reported in 

monocytes of older patients with cardiovascular 

diseases [52], suggesting that aging directly aggravates 

cardiac dysfunction via disruption of Sirt1 signaling, 

promoting mitochondrial dysfunction, apoptosis, and 

inflammation as a result. 

 

AMPK is a key Sirt1 partner in regulating metabolic 

activity and inflammation that is activated under 

metabolic stress [58]. AMPK and SIRT1 may regulate 

each other and share many common targets [15]. An 

increasing number of reports emphasize the supporting 

role of AMPK activity in cardiac metabolic homeostasis 

[59]. From the other side, persistent AMPK 

overactivation might be deleterious in some cases, with 

a chronic AMPK activation appearing to aggravate the 

pathological damage that strokes and myocardial 

ischemia cause [13, 60, 61], by, e.g., decreasing fatty 

acid oxidation [62]. Furthermore, sustained AMPK 

activation leads to excessive mitochondrial frag-

mentation and mitophagy, leading to the depletion of 

functional mitochondria [63]. Here, DCM in older 

patients was associated with increased phosphorylation 

of AMPK compared to the control group, whereas in 

young DCM patients AMPK phosphorylation was 

markedly reduced. Though diminished AMPK activity 

in hearts with DCM has been previously observed [61], 

no age dependence has been demonstrated. In fact, both 

we and others [13, 32] observed a marked reduction of 

the cardiac AMPK phosphorylation in older, control 

individuals. It is tempting to speculate that,  

with the reduced AMPK phosphorylation in older 

hearts, additional DCM-related metabolic impairment 

may trigger the compensatory activation of the  

AMPK phosphorylation. Fitting in with this view, 

decreased ATP levels are commonly observed in DCM 

patients [64]. 

 

The disturbance of metabolic homeostasis in older 

DCM hearts is further highlighted by the reduced 

mitochondrial biogenesis observed in the present study. 

Particularly, a reduced Sirt3 expression in older DCM 

hearts, a main mitochondria-localized deacetylase 

involved in the regulation of mitochondrial enzymes 

activity [65, 66], argues for a disturbed mitochondrial 

function. The pivotal role of Sirt3 in cardiovascular 

health/diseases is largely accepted and Sirt3 dysfunction 

is associated with numerous pathologies [67, 68]. 

 

Aside from impaired mitochondrial biogenesis and 

acetylation capacity, numerous mitochondrial ab-

normalities have been reported in patients with DCM 

elsewhere [69–71], which may additionally contribute 

to the mitochondrial dysfunction in older DCM hearts. 

Mitochondrial dysfunction is typically accompanied by 

impaired ATP synthesis with enhanced ROS formation 

[72]. Though we did not measure adenine nucleotide 

homeostasis in the present study, the enhanced 

activation of key metabolic sensors, i.e., AMPK, solely 

in older male DCM hearts suggests the elevation of the 

AMP/ATP or ADP/ATP ratio. Interestingly, a male-

specific downregulation of the main mitochondrial 

antioxidant enzyme SOD2 was found in older DCM 

hearts. Altogether, the data suggest that DCM 

aggravates metabolic and oxidative stress in older hearts 

in both a sex-dependent and -independent manner.  

 

The results of research conducted thus far suggests that 

the higher incidence of cardiac diseases, particularly of 

DCM, in males may be due to the fact that females are 

protected by higher levels of steroid hormones, 17β-

estradiol among others. However, in older, post-

menopausal females, the protective effect of 17β-

estradiol is lost. In fact, older men have higher 17β-

estradiol concentrations in their blood compared to 

older women [73]. Our recent report [32] showed that 

cardiac aging is defined by the decline in mitochondrial 

anti-oxidative defense and a pro-inflammatory shift in 

females but not in males.    

 

An increased inflammatory response accompanied by 

decreased mitochondrial function [74, 75] is typical for 

older hearts.  
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NFκB promotes inflammation in myocardial tissue in 

age-related diseases [76]. In accordance with this 

function, our results showed enhanced NFκB expression 

in DCM hearts in older males. [27, 77]. Pro-

inflammatory mediators are increased in aging under 

certain physiological conditions [78]. In the present 

study, the expression of pro-inflammatory factor IL-12 

was elevated in older DCM hearts only in males, while 

a substantial decrease in IL-10 expression was observed 

in older DCM hearts in a sex-independent manner. A 

reduced IL-10 expression is a typical fingerprint 

observed in cardiac aging [32] as well as in aging 

macrophages [79]; furthermore, IL-10 deficiency 

promotes a detrimental course of inflammation [80]. 

The total amount of cardiac macrophages was elevated 

in DCM patients in this study and accompanied by a 

shift in the IL-12/IL-10 ratio to IL-12 side, which is a 

marker of pro-inflammatory macrophages [81].  

 

Our results, in combination with those from other 

previous studies, suggest an increased inflammatory 

phenotype in older DCM hearts, which is even more 

pronounced in males.  

 

In conclusion, the present study revealed that DCM is 

associated with the downregulation of key metabolic 

regulator Sirt1, diminished mitochondrial biogenesis 

and anti-oxidative defense, and an increased 

inflammatory response in older DCM hearts in both 

sex-dependent and -independent manners. 

 

MATERIALS AND METHODS 
 

Human samples 
 

Human lateral left ventricular (LV) wall tissue from 

patients with idiopathic end-stage DCM was collected 

during organ transplantation (men=10 and women=10) 

and from healthy organ donors (men=16 and 

women=15). The informed consent from all donors or 

their legal guardians was obtained. The patients with 

DCM had ejection fractions (EF) <30%. The tissue was 

frozen in liquid nitrogen immediately after collection 

and stored at -80° C. The patients were between 19 and 

70 years old, while healthy donors were between 17 and 

68 years of age. The control (non-diseased) LV samples 

were divided into 4 groups of young (17-40 years; male: 

n=7 and female: n=7) and old (50-68 years; male: n=9 

and female: n=8) individuals; DCM samples were 

divided into 4 groups of young (19-40 years; male: n=5 

and female: n=5) and old (50-70 years; male: n=5 and 

female: n=5) individuals. 

 
For DCM: Sample collection and the experimental 

protocols were approved by the scientific boards at the 

Heart and Diabetes Centre (HDZ) NRW (21/2013) and 

at the Charité – Universitätsmedizin Berlin (EA2/158/ 

16). All research was performed in accordance with the 

guidelines from the relevant regulatory German 

authorities.  

 

For healthy donors: The scientific board at the 

Hungarian Ministry of Health (ETT-TUKEB: 4991-

0/2010-1018EKU) approved the sample collection and 

the experimental protocols. All research was performed 

in accordance with the German and Hungarian 

regulatory guidelines.  

 

RNA extraction and quantitative real-time PCR 

 

Total RNA from cardiac human tissue was 

homogenized in RNA-Bee (Amsbio, Abbingdon, UK) 

and the Phenol/Chloroform (Roth, Karlsruhe, Germany) 

extraction protocol was used for the RNA isolation. The 

Caliper LabChip bioanalyzer (Agilent Technologies, 

Ratingen Germany) was used to analyze the purity of 

the isolated RNA. Quantitative real-time PCR were 

performed using the Brilliant SYBR Green qPCR 

master mix (Applied Biosystems, Foster City, CA, 

USA). The relative amount of target mRNA was 

determined using the comparative threshold (Ct) 

method as previously described [34]. The mRNA 

contents of target genes were normalized to the 

expression of hypoxanthine phosphoribosyl transferase 

(HPRT).  

 

Protein extraction and immunoblotting 

 

LV samples from DCM and control hearts were 

homogenized in a Laemmli buffer (253mM Tris/HCL 

pH 6.8, 8% SDS, 40% glycerin, 200mM DTT, 0.4% 

bromophenol blue). Proteins were quantified using the 

BCA Assay (Thermo Scientific Pierce Protein Biology, 

Schwerte, Germany). Equal amounts of total proteins 

were separated on SDS-polyacrylamide gels and 

transferred to a nitrocellulose membrane. The 

membranes were immunoblotted overnight with the 

following primary antibodies: AMPK (1:2000, Cell 

Signaling, USA), p-AMPK (1:2000, Thr172, Cell 

Signaling, USA), PGC-1α (1:1000 Abcam, UK), 

TOM40 (1:1000, Abcam, UK), TIM 23 (1:5000, BD, 

USA), Sirt3 (1:1000, Cell Signaling, USA), SOD2 

(1:1000, Santa Cruz, USA), catalase (1:1000, Cell 

Signaling, USA), NFκBp65 (1:200, Santa Cruz, USA) 

and FOXO1 (1:1000, Cell Signaling, USA). Equal 

sample loading was confirmed by analysis of actin 

(1:1000, Santa Cruz, USA), HSP60 (1:1000, Cell 

Signaling, USA) or Ponceau S staining. 

Immunoreactive proteins were detected using ECL Plus 

(GE Healthcare, Buckinghamshire, UK) and quantified 

with ImageLab (version 5.2.1 build 11, Bio-Rad 

Laboratories (USA)). 
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Immunohistochemistry 

 

For immunohistochemistry, 5 µm cryo-sections of 

human LV were fixed in formalin for 1 hour at room 

temperature and subjected to a heat-induced epitope 

retrieval step prior to incubation with anti-CD68 

antibody (clone PGM-1, Agilent Technologies, Santa 

Clara, CA, USA). The detection was performed by the 

LSAB method applying the Dako REAL™ Detection 

System (Agilent Technologies, Santa Clara, CA, USA). 

Nuclei were counterstained with hematoxylin and 

mounted on slides with glycerol gelatin (both Merck 

KGaA, Darmstadt, Germany). Negative controls were 

performed by omitting the primary antibody. Images 

were acquired using an AxioImager Z1 microscope 

(Carl Zeiss MicroImaging, Inc.). Positive cells were 

quantified in 10 high power fields (hpf) (field of vision 

in x400 original magnification). All evaluations were 

performed in a blinded manner. 

 

Statistical analysis 

 

The data are given as the mean ± SEM. The GraphPad 

Prism 5 (GraphPad Software, 2003, San Diego, USA) 

was used for statistical analysis. The data were 

evaluated using the non-parametric test (Mann-Whitney 

test for two independent groups). A simple linear 

regression analysis was performed with function lm() in 

R. Statistical significance was accepted when p < 0.05. 
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Supplementary Figure 1. DCM effects on Sirt1 expression and AMPK phosphorylation in young patients. Western blot 
expression analysis of Sirt1 (A), AMPK (B) and phosphorylated AMPK (Thr172) (C) performed with human cardiac tissue lysates from young 
control (non-diseased) or DCM men (♂) and women (♀). Proteins were normalized to actin or ponceau. Data are shown as the mean ± SEM 
(n= 5). Representative imaging of western blot analysis; the lanes were run in two gels. All data were normalized to the corresponding control 
and expressed in relative units (r.u.). 
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Supplementary Figure 2. DCM effects on expression of mitochondrial proteins in young patients. Western blot analysis and 
statistical analysis of PGC1-α (A), TOM40 (B), TIM23 (C), Sirt3 (D), SOD2 (E) and catalase (F) protein expression performed with human cardiac 
tissue lysates from young control (non-diseased) or DCM men (♂) and women (♀). Proteins were normalized to HSP60 or actin. Data are 
shown as the mean ± SEM (n= 5). Representative imaging of western blot analysis; the lanes were run in two gels. All data were normalized 
to the corresponding control and expressed in relative units (r.u.). 
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Supplementary Figure 3. DCM effects on expression of mitochondrial genes in young patients. Real-time PCR analysis for the 
mitochondrial-encoded genes cox1 (A, B) and mt-nda4 (C, D), as well as the nuclear-encoded genes ndusf1 (E, F), performed with human 
cardiac tissue lysates from young control (non-diseased) or DCM men (♂) and women (♀). Data are shown as the mean ± SEM (n= 5).    
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Supplementary Figure 4. DCM effects on the number of macrophages in cardiac tissue of DCM patients. Representative images 
of cardiac cryosections stained with antibodies against CD68 (A–D). The analyses were performed with myocardium from old control (non-
diseased) and DCM men and women. Magnification: 200x. 


