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INTRODUCTION 
 

Prolactin is a well-characterized hormone required for 

terminal differentiation of mammary epithelial cells and 

for synthesis of milk components during lactation [1–3]. 

Beyond its recognized role in the development and 

differentiation of the normal breast, prolactin causally 

contributes to the pathogenesis of breast cancer via an 
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ABSTRACT 
 

Progesterone receptor (PR) isoforms can drive unique phenotypes in luminal breast cancer (BC). Here, we 
hypothesized that PR-B and PR-A isoforms differentially modify the cross-talk between prolactin and fatty 
acid synthase (FASN) in BC. We profiled the responsiveness of the FASN gene promoter to prolactin in 
T47Dco BC cells constitutively expressing PR-A and PR-B, in the PR-null variant T47D-Y cell line, and in PR-null 
T47D-Y cells engineered to stably re-express PR-A (T47D-YA) or PR-B (T47D-YB). The capacity of prolactin to 
up-regulate FASN gene promoter activity in T47Dco cells was lost in T47D-Y and TD47-YA cells. Constitutively 
up-regulated FASN gene expression in T47-YB cells and its further stimulation by prolactin were both 
suppressed by the prolactin receptor antagonist hPRL-G129R. The ability of the FASN inhibitor C75 to 
decrease prolactin secretion was more conspicuous in T47-YB cells. In T47D-Y cells, which secreted notably 
less prolactin and downregulated prolactin receptor expression relative to T47Dco cells, FASN blockade 
resulted in an augmented secretion of prolactin and up-regulation of prolactin receptor expression. Our 
data reveal unforeseen PR-B isoform-specific regulatory actions in the cross-talk between prolactin and 
FASN signaling in BC. These findings might provide new PR-B/FASN-centered predictive and therapeutic 
modalities in luminal intrinsic BC subtypes.  
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autocrine/paracrine loop involving prolactin binding to its 

membrane-associated prolactin receptor (PRLR). Similar 

to what has been reported for estrogen and progesterone, 

studies in vitro implicate a role for prolactin in breast 

cancer cell proliferation and survival [4–11], and high 

levels of this hormone have been shown to drive 

mammary tumor development in mice [12, 13]. In 

women, elevated levels of prolactin correlate with 

increased breast cancer risk and metastasis, whereas lower 

levels of prolactin/PRLR in clinical samples associate 

with improved patient survival [14–19]. Early studies with 

the PRLR antagonist hPRL-G129R – a variant of normal 

human prolactin with a single amino acid substitution 

mutation – revealed its capacity to inhibit the prolactin-

induced oncogenic signaling responsible for cancer cell 

proliferation [20–24]. More recently, prolonged treatment 

with hPRL-G129R in ovarian cancer models was found to 

antagonize the signaling activities of the prolactin/PRLR 

tumoral axis and to inhibit tumor growth by inducing 

destructive autophagy [25].  

 

Despite the biological and clinical relevance of the 

prolactin/PRLR axis, incomplete knowledge of the 

underlying network has largely precluded its therapeutic 

exploitation in specific breast cancer subtypes. Upon 

engagement of prolactin with PRLR, the resulting 

activation of JAK/STAT, PI3K, and MAPK signaling 

pathways enhances the survival, proliferation, 

differentiation, and motility of normal breast epithelial 

cells [7]. Activation of these transduction cascades enables 

not only the expansion of the breast epithelial cell 

population during pregnancy, but also the differentiation of 

those epithelial cells responsible for the synthesis and 

secretion of milk during lactation [7, 26, 27]. This 

association might similarly lead to augmented growth and 

motility of breast cancer cells. Although less clearly 

defined, a loss of responsiveness of breast cancer tissues to 

the pro-differentiation activities of prolactin might be 

linked to its pathogenic role in certain breast cancer 

subtypes and/or disease stages. In this regard, it is well 

known that prolactin-driven differentiation is characterized 

by its capacity to orchestrate the expression of key lipid 

biosynthesis genes and regulate the activity of lipogenic 

enzymes, leading to cytoplasmic lipid droplets in lactating 

mammary epithelial cells [28]. A key lipogenic enzyme for 

the development, functional competence, and maintenance 

of the lactating mammary gland is fatty acid synthase 

(FASN), which participates in the prolactin-promoted 

generation of large quantities of medium- and long-chain 

fatty acids and total fatty acid contents in milk [29–32]. 

FASN is a well-characterized driver of metabolic 

reprogramming in cancer cells [33–35]. Interestingly, the 

metabolo-oncogenic nature of FASN in breast cancer does 

not rely on its lactogenic activity, but rather on its ability to 

provide energy, macromolecules for membrane synthesis, 

and lipid signals, that facilitate cancer cell survival and 

proliferation, and also regulate the activity of other 

oncogenic pathways [33–37]. However, little is known 

about how prolactin and FASN signaling interact during 

breast cancer progression. The finding that suppression of 

FASN-driven endogenous lipogenesis is sufficient to 

restore normal ductal-like structures in the mammary 

gland irrespective of the mutational background of 

undifferentiated malignant phenotypes [37], underpins the 

notion that FASN gene expression must be closely 

controlled and regulated for the differentiation and 

maintenance of normal-like tissue architectures in the 

breast [38, 39].  

 

The phenotypic effects of prolactin on normal mammary 

epithelium involve spatio-temporal crosstalk between 

PRLR and progesterone/progesterone receptor (PR) 

signaling. Progesterone induces the expression of the 

PRLR, PR and PRLR cooperate during ductal branch 

growth in the mammary gland, and PR signaling represses 

the PRLR-triggered lactogenic signaling that induces milk 

protein expression [40–42]. Progesterone signaling in 

breast tissues is mediated by two co-expressed PR 

isoforms – full-length PR-B and N-terminal truncated PR-

A – which regulate the same, as well as distinct, gene sets 

[43–45]. For instance, whereas PR-A is both necessary and 

sufficient to elicit the progesterone-dependent reproductive 

responses for uterine development and fertility, PR-B is 

required for the normal proliferative and differentiative 

responses of the mammary gland to progesterone [46–49]. 

An ever-growing body of complex and sometimes 

conflicting evidence has shown that isoform-specific PR 

expression is a context-dependent driver of distinct luminal 

breast cancer phenotypes in terms of the endocrine 

sensitivity, proliferative capacity, and cancer stem-like cell 

behavior [50–62]. However, how the close functioning of 

the progesterone/PR and prolactin/PRLR signaling axes 

that drive the lactogenic/lipogenic phenotypic outcomes in 

normal mammary gland [63] might be altered in breast 

cancer tissues remains largely unexplored. Here, we tested 

the hypothesis that the PR-B and PR-A isoforms 

differentially modify the ability of prolactin to 

transcriptionally regulate the expression of the FASN gene 

in PR+ breast cancer cells. We also tested the contrary 

hypothesis that prolactin secretion and/or PRLR 

expression are affected by pharmacological interruption of 

FASN signaling.  

 

RESULTS 
 

Expression of FASN and PRLR mRNAs is 

significantly elevated in PR-positive breast cancer  

 

FASN is an endogenous PR-responsive gene [64–67], 

which might explain, at least in part, the simultaneous 

increase in expression of FASN and PR proteins early 

during human mammary carcinogenesis [68]. We 
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interrogated transcriptional data from the METABRIC 

[69, 70] to explore the association between FASN and PR 

in breast cancer (Figure 1). FASN mRNA expression was 

significantly higher in PR-positive breast tumors than in 

PR-negative tumors (p < 0.0001; n=1,700), as 

determined by PR gene expression profiles. PRLR 

expression was also significantly elevated in PR-

positive tumors (p < 0.0001), whereas prolactin

 

 

 

Figure 1. Differential enrichment of FASN, prolactin, and PRLR genes in breast cancer subtypes. FASN, prolactin, and PRLR mRNA 
expression levels in primary breast tumors from the METABRIC project classified into distinct subtypes using different classifiers. (PR+, n=903 
versus PR-, n=797, Mann Whitney test; 3-genes signature, estrogen receptor (ER)-/HER2-, n=290, ER+/HER2- high proliferation, n=603, 
ER+/HER2+ low proliferation, n=619, HER2+, n=188, ANOVA with Dunn’s multiple comparison test; PAM50: basal, n=161, claudin-low, n=186, 
HER2 enriched, n=190, luminal A, n=631, luminal B, n= 412, ANOVA with Dunn’s multiple comparison test). 
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expression was not significantly different between the two 

subgroups (p = 0.5755). It was therefore of interest to 

evaluate whether FASN mRNA expression correlated with 

that of PRLR. PRLR was among the top-100 genes 

positively correlated with FASN gene expression (r = 0.31, 

p < 0.0001) in the METABRIC breast cancer dataset. 

Indeed, when the data set was classified according to the 

five intrinsic subtypes (luminal-A, luminal-B, HER2-

enriched, claudin-low, and basal-like) using the research-

based 50-gene prediction analysis of microarray (PAM50) 

classifier [71], both FASN and PRLR (but not prolactin) 

mRNAs were found to be significantly higher in HER2-

enriched and luminal subtypes than in highly 

aggressive/poor prognosis basal-like and claudin-low 

subtypes (Figure 1). The highest levels of FASN and 

PRLR mRNAs were detected in HER2-enriched and 

luminal-A subtypes, respectively.  

 

Maximum prolactin secretion and PRLR expression 

requires both PR-A and PR-B isoforms 
 

To evaluate the relevance of PR isoform expression and 

ratio on the regulatory activity of prolactin for FASN gene 

expression, we used the PR-A/PR-B-positive (T47Dco) and 

PR-null (T47D-Y) variants of the estrogen receptor 

(ER)/PR-positive breast cancer cell line T47D. T47Dco 

cells endogenously express equimolar levels of PR-A and 

PR-B in a constitutive and estrogen-independent manner, 

thereby allowing the study of the functional relevance of 

PR without the confounding effects of estrogen [44, 62, 

72–75]. T47D-Y cells can also be used to determine the 

effect of PR isoform variants or mutants by stably 

reintroducing PR-A or PR-B on expression vectors. The 

resulting cell lines, termed T47D-YA (stably expressing 

the full-length PR-A isoform) and T47D-YB (stably 

expressing the full-length PR-B isoform), have been 

widely employed to evaluate the independent signaling 

function of each PR isoform [43, 62, 72–75]. Here, we 

employed all four T47D cell lines, each with a different PR 

content (Figure 2A), to test for isoform-specific prolactin 

gene regulation and functional interactions with the FASN 

gene.   

 

ELISA-based quantification of prolactin content in the 

conditioned medium of T47Dco, T47D-Y, T47D-YA, 

and T47D-YB cultures revealed considerably lower 

amounts (~85%) in PR-null T47D-Y cultures than in 

T47Dco cultures (Figure 2B). Although the individual 

re-expression of each PR isoform was not sufficient to 

reach the levels of prolactin found in T47Dco cultures, 

the stable re-expression of PR-A and PR-B notably 

augmented by 3.7- and 4.8-fold, respectively, the extra-

cellular amounts of prolactin in T47D-Y cultures. We 

also compared the four cell types in terms of PRLR 

abundance by immunoblotting equivalent cell extracts 

using an antibody against PRL4 (Figure 2A). Analysis 

showed that T47Dco cells likewise harbored an abundant 

amount of PRLR, whereas a notably decreased amount 

of PRLR was detected in PR-null T47D-Y cells. T47D-

YB cells expressed PRLR at slightly higher levels than 

T47D-YA cells. These findings, altogether, reveal not 

only a close correlation between the status of prolactin 

secretion and PRLR expression, but also that both PR-A 

and PR-B are required to achieve maximum levels of 

prolactin secretion and PRLR expression.  

 

Progesterone receptor isoforms differentially impact 

baseline FASN expression 
 

To assess how the PR status might alter baseline FASN 

promoter activity, T47Dco, T47DY, T47D-YA, and 

T47D-YB cells were transfected with a luciferase 

reporter vector encoding a sterol regulatory element-

containing FASN promoter sequence fused with firefly 

luciferase. As shown in Figure 2C, the absence of both 

PR isoforms failed to alter luciferase expression in 

T47D-Y cells with respect to baseline levels in T47Dco 

cells. Intriguingly, FASN promoter activity was reduced 

by approximately 50% in cells exclusively expressing 

the PR-A isoform (T47D-YA), but increased by more 

than 90% in cells exclusively expressing the PR-B 

isoform (T47D-YB). At the protein level, immuno-

blotting confirmed the lower amounts of FASN in 

T47D-YA cells and the slightly higher FASN levels in 

T47D-YB cells (Figure 2A).  

 

Prolactin-induced up-regulation of FASN gene 

expression is PR-B isoform-specific  

 

Transient transfection experiments with the FASN 

reporter demonstrated the ability of graded concentrations 

of prolactin (50, 100, and 200 ng/mL) to dose-

dependently up-regulate (up to 2.1-fold at 200 ng/mL 

prolactin) promoter activity in T47Dco cells (Figure 2D, 

top). PR-null T47D-Y cells, however, remained mostly 

insensitive to the regulatory effects of prolactin on the 

FASN reporter. We examined PR isoform-dependent, 

prolactin-driven FASN promoter activity, finding that 

T47D cells containing PR-A (T47D-YA cells) were 

completely unresponsive to prolactin. By contrast, the sole 

presence of PR-B preserved the ability of prolactin to 

increase FASN promoter activity, as previously observed 

in T47Dco cells (Figure 2D, top). Indeed, the presence of 

PR-B in the absence of PR-A significantly boosted the 

response of the FASN promoter to prolactin 

concentrations as low as 50 ng/mL, suggesting that 

prolactin-induced activation of the FASN reporter is 

largely mediated through PR-B. We further found that 

prolactin-induced FASN promoter activity was blocked in 

cells transiently transfected with a truncated version of the 

proximal FASN gene promoter in which the region 

responsible for SREBP binding was deleted 
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(FASNΔSRE; Figure 2D, bottom), overall suggesting that 

prolactin activates the FASN promoter primarily through 

the SREBP1 regulatory site [76–78].  

 

The PRLR-specific antagonist hPRL-G129R impedes 

prolactin-driven activation of FASN gene expression 

 

To substantiate that prolactin activates FASN gene 

expression by its engagement with PRLR, we used the 

PRLR-specific antagonist hPRL-G129R [20–25,  

 

79–82]. Prolactin-induced activation of FASN gene 

expression (at 200 ng/mL) in T47Dco and T47D-YB 

cells was completely inhibited by co-incubation with 

hPRL-G129R at a relatively low concentration of 

1000 ng/mL (i.e., 5-fold-excess of prolactin) (Figure 

3, top). Further, PRLP-specific blockade with hPRL-

G129R sufficed to return the overactive FASN 

promoter in T47D-YB cells to the baseline state seen 

in T47Dco cells. Immunoblotting assays failed to 

demonstrate any  significant changes in PRLR expression 

 

 

 

Figure 2. Exogenous prolactin activates the FASN gene promoter in a PR-B/SBREP-dependent manner. (A). Immunoblotting of 

baseline expression status of PR-A, PR-B, PRLR, and FASN proteins in T47Dco, T47D-Y, T47D-YA and T47D-YB breast cancer cell lines. β-actin was 
used to control for protein loading and transfer. (B). Immunoassay-based quantification of baseline autocrine prolactin secretion into the 
extracellular milieu of T47Dco, T47D-Y, T47D-YA and T47D-YB breast cancer cell lines. (C, D). Estradiol-depleted cells were transiently transfected 
with a plasmid containing a luciferase gene driven by a 178-bp FASN gene promoter fragment harboring a SREBP-binding site, flanked by auxiliary 
NF-Y and Sp-1 sites or with a similar construct in which the SREBP domain was deleted. The next day, cells were treated with graded concentrations 
of recombinant prolactin (PRL) in 0.5% CCS. After 24 h, cells were lysed and luciferase activity was measured. Luciferase activity was expressed as 
relative (fold) change in transcriptional activities of FASN promoter-transfected cells in response to prolactin treatment after normalization to pRL-
CMV activity. Each experimental value represents the mean fold increase (columns) ± S.D. (bars) from at least three separate experiments in which 
triplicate wells were measured. Luciferase activity in prolactin-treated cells was compared with that in vehicle-treated control cells (* P < 0.05; ** P 
< 0.005).  



 

www.aging-us.com 24676 AGING 

 

 

Figure 3. Exogenous prolactin activates FASN gene promoter activity by engaging PRLR. Top. Estradiol-depleted cells were 
transiently transfected with a plasmid containing a luciferase gene driven by a 178-bp FASN gene promoter fragment harboring a SREBP-
binding site, flanked by auxiliary NF-Y and Sp-1 sites as described in Figure 2C, 2D. The next day, cells were treated with 200 ng/mL prolactin 
(PRL) in the absence or presence of a 5-fold-excess of the prolactin antagonist hPRL-G129R (1000 ng/mL) in 0.5% CCS. After ~24 h of 
incubation, cells were lysed, luciferase activity was measured and relative (fold) changes in transcriptional activities of FASN promoter-
luciferase-transfected cells were calculated. The data are shown as the means (columns) ± S.D. (bars) from three separate experiments 
(performed in duplicate). Luciferase activity in prolactin- and/or hPRL-G129R-treated cells was compared with that in vehicle-treated control 
cells (* P < 0.05; ** P < 0.005). Bottom. Estradiol-depleted cells were treated with 200 ng/mL PRL in the absence or presence of a 5-fold 
excess of hPRL-G129R in 0.5% CCS for 48 h. Immunoreactive bands for PR-A, PR-B, and PRLR proteins were analyzed by immunoblotting as 
described in Figure 2A. β-actin was used to control for protein loading and transfer. Figure shows a representative immunoblot analysis. 
Similar results were obtained in 3 independent experiments. 
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in response to prolactin, hPRL-G129R, or their 

combination (Figure 3, bottom); however, hPRL-

G129R co-treatment prevented the ability of prolactin 

to marginally down-regulate PR-A and PR-B 

expression in T47D-YA and T47D-YB cells, 

respectively. These findings, altogether, imply that the 

prolactin-FASN signaling axis acts through PRLR in 

T47D cells, and suggest the specific functional 

engagement of the PR-B isoform as the driver of 

FASN gene responsiveness to the regulatory effects of 

prolactin/PRLR.  

 

FASN inhibition suppresses PR-A and PR-B 

expression 

 

We previously demonstrated that FASN blockade 

suppresses the well-documented capacity of estradiol 

to up-regulate PR expression in endometrial cancer 

cells [83, 84]. We therefore explored the possibility 

that FASN signaling regulates the constitutive 

expression of both PR isoforms irrespective of 

estradiol stimulation. As shown in Supplementary 

Figure 1, the expression of PR-A and PR-B in T47Dco 

cells was dose-dependently suppressed in the 

presence of graded concentrations of the FASN 

inhibitor C75. Indeed, PR-A and PR-B expression 

was very low to undetectable in the presence of 10 

μg/mL C75 not only in T47Dco cells but also in 

T47D-YA and T47D-YB cells (Supplementary Figure 

1).  

 

FASN inhibition modifies prolactin secretion and 

PRLR expression in a PR isoform-dependent 

manner 

 

We next tested the hypothesis that FASN signaling 

regulates prolactin secretion in a PR isoform-

dependent manner (Figure 4A). Prolactin secretion in 

T47Dco cells was reduced by C75 in a dose-dependent 

manner (up to approximately 80% suppression at 10 

μg/mL C75; Figure 4A, top). In T47D-YA cells, 

however, prolactin secretion was significantly reduced 

by only 50% at the same concentration of C75. 

Conversely, C75 concentrations as low as 2.5 μg/mL 

sufficed to decrease prolactin secretion by 50% in 

T47-YB cells, whereas the suppression of secretion as 

high as 80% was observed at 10 μg/mL C75 (Figure 

4A, top). A significant, dose-dependent up-regulation 

of prolactin secretion occurred in PR-null T47D-Y 

cells exposed to graded concentrations of C75 (up to 

approximately 170%). We then explored the ability of 

FASN signaling to regulate PRLR expression. 

Remarkably, we observed the complete loss of PRLR 

expression in T47Dco, TD47Y-A, and T47D-YB cells 

grown in the presence of C75 (Figure 4A, bottom). By 

contrast, PRLR protein expression in PR-null Y47D-Y 

cells was conspicuously up-regulated in response to 

C75 (Figure 4A, bottom).  

 

FASN inhibition suppresses epithelial-to-

mesenchymal transition-related aggressiveness in 

PR-null T47DY cells  

 

Both PR and PRLR have been suggested to act as as 

promoters of more differentiated phenotypes via 

suppression of the epithelial-to-mesenchymal (EMT) 

program. Indeed, loss of PR in T47D-Y cells has been 

associated with a change in cell morphology to a more 

mesenchymal-like phenotype, accompanied by 

increased cell motility, and up-regulation of EMT-

associated genes [85, 86]. Similarly, prolactin blockade 

in epithelial-like breast cancer cells has been shown to 

induce mesenchymal-like phenotypic changes and 

enhance invasiveness, whereas activation of PRLR in 

mesenchymal-like breast cancer cells suppresses 

mesenchymal properties and reduces invasive behaviors 

[87, 88]. A robust surrogate marker of aggressive breast 

cancer phenotype via regulation of EMT is interleukin-6 

(IL-6) [89–92]. We therefore investigated whether the 

apparent ability of FASN blockade to restore a prolactin 

autocrine function in T47D-Y cells via augmented 

secretion of PR and re-activation of PRLR expression 

might impact the EMT-related status of IL-6 expression. 

EMT-like PR-null T47D-Y cells released extremely 

high levels of IL-6 into the extracellular milieu when 

compared with PR-A/-B-expressing T47Dco parental 

cells (approx. 13-fold increase; Figure 4B). The FASN 

inhibitor C75 not only suppressed the baseline IL-6 

expression in T47Dco parental cells, but further reduced 

(by more 50%) the augmentation of IL-6 secretion 

promoted by loss of PR in T47D-Y cells (Figure 4B).  

 

PRLR inhibition decreases FASN expression in 

HER2-overexpressing breast cancer cells 
 

Several studies suggest that there is potential cooperation 

between PRLR and HER2 during breast cancer 

progression [82, 93, 94]. We speculated that, if a cross-talk 

between HER2 and autocrine prolactin/PRLR signaling is 

actively involved in the well-known FASN over-

expressing-phenotype of HER2-positive breast cancer cells 

[36, 95–98], blockade of PRLR should then reduce the 

ability of HER2 to constitutively up-regulate FASN gene 

expression. We found that whereas exogenous stimulation 

with prolactin dose-dependently increased FASN promoter 

activity in HER2-negative MCF-7/neo control cells, it 

failed to promote any further increase in activity of the 

already hyperactive FASN gene promoter in MCF-

7/HER2 cells (Figure 5). hPRL-G129R fully prevented the 

positive regulatory effects of prolactin on the FASN gene 

in MCF-7/neo parental cells and partially reduced the 

overactive FASN gene promoter in MCF- 
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Figure 4. Pharmacological blockade of FASN activity modifies autocrine prolactin secretion in a PR-dependent manner. (A). Top. 
Autocrine prolactin secretion levels in the extracellular milieu of estradiol-depleted cells cultured in the absence or presence of graded 
concentrations of C75 in 0.5% CCS for 48 h were determined by a commercially available EASIA kit. Data are means (columns) ± S.D. (bars) from 
three independent experiments performed in duplicate. Secreted amounts of prolactin in C75-treated cells were compared with those in vehicle-
treated control cells (* P < 0.05; ** P < 0.005). Bottom. Cell lysates strictly obtained from the same experimental replicates employed in A were 
subjected to immunoblotting for PRLR protein expression. β-actin was used to control for protein loading and transfer. Figure shows a 
representative immunoblot analysis. Similar results were obtained in 3 independent experiments. (B). Autocrine IL-6 levels in the extracellular 
milieu of estradiol-depleted cells cultured in the absence or presence of 10 μg/mL C75 in 0.5% CCS for 48 h were determined by a commercially 
available ELISA kit. Secreted amounts of IL-6 in C75-treated cells were compared with those in vehicle-treated control cells (** P < 0.005). 

 

 

 

Figure 5. HER2 overexpression prevents prolactin-induced activation of the FASN gene promoter. Estradiol-depleted MCF-7/neo and 

MCF-7/Her2-18 cells were transiently transfected with a plasmid containing a luciferase gene driven by a 178-bp FASN gene promoter fragment 
harboring a SREBP-binding site, flanked by auxiliary NF-Y and Sp-1 sites or with a similar construct in which the SREBP domain was deleted. The next 
day, cells were treated with recombinant prolactin (PRL) in the presence or absence of hPRL-G129R in 0.5% CCS. After ~24 h of incubation, cells 
were lysed, luciferase activity was measured and relative (fold) changes in transcriptional activities of FASN promoter-luciferase-transfected cells 
were calculated. The data are shown as the means (columns) ± S.D. (bars) from three separate experiments (performed in duplicate). Luciferase 
activity in PRL- and/or G129R-treated cells was compared with that in vehicle-treated control cells (* P < 0.05; ** P < 0.005). 
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7/HER2 cells, thus suggesting that PRLR signaling 

actively engages HER2 signaling to fully hyperactivate the 

FASN gene promoter in these cells (Figure 5).  

 

DISCUSSION 
 

Prolactin has a central role in mammary gland 

development and terminal differentiation of mammary 

epithelial cells. The prolactin/PRLR-signaling axis has 

been consistently shown to play a permissive role in the 

development of primary breast carcinomas and distant 

metastatic lesions [3, 5, 7, 12, 13, 18, 20, 22, 99, 100]. 

Recent studies have, however, questioned the role of 

prolactin in breast cancer development/progression and 

have highlighted a putative suppressor role in breast 

tumorigenesis [87, 101]. This latter role is supported by 

the association between prolactin/PRLR down-

regulation and significantly better survival outcome in 

patients with breast cancer [88, 102–105], which is 

consistent with the lack of anti-tumorigenic effects and 

therapeutic benefits observed in clinical trials with 

PRLR antagonists [106]. Accordingly, the restoration/ 

activation of prolactin/PRLR signaling has been shown 

to promote cell differentiation and reverse highly 

proliferative, invasive, mesenchymal and tumorigenic 

phenotypes, such as those of the ER/PR double-negative 

MDA-MB-231 breast cancer model [107]. How might 

we reconcile these apparently conflicting pro- and anti-

tumorigenic roles of prolactin?  

 

We took advantage of the T47Dco luminal breast cancer 

cell line, which constitutively express high levels of ER 

and PR, and allows the study of the unliganded, 

progesterone-independent regulatory effects of human 

PRs in ER-positive luminal-like breast cancer without 

the confounding requirement of estradiol to stimulate 

PR expression. In addition to this, we employed the PR-

negative T47D subline T47D-Y, in which cloning 

approaches restored either PR-A or PR-B expression, 

and used these cells to study the regulatory roles of each 

isoform in isolation [72, 108]. Because all of these 

models share the natural background of PR+ luminal 

breast cancer, in which we detected a positive 

correlation between PRLR and FASN genes in the 

METABRIC repository, they are expected to contain 

the appropriate ancillary coregulatory factors needed for 

faithful regulation of prolactin/PR-dependent genes. 

Our results lead us to propose that the PR isoform-

specific regulation of distinct regulatory responses in 

the cross-talk between prolactin and FASN might be 

involved in the diverse phenotypic outcomes arising 

from the prolactin/PRLR signaling axis in luminal 

breast cancer.  

 

We first assessed how PR-B and PR-A isoforms could 

modify the ability of prolactin to regulate the 

expression of the FASN gene in PR+ breast cancer 

cells. Historically, PR-B has been characterized as a 

strong “positive” regulator of the effects of 

progesterone, whereas PR-A is often regarded as a 

ligand-independent mediator of gene repression. Also, 

the isoforms differ with regard to the positive versus 

negative regulatory direction and also the type of 

regulated genes. Thus, whereas PR-B mostly regulates 

the expression of genes required for cell proliferation 

[43], PR-A mainly controls the expression of genes 

involved in cell adherence, cell morphology, and 

resistance to apoptosis [50, 109, 110]. We found that 

the ability of the prolactin/PRLR signaling to 

transcriptionally up-regulate FASN gene expression 

was specifically dictated by: a.) the obligatory 

presence of PR-B to enable prolactin-driven FASN 

gene activation, and b.) the necessary lack of PR-A to 

facilitate maximum FASN gene activation in response 

to prolactin. Accordingly, whereas PR-B+ T47-YB 

cells were exquisitely responsive to exogenous 

prolactin in terms of FASN gene up-regulation, both 

PR-null T47D-Y and PR-A+ T47D-YA cells remained 

completely unresponsive to the FASN regulatory 

effects of prolactin. When both PR isoforms are co-

expressed (i.e., T47Dco), prolactin-induced FASN 

activation is considerably dampened relative to that of 

cells exclusively expressing PR-B (i.e., T47D-YB). 

PR-A trans-repression of PR-B might explain this 

observation and likely implicates a negative effect of 

PR-A within PR heterodimers, as has been reported in 

multiple models [110–115]. In this case, however, how 

do PR isoform-specific signaling events impact the 

ability of the same “classical” prolactin/PRLR/JAK2/ 

STAT5 pathway to differentially mediate prolactin-

induced FASN gene transcription? Of note, the ability 

of PR-B to facilitate prolactin-driven FASN activation 

required an SREBP-binding site in the FASN gene 

promoter. Therefore, PR isoform-specific actions 

might not simply be explained in terms of STAT5-

driven transcriptional regulation of the FASN gene 

promoter, but instead suggest that the distinct ability 

of each PR isoform to cooperate with STAT5 would 

differentially impact SREBP-1c expression. The 

prolactin/PRLR/JAK2/STAT5 signaling pathway 

drives fat synthesis and proliferation via augmented 

expression of SREBP-1c [116, 117]. STAT5 modulates 

the expression and nuclear distribution of SREBP1, 

thereby regulating its biological functions including the 

regulation of lipogenic genes such as FASN. In fact, 

downregulation of (phospho-active) STAT5 decreases, 

whereas its overexpression increases, the activation of 

the SREBP1 promoter [118]. Intriguingly, the ability of 

PR to drive JAK/STAT-dependent transcriptional 

responses requires the so-called CD domain of PR-B, 

which is located in the N-terminal B-upstream segment 

(BUS) region of full-length PR-B – and absent in  
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PR-A – and is essential for proliferative signaling in 

breast cancer cells [119, 120]. The CD domain of PR-B 

is required for PR-B-dependent expression of STAT5 

which, in turn, then complexes with PR-B on a specific 

subset of PR-target genes. Indeed, STAT5 appears to 

operate as a pioneer transcription factor that “opens” 

sites in chromatin for subsequent PR-B-driven 

transcriptional activation of target genes [120]. It is 

therefore tempting to speculate that the BUS region of 

PR-B might function as the shared signaling hub of the 

prolactin/PRLR-driven STAT5 and PR-B (but not PR-

A) signaling axes. By placing the lipogenic master 

regulator SREBP-1c as one of the select target genes 

coregulated by STAT5 and PR-B, we can explain the 

PR-B isoform-specific regulatory actions on the cross-

talk between prolactin and FASN signaling in luminal 

breast cancer cells (Figure 6). In a scenario in which 

constitutive activation of PRLR and HER2 (e.g., MCF-

7/HER2 cells) leads to a dissociation between 

prolactin/PRLR and inducible STAT5 activation, which 

becomes constitutive via hyperactivation not only of 

JAK2 but also of PI3K/AKT/mTOR and MAPK 

transducers, maximal transcriptional activation of the 

FASN gene is no longer responsive to exogenous 

stimulus with prolactin, but can be partially prevented 

by PRLR antagonists such as a hPRL-G129R [82] 

(Figure 6).  

 

We envisaged that prolactin secretion and/or PRLR 

expression might be affected by pharmacological 

blockade of FASN activity. The achievement of 

higher levels of autocrine prolactin secretion (and 

PRLR expression) obligatorily required the presence 

of the PR-B isoform. Thus, PR-A+ T47-YA cells and, 

more notably, PR-null T47D-Y cells, secreted less 

prolactin and downregulated PRLR expression in 

comparison with PR-A+/PR-B+ T47Dco cells. With 

the sole exception of sexual hormone (estradiol and 

androgen)-induced transcriptional up-regulation of 

autocrine prolactin in rat trigeminal neurons, pituitary 

lactotrophs, and rat prostate [121, 122], the 

pathway(s) that regulate the synthesis and secretion of 

autocrine prolactin in breast cancer cells are largely 

unknown. The PTEN/PI3K-AKT pathway – one of the 

most commonly activated metabolic drivers of cancer 

– is an upstream regulator of autocrine prolactin 

production in the normal mammary gland; moreover, 

autocrine prolactin production is a direct mechanism 

by which PI3K-AKT activation results in 

PRLR/JAK2/STAT5 pathway activation [123]. 

Importantly, whereas AKT-induced up-regulation of 

autocrine prolactin does not require intact 

PRLR/JAK/STAT5 signaling, the PRLR/JAK/STAT5 

pathway is required to mediate the effects of AKT on 

lipid synthesis in the normal mammary gland [123]. 

We found that the ability of the FASN inhibitor C75 

to reduce prolactin secretion in PR-A+/PR-B+ 

T47Dco parental cells was either exacerbated in  

PR-B+ T47D-YB cells or partially dampened in PR-

A+ T47-YA cells. Because AKT is rapidly repressed 

in response to C75-induced blockade of FASN 

activity [124, 125], our findings suggest a positive 

 

 

 

Figure 6. A PR isoform-dependent cross-talk between prolactin and FASN in breast cancer: a working model. The convergence of 

prolactin/PRLR and PR signaling interactions on STAT5 [130, 131] might explain, at least in part, the PR-B-driven capacity of prolactin to activate 
FASN in luminal breast cancer cells (A). Similar inputs, likely involving yet-to-be explored phospho-modifications of PR isoforms, might underlie also 
the ability of FASN signaling to regulate autocrine prolactin secretion (B).   
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feedback regulation between FASN and autocrine 

prolactin expression via AKT-driven activation of the 

PRLR/JAK/STAT5 pathways in PR+ breast cancer 

cells. This positive feedback, however, is apparently 

fine-tuned by PR signaling in a PR isoform-specific 

manner, which might reflect, at least in part, the ability 

of PR-B to cause down-regulation of the PI3K/AKT 

signal via upregulation of PTEN [126]. In T47D-Y cells 

lacking PRs and exhibiting a more aggressive 

undifferentiated phenotype, the suppression of FASN 

signaling was accompanied by a partial recovery of 

prolactin secretory activation, up-regulation of PRLR 

expression, and down-regulation of EMT/cancer stem 

cell/pro-inflammatory markers such as IL-6. These 

findings, overall, suggest that the ability of FASN 

signaling to enable secretory activation of endocrine 

prolactin is a PR-dependent event that might dictate the 

level of luminal cell differentiation [38]. Further 

characterization of the FASN-centered relationship 

between PRs, prolactin/PRLR/JAK/STAT5, and PI3K/ 

AKT pathways will be required to determine whether 

therapeutic approaches directed at blocking the 

interaction between these pathways would be more 

beneficial to therapeutically manage prolactin and/or 

FASN signaling in breast cancer cells. Nonetheless, it is 

important to acknowledge that we employed the FASN 

inhibitor C75 in the form of a racemic mixture of (-) 

and (+) enantiomers, which differ in their regulation of 

FASN and carnitine palmitoyltransferase-I (CPT-1) 

[127–129]. An evaluation of clinical-grade FASN 

inhibitors devoid of CPT-I inhibitory activity should 

definitely clarify the mechanistic role of FASN as a 

therapeutic target for differentiation therapy in certain 

subsets of ER+/PR- breast carcinomas [38] 

 

In summary, our data reveal an unforeseen PR-B 

isoform-specific regulatory action on the cross-talk 

between prolactin and FASN signaling in luminal breast 

cancer cells. Our data suggest that the lipogenic FASN 

might be incorporated into the group of metabolic 

markers specifically enriched by PR-B (but not with 

those related to the malignant metabolism of cancer 

stem cells enriched by PR-A) in luminal A-like PR+ 

breast cancer cells [130–133], likely promoting 

survival, proliferation, and differentiation. In ER-

positive/PR-negative luminal B-like breast cancer cells, 

however, FASN signaling might be co-opted as a 

negative regulator of the epithelial cell phenotype and, 

accordingly, its blockade might promote the restoration 

and activation of prolactin/PRLR-driven differentiation 

programs. Nonetheless, because the PR isoform ratio is 

a proxy for the molecular signature and endocrine 

therapy responsiveness of PR+ breast cancer cells, our 

findings might illuminate new PR-B/FASN-centered 

predictive and therapeutic modalities in luminal breast 

cancer intrinsic subtypes. 

MATERIALS AND METHODS 
 

Reagents 
 

Anti-PR (clone hPRa2 + hPRAa3, Ab-8) and anti-PRLR 

(Ab-1) mouse monoclonal antibodies were purchased from 

Lab Vision Corporation (Fremont, CA). Anti-FASN 

mouse monoclonal antibody (clone 23) was purchased 

from BD PharMingen Laboratories (San Diego, CA). 

Anti-β-actin goat polyclonal antibody was purchased from 

Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). 

 

Profiling of breast cancer datasets 

 

We interrogated the publicly available Molecular 

Taxonomy of Breast Cancer International Consortium 

(METABRIC) breast cancer dataset from the UK and 

Canada, in which mRNA expression was measured 

using the Illumina HT-12v13 platform and copy number 

alterations with the Affymetrix SNP 6.0 array. Gene-

level expression files from METABRIC were 

downloaded from the cBioportal for Cancer Genomics 

(https://www.cbioportal.org/). We used the 3-gene and 

PAM50 breast cancer intrinsic subtypes provided in the 

METABRIC dataset.  

 

Cell lines 
 

Human T47Dco breast cancer cells co-expressing PR-A 

and PR-B, T47DY cells lacking PRs, T47D-YA cells 

expressing only PR-A, and T47D-YB cells expressing 

only PR-B were generously provided by Dr. K. B. 

Horwitz (University of Colorado). MCF-7/neo and 

MCF-7/Her2-18 breast cancer cells stably 

overexpressing the HER2 oncogene were kindly 

provided by Dr Mien-Chie Hung (University of Texas 

M.D. Anderson Cancer Center). Cells were grown in 

Improved Minimal Essential Medium (IMEM) with 5% 

fetal bovine serum and 2 mmol/L L-glutamine. Before 

starting any experimental treatment, cells were cultured 

and washed extensively with phenol red-free IMEM 

supplemented with 5% dextrin-coated charcoal-treated 

bovine serum (CCS) for 3 days to ensure complete 

depletion of estradiol-like compounds from the media.  

 

Immunoblotting 

 

Cells were washed twice with phosphate buffered saline 

(PBS) and lysed in a lysis buffer (20 mM Tris [pH 7.5], 

150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-

100, 2.5 mM sodium pyrophosphate, 1 mM β-

glycerolphosphate, 1 mM Na3VO4, 1 μg/ml leupeptin, 1 

mM phenylmethylsulfonylfluoride) for 30 min on ice. 

Lysates were cleared by centrifugation in an Eppendorf 

tube (15 min at 14 000 rpm, 4° C). Protein content was 

determined against a standardized control using the Pierce 

https://www.cbioportal.org/
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Protein Assay Kit (Rockford, IL). Equal amounts of 

protein (50 μg in the case of PR and PRLR, 10 μg in the 

case of FASN) were resuspended in 5× Laemmli sample 

buffer for 10 min at 70° C, subjected to electrophoresis on 

either 10% SDS-PAGE gels (Novex, San Diego, CA) in 

the case of PRs and PRLR or 3–8% NuPAGE Tris-Acetate 

gels (Novex) in the case of FASN, and transferred to 

nitrocellulose membranes. Nonspecific binding was 

minimized by blocking for 1 h at room temperature with 

TBS-T (25 mM Tris-HCl, 150 mM NaCl [pH 7.5], and 

0.05% Tween 20) containing 5% (w/v) nonfat dry milk. 

Membranes were then washed in TBS-T and incubated 

for 2 h at room temperature with specific primary 

antibodies in TBS-T/5% (w/v) nonfat dry milk. 

Membranes were washed again in TBS-T, horseradish 

peroxidase-conjugated secondary antibodies (Jackson 

Immunoresearch Labs, West Grove, PA) in TBS-T were 

added for 1 h, and immunoreactive bands were detected 

by enhanced chemiluminescence reagent (Pierce). Blots 

were re-probed with an antibody for β-actin to control 

for protein loading and transfer. Figures show 

representative immunoblot analyses. Similar results 

were obtained in 3 independent experiments.  

 

FASN gene promoter activity 
 

To analyze FASN gene promoter activity, estradiol-

depleted cells seeded in 24-well plates (~ 5 × 10
4
 

cells/well) were transfected (FuGENE 6; Roche 

Biochemicals, Indianapolis, IN) in low-CCS (0.5% 

CCS) IMEM with 300 ng/well of the pGL3-luciferase 

(Promega, Madison, WI) construct containing a 

luciferase reporter gene driven by either an intact 178-

bp FAS promoter fragment harboring a well-

characterized SREBP-binding site flanked by auxiliary 

NF-Y and Sp-1 sites, or with a similar construct in 

which the SREBP-binding site was deleted. Cells were 

contransfected with 30 ng/well of the internal control 

plasmid pRL-CMV, which was used to correct for 

transfection efficiency. After 18 h, the transfected cells 

were washed and then incubated in 0.5% CCS for 

approximately 24 h. Luciferase activity was detected 

using the Luciferase Assay System (Promega) with a 

TD-20/20 luminometer (Turner Designs, Sunnyvale, 

CA). The magnitude of activation in FASN promoter-

luciferase-transfected cells was determined after 

normalization to the luciferase activity in cells co-

transfected with equivalent amounts of the empty 

pGL3-luciferase vector (∅-Luc) and the internal control 

plasmid pRL-CMV, which was taken as 1.0-fold. This 

control value was used to calculate the relative (fold) 

change in transcriptional activities of FASN promoter-

luciferase-transfected cells in response to treatments 

after normalization to pRL-CMV activity, and the data 

are shown as the means (columns) ± S.D. (bars) from 

three separate experiments (performed in triplicate). 

Prolactin and IL-6 secretion 
 

T47Dco, T47D-Y, T47-YA and T47-YB cells were 

depleted of estradiol by treatment with 5% CCS for 3 days, 

washed twice with pre-warmed PBS and cultured in 

serum-free medium overnight. Cells were then cultured in 

0.5% CCS for up to 48 h in the absence or presence of 

graded concentrations of the synthetic FASN inhibitor 

C75. After this, the conditioned medium was collected, 

centrifugated at 1,000 × g for 10 min at 4° C to remove 

debris, and stored at -80° C until analysis. The amount of 

prolactin in conditioned media was determined with an 

enzyme amplified sensitivity immunoassay (Catalog# 

KAQ1441; Biosource International, Hopkinton, MA). The 

amount of IL-6 conditioned media was determined with 

the Human IL-6 Quantikine ELISA Kit (catalog #D6050; 

R&D Systems, Minneapolis, MN). Data shown are means 

(columns) ± S.D. (bars) from three independent 

experiments performed in duplicate.  
 

Statistical analysis 
 

For all experiments, at least three independent experiments 

were performed with n≥3 replicate samples per 

experiment. No statistical method was used to 

predetermine sample size. Investigators were not blinded 

to data allocation and experiments were not randomized. 

Data are presented as mean ± S.D. Comparisons of means 

of ≥3 groups were performed by one-way analysis of 

variance (ANOVA) and Dunnett’s t-test for multiple 

comparisons using XLSTAT 2010 (Addinsoft, Long 

Island, NY). In all studies, P-values <0.05 and <0.005 

were considered to be statistically significant (denoted as * 

and **, respectively). All statistical tests were two-sided. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 

 

Supplementary Figure 1. Effects of FASN inhibition on expression of progesterone receptor isoforms. Immunoblotting of PR-A 

and PR-B proteins in T47Dco, T47D-Y, T47D-YA and T47D-YB breast cancer cell lines cultured in the absence or presence of graded 
concentrations of C75. β-actin was used to control for protein loading and transfer.  


