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ABSTRACT 

 

The accumulation of senescent adipose-derived mesenchymal stem cells (AMSCs) in subcutaneous white 

adipose tissue (WAT) is the main cause for the deterioration of WAT and the subsequent age-related 

disorders in obesity. The number of AMSCs staining positively for senescence-associated-β-galactosidase (SA-

β-Gal) increased significantly after incubation with postprandial triglyceride-rich lipoproteins (TRL), 

accompanied by an impaired cell proliferation capacity and increased expression of inflammatory factors. 

Besides, the expression of anti-aging protein, silent mating-type information regulation 2 homolog 1 (SIRT1), 

was downregulated significantly, while those of acetylated p53 (Ac-p53), total p53, and p21 proteins were 

upregulated significantly during postprandial TRL-induced premature senescence of AMSCs. Furthermore, the 

production of intracellular reactive oxygen species (ROS) in the TRL group increased significantly, while 

pretreatment with the ROS scavenger N-acetyl-L-cysteine effectively attenuated the premature senescence 

of AMSCs by decreasing ROS production and upregulating SIRT1 level. Thus, postprandial TRL induced 

premature senescence of AMSCs through the SIRT1/p53/Ac-p53/p21 axis, partly through increased oxidative 

stress. 
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INTRODUCTION 
 

Adipose tissue is at the nexus linking the aging process 

and nutrient metabolism. Dramatic changes in fat mass, 

distribution, and function occur with advancing age, 

presenting as a reduction in the total mass of white 

adipose tissue (WAT), the redistribution of WAT from 

subcutaneous tissue to the abdominal cavity, and the 

deterioration of WAT function [1]. The main function 

of healthy subcutaneous WAT (sWAT) is to store 

excess energy as less active triglyceride (TG) in the 

form of lipid droplets. However, the amount of sWAT 

will decline during aging, accompanied by an impaired 

capacity for fat storage that leads to the increased 

release of free fatty acids (FFA) into circulation. These 

highly lipotoxic FFA overflow into non-subcutaneous 

sites, such as visceral fat, contributing to an increased 

susceptibility to visceral obesity, inflammation, and 

insulin resistance [2–4]. To some extent, aging of the 

body starts with sWAT senescence [5]. Therefore, the 

mechanism of sWAT senescence should be explored to 

prevent the occurrence and development of age-related 

disorders. 

 

Adipose-derived mesenchymal stem cells (AMSCs), 

which account for 15–50% of the cells in WAT, can give 

rise to new adipocytes and sustain the normal function of 

WAT [6]. The accumulation of senescent AMSCs in 

sWAT is the main cause for the senescence of fat tissue 

and subsequent age-related disorders, manifesting as 

decreased proliferation and differentiation capacities, as 

well as increased lipotoxicity and inflammation in 

senescent AMSCs [7, 8]. Clearance of senescent AMSCs 

could prevent or delay age-related disorders and extend a 

healthy lifespan [9]. However, senescent AMSCs are not 

only found in elderly individuals, but also in young obese 

humans and mice [10, 11]. This kind of stress-induced 

senescence is termed as “premature senescence” to 

distinguish it from “replicative senescence”, which is 

mainly characterized by telomere shortening with 

advancing age [12]. Premature senescence in cells often 

occurs after exposure to various type of stress, such as 

FFA, hypoxia, hydrogen peroxide, or other physical and 

chemical stimuli [13]. It was reported that a high-calorie 

diet induced premature senescence of subcutaneous 

AMSCs in non-elderly patients [14]; however, the 

underlying mechanism is unclear. 

 

Diet-induced obesity is usually accompanied by 

dyslipidemia, especially postprandial hypertriglyceridemia 

[15]. Elevated TG levels after a high-fat meal results in 

an increased number of circulating triglyceride-rich 

lipoproteins (TRL), including chylomicrons, very-low 

density lipoproteins, and their remnant particles [16]. 

Similar to insulin (INS), increased postprandial TRL are 

also considered as a key natural inducer of adipogenic 

differentiation [17], which is one of the important 

mechanisms of obesity. Although postprandial TRL 

induced premature senescence in endothelial progenitor 

cells [18], there has not been a study of their potential 

effect on premature senescence of subcutaneous AMSCs. 

 

Silent mating-type information regulation 2 homolog 1 

(SIRT1, sirtuin 1), a nicotinamide adenine dinucleotide 

(NAD
+
)-dependent deacetylase, has been implicated in a 

variety of physiological processes, including senescence, 

obesity, and inflammation [19, 20]. Significantly 

decreased SIRT1 level or activity was detected in 

premature senescent WAT of obese mice [21]. SIRT1 is 

an important deacetylase for the transcription factor p53. 

Decreased SIRT1 level or/and activity would result in 

reduced deacetylation of p53, and the subsequent 

upregulation of acetylated p53 (Ac-p53) [22]. Ac-p53 can 

bind to cyclin-dependent kinase and inhibit its activity, 

leading to increased p21 expression, cell cycle arrest, and 

ultimately, cellular senescence [23, 24]. SIRT1 is 

regulated by a number of factors, including oxidative 

stress [25]. In endothelial cells, TRL increased oxidative 

stress [26]; however, their influence on SIRT1 was not 

reported. In the present study, we aimed to investigate the 

role of postprandial TRL isolated from patients with 

hypertriglyceridemia in the senescence of mice 

subcutaneous AMSCs, and to further explore the 

potential mechanisms of the identified effects. 

 

RESULTS 
 

Postprandial TRL induced premature senescence in 

AMSCs during adipogenic differentiation 

 

Previously, we observed that postprandial TRL, co-

incubated with INS, induced adipogenic differentiation 

of 3T3-L1 preadipocytes [17]. AMSCs from mice 

sWAT were incubated with 100 μg/mL postprandial 

TRL or 10 μg/mL INS, or both after 48 h confluence in 

the present study. At the end of 8 day (d), Oil-Red-O 

staining revealed that the AMSCs had been stimulated 

to differentiate into lipid-laden adipocytes with 

combination of postprandial TRL and INS, while fewer 

lipid droplets were found within cells incubated with 

TRL or INS alone, and almost no lipid droplets were 

observed in cells treated with phosphate buffered saline 

(PBS) (Figure 1A, 1B), indicating that TRL had a 

synergistic effect with INS on adipogenesis. 

 

SA-β-Gal staining was used to detect senescent (i.e., 

SA-β-Gal positive) cells in four groups. The number of 

SA-β-Gal positive cells in the TRL group was higher 

than that in the TRL + INS group (Figure 1C, 1D), 

suggesting an inhibitory effect of INS on TRL-induced 

senescence in AMSCs. Intriguingly, Oil-Red-O and SA-

β-Gal double positive cells were also detected (Figure 
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1E), indicating that senescence occurred not only in 

undifferentiated AMSCs, but also in differentiating 

ones. To eliminate both the disturbance of adipogenesis 

induced by TRL in combination with INS and the 

controversial role of INS in cellular senescence [27, 28], 

subsequent experiments were performed using AMSCs 

incubated with postprandial TRL alone to explore the 

role and potential mechanisms of senescence. 

 

Postprandial TRL induced premature senescence of 

AMSCs in a concentration-dependent manner 

 

AMSCs were stained by SA-β-Gal and 4’, 6-diamino-

phenylindole (DAPI) after incubation with postprandial 

TRL at different concentrations (0, 25, 50, and 100 

μg/mL) for 8 d. The number of senescent cells increased 

significantly as the concentration of postprandial TRL 

increased, indicating that postprandial TRL induced 

premature senescence in a concentration-dependent 

manner (Figure 2A, 2B). Besides, the level of the 

senescence marker p21 increased significantly in cells 

treated with 100 μg/mL postprandial TRL compared with 

that in the control group, whereas the level of p16 did not 

show any significant difference among the four groups 

(Figure 2C–2E). To explore the effect of postprandial 

TRL on the proliferation capacity of AMSCs, a 5-

Ethynyl-2'-deoxyuridine (EdU) incorporation assay was 

performed. The proliferation capacity of AMSCs was 

inhibited significantly by 50 μg/mL and 100 μg/mL 

postprandial TRL, while it was improved by 25 μg/mL 

postprandial TRL when compared with the control group 

(Figure 2F, 2G). Moreover, 100 μg/mL postprandial TRL 

significantly increased the mRNA levels of genes 

encoding senescence-related inflammatory cytokines, 

including interleukin-1α (IL-1α), interleukin-6 (IL-6) and 

monocyte chemotactic protein (MCP-1) (Figure 2H–2J) 

These results suggested that high concentrations of 

postprandial TRL induced premature senescence and the 

senescence-associated secretory phenotype (SASP) in 

AMSCs. 

 

To explore the adipogenic differentiation capacity of 

senescent AMSCs induced by postprandial TRL, AMSCs 

were incubated with cocktail inducers (standard 

adipogenic stimuli including insulin, IBMX and 

Dexamethasone) after pretreatment with PBS or 

postprandial TRL for 8 d, respectively. It was found that 

the cells with pretreatment of postprandial TRL produced 

 

 
 

Figure 1. Postprandial TRL induced both adipogenesis and premature senescence in AMSCs. (A) AMSCs were treated with PBS, 10 

μg/mL INS alone, 100 μg/mL TRL alone, or 100 μg/mL TRL + 10 μg/mL INS for 8 d after 48h confluence and then stained by Oil-Red-O. Images 
were obtained under a microscope (×200 magnification). (B) Quantification of relative lipid accumulation was measured for absorbance at 
520 nm. (C) SA-β-Gal was performed to detect senescent cells. Images were obtained under a microscope (×200 magnification). (D) SA-β-Gal 
positive cells were counted manually by scanning a total of 200 cells in each sample. (E) SA-β-Gal positive cells were found in both 
undifferentiated (only blue SA-β-Gal in the cytoplasm, marked by a hollow arrow) and differentiating (both blue SA-β-Gal and red lipid 
droplets in the cytoplasm, marked by a solid arrow) AMSCs. Images were obtained under a microscope (×400 magnification). Data are 
expressed as mean ± SD (n ≥ 3). 

*
P < 0.05, 

**
P < 0.01 when compared with the PBS group. 
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Figure 2. Postprandial TRL induced premature senescence and SASP in AMSCs. (A, B) AMSCs reached approximately 30%-40% 

culture-confluence were incubated with 0, 25, 50, or 100 μg/mL postprandial TRL for 8 d, and then SA-β-Gal (upper row) and DAPI (lower 
row) double staining was performed to detect the senescent cells and nuclei, respectively (A). Images were obtained under a microscope 
(×200 magnification). SA-β-Gal positive cells were counted manually by scanning a total of 200 cells in each sample (B). (C–E) Protein levels of 
senescent markers, p21 and p16, were detected using western blotting (C), and then the relative protein levels of p21 (D) and p16 (E) were 
analyzed using ImageJ. (F, G) The proliferation capacity of AMSCs incubated with different concentrations of postprandial TRL was measured 
using an EdU incorporation assay (F) and the EdU positive cells were counted using ImageJ (G). Images were obtained under a microscope 
(×100 magnification). (H–J) Expression levels of genes encoding senescence-related inflammatory cytokines, including IL-1α (H), IL-6 (I), and 
MCP-1 (J), were detected using qRT-PCR in AMSCs incubated with postprandial TRL at 0, 25, 50, or 100 μg/mL for 8 d. Data are expressed as 
mean ± SD (n ≥ 3). 

*
P < 0.05, 

**
P < 0.01 when compared with the control group. 
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significantly fewer lipid droplets than those treated with 

PBS. The results supported that postprandial TRL 

induced premature senescence of AMSCs, accompanied 

by an impaired adipogenic differentiation capacity 

(Supplementary Figure 1). 

 

Postprandial TRL induced premature senescence of 

AMSCs in a time-dependent manner 

 

SA-β-Gal staining showed that the number of senescent 

AMSCs increased significantly from day 4 to day 8 in 

the TRL group, and from day 6 to day 8 in the PBS 

group. Moreover, there were significantly more 

senescent AMSCs in the TRL group than in the PBS 

group at day 4, 6, and 8 (Figure 3A, 3B). Similarly, 

significant upregulation of p21 level, but not p16 level, 

was observed, and the difference in p21 level between 

the TRL group and the PBS group reached statistical 

significance from day 6 to day 8 (Figure 3C–3E). 

Although the proliferation capacity of AMSCs in both 

the PBS group and the TRL group was enhanced 

significantly from day 2 when compared with their 

baseline capacities, respectively, postprandial TRL (100 

μg/mL) significantly inhibited the proliferation capacity 

of AMSCs compared with that of PBS (Figure 3F). 

Collectively, these results indicated that postprandial 

TRL induced premature senescence of AMSCs in a 

time-dependent manner. 

 

Changes in the SIRT1/p53/Ac-p53/p21 axis in 

postprandial TRL-induced premature senescence of 

AMSCs 

 

The SIRT1/p53/Ac-p53/p21 axis is a typical senescence 

regulatory pathway. As a well-known anti-senescence 

protein, SIRT1 was downregulated significantly in 

AMSCs treated with postprandial TRL at 50 or 100 

μg/mL, accompanied by significant upregulation of p53, 

Ac-p53, and p21 protein levels. However, 25 μg/mL 

postprandial TRL did not change the level of these 

proteins significantly (Figures 4A–4D, 2C, 2D). These 

data suggested that the SIRT1/p53/Ac-p53/p21 pathway 

was involved in regulating postprandial TRL-induced 

senescence of AMSCs. 

 

N-acetyl-L-cysteine (NAC) inhibited postprandial 

TRL-induced AMSCs premature senescence and 

reactive oxygen species (ROS) production 

 
Increased oxidative stress is involved in the process of 

cell senescence [18, 29, 30]. In this study, we found 

that intracellular ROS production in the TRL group 

was higher than that in the PBS group (Figure 5A, 5B). 

This indicated that an oxidative mechanism could be 

associated with postprandial TRL-induced premature 

senescence of AMSCs. Pretreatment of AMSCs with 5 

or 10 nM NAC, an antioxidant, markedly decreased 

ROS production (Figure 5A, 5B), accompanied by a 

decreased number of SA-β-Gal positive AMSCs 

(Figure 5C) and downregulated level of p21 (Figure 

5D, 5E). Meanwhile, the level of SIRT1 was restored 

by NAC pretreatment (Figure 5D, 5F). Taken together, 

these results suggested that increased oxidative stress 

might promote postprandial TRL-induced AMSCs 

senescence. 

 

DISCUSSION 
 

In the present study, we found that postprandial TRL 

induced premature senescence of subcutaneous AMSCs, 

accompanied by impaired cell proliferation and 

differentiation capacity, and increased levels of 

inflammatory factors. Mechanistically, the SIRT1/p53/ 

Ac-p53/p21 pathway was partly involved in regulating 

this process. Moreover, we demonstrated that 

intracellular ROS production increased during 

postprandial TRL-induced premature senescence of 

AMSCs, and antioxidants such as NAC was an efficient 

approach to prevent premature senescence of AMSCs 

by upregulating SIRT1 protein level. 

 

Senescent AMSCs have an impaired differentiation 

potential, in addition to a decreased proliferation capacity 

[31]. Recently, we observed that the adipogenesis 

induced by postprandial TRL and INS  

was at a relatively low-grade compared with that induced 

by cocktail inducers in vitro [17, 32, 33]. On the one 

hand, this indicated that adipogenesis could be induced 

by those natural inducers to a lesser extent in vivo. On the 

other hand, it was reasonable to hypothesize that there 

was a relationship between adipogenesis and senescence 

during the treatment of preadipocytes with postprandial 

TRL. In this study, the senescent cells were derived from 

both undifferentiated and differentiating AMSCs, 

accompanied by increased levels of senescence markers 

and inflammatory factors. Therefore, postprandial TRL 

might not only induce adipogenesis but also promote the 

senescence of AMSCs in vivo. 

 

In the present study, we noted a rapid effect of high 

concentrations of postprandial TRL on AMSCs 

senescence. Roldan et al. [10] reported that AMSCs 

isolated from non-elderly obese individuals showed a 

senescent phenotype when they were cultured in vitro 

without additional intervention to at least passage 7, 

which was suggestive of premature senescence. 

However, senescent cells were also found in AMSCs at 

passage 4 when treated with postprandial TRL at 100 

μg/mL for 4-8 d, although the AMSCs were obtained 

from mice with normal weight. Undoubtedly, AMSCs 

underwent premature senescence after incubation of 

postprandial TRL. Interestingly, postprandial TRL at 
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low concentrations induced fewer senescent cells with 

increased proliferation capacity of AMSCs. With 

increasing concentrations of postprandial TRL, the 

number of senescent cells gradually increased, 

accompanied by an impaired proliferation capacity. To 

some extent, postprandial TRL at high concentrations 

caused a sustained and chronic depletion of AMSCs in 

WAT. Conversely, postprandial TRL at lower 

concentrations could be helpful to maintain the 

stemness of AMSCs. 

 

 
 

Figure 3. Postprandial TRL induced premature senescence of AMSCs in a time-dependent manner. (A, B) AMSCs reached 

approximately 30%-40% culture-confluence were incubated with PBS (two upper rows) or 100 μg/mL postprandial TRL (two lower rows) for 8 
d, and then SA-β-Gal and DAPI staining was performed to detect the senescent cells and nuclei at day 1, 2, 4, 6, and 8 (A). Images were 
obtained under a microscope (×200 magnification). SA-β-Gal positive cells were counted manually by scanning a total of 200 cells in each 
sample (B). (C–E) Protein levels of p21 and p16 were detected using western blotting (C), and then the relative protein levels of p21 (D) and 
p16 (E) were analyzed using ImageJ. (F, G) The proliferation capacity of AMSCs incubated with PBS or 100 μg/mL postprandial TRL was 
measured using an EdU incorporation assay at day 1, 2, 4, 6, and 8, respectively (F) and EdU positive cells were counted using ImageJ (G). 
Images were obtained under a microscope (×100 magnification). Data are expressed as the mean ± SD (n ≥ 3). 

*
P < 0.05, 

**
P < 0.01 when 

compared with the PBS group on the same day, 
&
P < 0.05 when compared with the PBS group at day 1, 

#
P < 0.05 when compared with the 

TRL group at day 1,
 †

P < 0.05 when compared with the PBS group at day 2, 
‡
P < 0.05 when compared with the TRL group at day 2. 
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Anti-aging protein SIRT1 is closely associated with the 

occurrence of senescence, including premature 

senescence. Emerging evidence indicated that SIRT1 

level was downregulated significantly in WAT of obese 

mice induced by a high-fat diet, which was related to 

excess intake of nutrients and subsequent decreased 

NAD
+
 biosynthesis [34, 35]. Similarly, in the present 

study, the protein level of SIRT1 decreased significantly 

in AMSCs incubated with postprandial TRL at high 

concentrations. It was reported that postprandial TRL 

could be endocytosed via the LDL receptor family and 

could upregulate the level of key enzymes related to 

lipolysis within preadipocytes [17], which suggested 

that the content of intracellular nutrients, such as TG 

and FFA, might derive from internalized TRL. This 

indicated that the excessive intake of nutrients could 

promote the premature senescence of AMSCs in WAT, 

manifesting as downregulation of SIRT1 level and 

upregulation of p21 level [10, 36]. 

 

Indeed, different concentrations of postprandial TRL 

seemed to exert different impacts on SIRTI in this 

study. Postprandial TRL at the lowest concentration 

(i.e., 25 μg/mL) did not downregulate SIRT1 level. This 

suggested that postprandial TRL at low concentrations 

might play a relatively weak role in promoting the 

premature senescence of AMSCs. Increased protein 

level or acetylation of p53 is closely associated with the 

senescent phenotype. Excessive calorie intake led to the 

accumulation of oxidative stress in the adipose tissue of 

mice or patients with type 2 diabetes, and promoted 

senescence-like changes, such as increased SA-β-Gal 

activity and p53 level; meanwhile, inhibiting p53 

activity in adipose tissue markedly ameliorated the 

senescence-like changes [11]. The increasing amounts 

of TRL particles, especially in the postprandial state, is 

a sign of excess energy intake. Postprandial TRL at high 

concentrations markedly downregulated SIRT1 level, 

meanwhile upregulating p53 and p21 levels, which was 

slightly different from the effect of high glucose, which 

accelerated premature senescence in fibroblasts, but did 

not change p53 level [37]. This indicated that high 

concentrations of postprandial TRL promoted the 

premature senescence of AMSCs through affecting the 

levels of SIRT1 and p53. 

 

The protein level and activity of SIRT1 can be regulated 

by the redox status [13]. Oxidants derived from cigarette 

markedly decreased SIRT1 level in lung epithelial cells 

and accelerated cellular senescence [38]. Moreover, the 

 

 
 

Figure 4. Changes in the SIRT1/p53/Ac-p53/p21 pathway in postprandial TRL-induced AMSC senescence. (A) AMSCs reached 
approximately 30%-40% culture-confluence were treated with 0, 25, 50, or 100 μg/mL postprandial TRL for 8 d, and were harvested to detect 
the protein levels of SIRT1, Ac-p53, p53, and p21 using western blotting. (B–D) The relative protein levels of SIRT1 (B), Ac-p53 (C), and p53 (D) 
were analyzed using ImageJ. Data are expressed as the mean ± SD (n ≥ 3). 

*
P < 0.05, 

**
P < 0.01 when compared with the control group. 
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potent oxidant, hydrogen peroxide, induced the 

senescence of human lung fibroblasts by impairing 

SIRT1 activity and accumulating Ac-p53 [22]. It was 

found that postprandial TRL, which had been hydrolyzed 

by lipoprotein lipase, produced a variety of oxidative 

products in endothelial cells, of which the most abundant 

one was 13-hydroxy octadecadienoic acid [26]. Increased 

13-hydroxy octadecadienoic acid was able to inhibit 

protein kinase C and trigger the phosphorylation and 

nuclear exportation of forkhead box O3, leading to the 

downregulation of antioxidant enzymes, and finally, 

cellular senescence [39, 40]. Thus, postprandial TRL-

induced oxidative stress might also participate in 

decreasing SIRT1 expression or activity, or both. 

 

As a type of membrane penetrating antioxidant, NAC 

was reported to ameliorate the premature senescence of 

other cells by restoring SIRT1 protein level or activity, 

and decreasing Ac-p53 protein level [41–43]. In the 

present study, the protein level of SIRT1 was 

significantly restored with NAC pretreatment. More 

importantly, NAC not only inhibited the ROS production, 

but also attenuated 100 μg/mL postprandial TRL-induced 

AMSCs premature senescence, which supported the view 

that postprandial TRL at high concentrations might 

induce AMSC senescence at least partly through an 

oxidative mechanism. 

 

The present study had several limitations. Firstly, the 

activity of SIRT1 was not detected. Secondly, the content 

of FFA and lipid peroxide were not measured. Thirdly, 

considering the relationship between ROS production 

and mitochondrial function, the potential effect of 

postprandial TRL on mitochondrial function was not 

addressed, which will be explored in our future study. 

 

In conclusion, we found that postprandial TRL induced 

premature senescence of AMSCs, supporting the 

hypothesis that postprandial TRL was a key inducer for 

senescence of adipose tissue in diet-induced obesity. 

 

 
 

Figure 5. Antioxidant NAC alleviated postprandial TRL-induced AMSC senescence and ROS production. (A) AMSCs reached 
approximately 30%-40% culture-confluence were treated with PBS, NAC (10 nM), TRL (100 μg/mL), or TRL (100 μg/mL) with pretreatment of 
5 or 10 nM NAC for 8 d. Subsequently, the intracellular ROS production and the number of senescent cells were evaluated using the 
fluorescent probe, DCFA-DA (green under fluorescence microscope), and SA-β-Gal staining (blue under the light microscope), respectively. 
Nuclei were stained using DAPI (blue under the fluorescence microscope). Images were obtained under a microscope (×200 magnification). 
(B) The fluorescence intensity analysis of ROS production. (C) SA-β-Gal positive cells were counted manually by scanning a total of 200 cells in 
each sample. (D–F) the protein levels of p21 and SIRT1 were detected using western blotting (D), and then the relative protein levels of p21 
(E) and SIRT1 (F) were analyzed using ImageJ. Data are expressed as the mean ± SD (n ≥ 3). 

*
P < 0.05, 

**
P < 0.01 when compared with the PBS 

group. (G) A schematic illustration of the proposed mechanism of AMSC premature senescence induced by postprandial TRL. Postprandial 
TRL increased intracellular oxidative stress, downregulated SIRT1 level, and activated the p53/Ac-p53/p21 pathway, which ultimately 
promoted the premature senescence of undifferentiated and differentiating AMSCs. 
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Mechanistically, as shown in the schematic illustration 

in Figure 5G, postprandial TRL increased intracellular 

oxidative stress, and then downregulated SIRT1 level 

and activated the downstream p53/Ac-p53/p21 

pathway, which ultimately promoted the premature 

senescence of AMSCs. These findings not only 

provide an explanation for high-fat diet-induced 

premature senescence in AMSCs, but also indicated a 

direction for therapies to prevent and treat certain 

obesity-related disorders. 

 

MATERIALS AND METHODS 
 

Cell culture 

 

Primary mice AMSCs were isolated from inguinal 

subcutaneous adipose tissue as described previously 

with minor modifications [44]. Briefly, freshly excised 

inguinal fat pads from male C57/BL6 mice, 7–10 d 

old, were minced and digested with 0.1% collagenase 

type I (Gibco, Grand Island, NY, USA) for 45 min at 

37° C. After neutralization, the floating adipocytes 

were discarded by centrifugation at 1000 g for 5 min. 

Then, the remaining pellet was resuspended and 

filtered through 100 μm nylon filter mesh and plated in 

Dulbecco’s Modified Eagle’s Medium/Nutrient 

Mixture F-12 (DMEM/F-12) with low glucose 

supplemented with 10% fetal bovine serum (FBS), 100 

U/ml penicillin, 100 U/ml streptomycin (complete 

medium, all from Gibco) and incubated at 37° C in a 

5% CO2 humidified atmosphere. The culture medium 

was refreshed every 2 d and cells were passaged with 

trypsin/ethylenediaminetetraacetic every 2–3 d. Cells 

at passage 4 were used in subsequent experiments. 

 

Postprandial TRL preparation 

 

Postprandial TRL were isolated using our previously 

described method [45]. In short, blood samples were 

collected from patients with hypertriglyceridemia at 4 

h after a high-fat meal, and then postprandial TRL was 

separated using density gradient ultracentrifugation (d 

< 1.006 g/mL), dialyzed against PBS, and 

concentrated. The concentration of postprandial TRL 

was determined using a bicinchoninic acid (BCA) 

protein assay kit (CWBIO, Beijing, China) and 

subsequently sterilized through a 0.22 μm microporous 

filter. 

 

Adipogenic differentiation and Oil-Red-O staining 
 

After approximately 48 h confluence, AMSCs at 

passage 4 were used for the adipogenesis assay 

(designated day 0). After 8 d, the cells were fixed with 

4% paraformaldehyde for 30 min and stained with 0.3% 

Oil-Red-O (Sigma, St. Louis, MO, USA) at room 

temperature for 30 min [17]. After lipid droplets were 

visualized under a light microscope, the Oil Red O in 

cells were extracted by 100% isopropyl alcohol and 

measured for absorbance at 520 nm. 

 

SA-β-Gal staining 

 

The senescent cells were verified using a SA-β-Gal 

staining kit (Beyotime, Jiangsu, China), as described 

previously [46]. Briefly, AMSCs were washed twice 

with PBS and fixed in β-galactosidase fixation 

solution (2% formaldehyde/0.2% glutaraldehyde in 

PBS) for 15 min. Then, the cells were washed three 

times with PBS and incubated in SA-β-Gal staining 

solution (pH 6.0) overnight at 37° C. The numbers of 

SA-β-Gal positive AMSCs were counted manually 

from a total of 200 cells in each sample under a light 

microscope. 

 

DAPI staining 
 

After SA-β-Gal staining, the cells were washed once 

with PBS and counterstained with DAPI (Sigma) for 5 

min to count the total cell number under a fluorescence 

microscope. 

 

Cell proliferation assay 

 

The cellular proliferation capacity was measured by EdU 

staining using an EdU Cell Proliferation Kit with Alexa 

Fluor 594 (Beyotime). Briefly, the cells were incubated 

with EdU for 2 h at 37° C/5% CO2. After incubation, the 

cells were washed with PBS to remove the free EdU 

probe and then fixed in 4% paraformaldehyde at room 

temperature for 30 min before being stained with DAPI 

for 5 min. After an additional wash in PBS, the cells were 

observed under a fluorescence microscope. The numbers 

of EdU positive and DAPI positive cells were counted 

automatically using ImageJ software version 1.52k (NIH, 

Bethesda, MD, USA). 

 

ROS production 

 

Intracellular ROS production was measured using a 

ROS kit (Beyotime) according to the manufacturer’s 

instructions. Briefly, after incubation with PBS, NAC 

(10 nM), TRL (100 μg/mL), or TRL (100 μg/mL) with 

pretreatment of 5 or 10 nM NAC for 8 d, the AMSCs 

were washed twice with PBS and incubated with 10 μM 

2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) 

for 20 min at 37° C. Then, the cells were washed three 

times with serum-free DMEM/F-12 and photographed 

under a fluorescence microscope at an excitation 

wavelength of 488 nm and an emission wavelength of 

525 nm. The fluorescence intensity was analyzed using 

ImageJ. 
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Western blotting analysis 

 

Protein levels were detected using Western blotting 

analysis, as previously described [47]. Briefly, cells 

were lysed in Mammalian Protein Extraction Reagent 

(Thermo Fisher Scientific, Waltham, MA, USA) and the 

protein concentration was assayed using a BCA kit 

(CWBIO, Beijing, China). Equal amounts (10 to 20 μg) 

of protein from each sample was subjected to SDS-

PAGE and transferred onto a poly-vinylidene difluoride 

membrane. The membranes were blocked for 2 h in 

PBS containing 5% skim milk and 0.1% Tween-20, and 

then incubated overnight at 4° C with the following 

primary antibodies: anti-SIRT1 (9475S, Cell Signaling 

Technology, Danvers, MA, USA, 1:1000), anti-Ac-p53 

(2570S, Cell Signaling Technology, 1:2000), anti-p53 

(2524T, Cell Signaling Technology, 1:1000), anti-p21 

(10355-1-AP, Proteintech, Rosemont, IL, USA, 

1:1000), anti-p16 (ab211542, Abcam, Cambridge, MA, 

USA, 1:1000), and anti-GAPDH (GB11002, Servicebio, 

Wuhan, China, 1:1000). The membranes were then 

washed with PBS containing 0.1% Tween-20 and 

incubated with horseradish peroxidase-conjugated goat 

anti-rabbit (ZB-2301, ZSGB-BIO, Beijing, China, 

1:5000) or goat anti-mouse (SA-00001-1, Proteintech, 

1:5000,) secondary antibodies at room temperature for 1 

h. The immunoreactive protein bands were visualized 

using an enhanced chemiluminescence substrate 

(Advansta, Menlo Park, CA, USA) and quantified using 

ImageJ. The relative target protein level was normalized 

to that of glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH). 
 

RNA isolation and quantitative reverse transcriptase 

polymerase chain reaction (qRT-PCR) 

 

Total RNA from AMSCs was extracted using GeneJET 

RNA Purification Kit (Thermo Fisher Scientific) as 

described previously [48]. The first strand cDNA was 

synthesized from equal amounts of total RNA in each 

sample using a cDNA Synthesis Kit (Thermo Fisher 

Scientific). Quantitative real-time PCR (qPCR) was 

then performed using the cDNA as the template with 

the SYBR Green Master Mix (Thermo Fisher 

Scientific) in an ABI 7300 Real-Time PCR System 

(Applied Biosystems, Foster City, CA, USA), according 

to manufacturer’s instructions. The relative expression 

of mRNA was calculated using the comparative CT  

(2
-ΔΔCt

) method, and normalized to that of GAPDH. The 

primers used in this study are shown in Supplementary 

Table 1. 

 

Statistical analysis 

 

Data were represented as the mean ± standard deviation 

(SD). And were analyzed using GraphPad Prism 

software version 7.0. Student’s t-test was used to 

compare two different groups, while one-way analysis 

of variance (ANOVA) was used for multiple groups. A 

level of P < 0.05 was considered statistically significant. 

All experiments were repeated at least three times, and 

representative experimental results are shown in the 

figures. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 
 

 

 
 

Supplementary Figure 1. The adipogenic differentiation capacity induced by an adipogenesis-stimulating cocktail decreased 
after AMSCs were pretreated with postprandial TRL. (A) Lipid droplets detected by Oil-Red-O staining in cocktail-induced AMSCs with 

pretreatment of PBS or postprandial TRL (100 μg/mL) for 8 d. (B) Quantification of relative lipid accumulation was measured for absorbance 
at 520 nm. (C) AMSCs were stained using both SA-β-Gal and Oil-Red-O staining. (D) SA-β-Gal positive cells were counted manually by scanning 
a total of 200 cells in each sample. Images were obtained under a microscope (×200 magnification). 

**
P < 0.01 when compared with the PBS 

group. 
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Supplementary Table 
 

Supplementary Table 1. The primer sequences used in this study. 

Gene Primer sequence (5’-3’) 

GAPDH Forward: AAGGTCATCCCAGAGCTGAA 

Reverse: AGGAGACAACCTGGTCCTCA 

IL-1α Forward: CGGGTGACAGTATCAGCAACGT 

Reverse: ATGACAAACTTCTGCCTGACGAG 

IL-6 Forward: TGTATGAACAACGATGATGCA 

Reverse: AGGACTCTGGCTTTGTCTTTCT 

MCP-1 Forward: TCACCTGCTGCTACTCATTCACCA 

Reverse: TACAGCTTCTTTGGGACACCTGCT 

 


