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INTRODUCTION 
 

Pituitary adenomas (PAs) are primary intracranial tumors 

that occur in 0.1% of adults [1, 2]. PAs can be classified 

according to the presence of abnormal hormone secretion 

(functional PAs, 36%-54%; clinical nonfunctional PAs, 

NFPAs, 46%-64%) [3, 4]. Functional PAs can be further 

divided into subtypes according to hormone secretion 

status, and prolactin-secreting PAs (PRL-PAs, 32%-51%) 

and growth hormone-secreting PAs (GH-PAs, 9%-11%) 

are the two most common subtypes accounting for a large 

percentage of functional PAs. Adrenocorticotropin-

secreting PAs (ACTH-PAs, 3%-6%) and thyrotropin-

secreting PAs (TSH-PAs, <1%) can cause obvious 

clinical symptoms, but their incidence is lower than that 

of PRL-PAs and GH-PAs [2, 5, 6]. Most gonadotropin 
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ABSTRACT 
 

Pituitary adenomas (PAs) are slow growing and benign primary intracranial tumors that often cause occupying 
effects or endocrine symptoms. PAs can be classified into various subtypes according to hormone secretion. 
Although widespread transcriptional alterations that cause aberrant hormone secretion have been characterized, 
the impact of genomic variations on transcriptional alterations is unclear due to the rare occurrence of single-
nucleotide variations in PA. In this study, we performed whole-genome sequencing (WGS) on 76 PA samples 
across three clinical subtypes (PRL-PAs; GH-PAs, and NFPAs); transcriptome sequencing (RNA-seq) of 54 samples 
across these subtypes was also conducted. Nine normal pituitary tissues were used as controls. Common and 
subtype-specific transcriptional alterations in PAs were identified. Strikingly, widespread genomic copy number 
amplifications were discovered for PRL-PAs, which are causally involved in transcriptomic changes in this subtype. 
Moreover, we found that the high copy number variations (CNVs) in PRL-PA cause increased prolactin production, 
drug resistance and proliferative capacity, potentially through key genes with copy number amplification and 
transcriptional activation, such as BCAT1. This study provides insight into how genomic CNVs affect the 
transcriptome and clinical outcomes of PRL-PA and sheds light on the development of potential therapeutics for 
aberrantly activated targets. 
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adenomas (GON-PAs) and pluri-hormonal PAs are 

NFPAs. The majority of pituitary tumors are benign and 

exhibit arrested cell cycle as well as aberrant growth 

factor signaling [7, 8]. 

 

Transcription level alterations have been linked to 

abnormal hormone secretion in different subtypes of 

PAs [9]. In ACTH-PAs, the proopiomelanocortin 

(POMC), T-Box transcription factor 19 (TBX19, TPIT) 

and epidermal growth factor receptor (EGFR) genes are 

reportedly upregulated [10]; aberrant splicing of 

estrogen-related receptor gamma (ESRRG) leads to 

stronger binding to POU class 1 homeobox 1 (POU1F1, 

PIT-1) and excessive prolactin secretion [11]. 

Transcriptomic and epigenomic approaches have been 

employed to illustrate divergent patterns of gene 

expression in several subtypes of PAs [12]. However, 

the global changes in gene expression in PAs are still 

under investigation due to the lack of normal pituitary 

tissue as a control. 

 

Genomic analyses have identified genes with somatic 

single-nucleotide variations (SNVs) in PAs, e.g., 

Ubiquitin-specific peptidase 8 (USP8) in ACTH-PAs, G 

protein αs (GNAS) in GH-PAs and splicing factor 3b 

subunit 1 (SF3B1) in PRL-PAs [13–16]. However, these 

genomic studies suggested that PAs are associated with 

low mutation burdens; in addition, the frequencies of the 

three recurrent mutations were quite low, indicating a 

limited impact of SNVs on widespread gene expression 

alterations in PAs [12]. The impact of other genomic 

alterations on transcriptomic changes, such as copy 

number variations, remains to be investigated. 

 

In this study, we performed whole-genome sequencing 

(WGS) and transcriptomic sequencing (RNA-seq) on 

PRL-PAs, GH-PAs and NFPAs to identify subtype-

specific genomic and transcriptomic alterations. 

Normal pituitary tissues were also used to identify 

common gene expression abnormalities in PAs. 

Common gene expression alterations were detected in 

PAs, including genes in neuronal pathways and growth 

pathways. Widespread and unrecognized genomic 

copy number amplifications were identified in PRL-

PAs, contributing to specific transcriptional activation 

in numerous genes and worse clinical outcomes of 

PRL-PA patients. 

 

RESULTS 
 

Transcriptional landscape of pituitary tumors 
 

We performed transcriptome sequencing (RNA-seq) on 

54 PA samples (21 PRL-PAs, 11 GH-PAs, and 23 

NFPAs) and 9 normal pituitary tissues (Supplementary 

Table 1). Hierarchical clustering showed that these 

specimens clustered according to their clinical groups, 

suggesting widespread transcriptomic alterations in PAs 

and across PA subtypes and that transcriptional 

signatures can be used for molecular classification of PA 

subtypes. The similarity heatmap suggests that NFPAs 

exhibit more dramatic transcriptomic alterations  

(Figure 1A). Consistently, the number of DEGs between 

NFPAs and other groups (3800~4200) was significantly 

larger than the number of DEGs between other 

comparison groups (Supplementary Figures 1, 2). This 

result suggests that despite a lack of abnormal hormone 

secretion, NFPAs are characterized by more widespread 

gene expression alterations. 

 

A total of 448 common DEGs were found to be shared 

across PA subtypes compared to normal pituitary tissue 

(Figure 1B). These genes are enriched with neuronal 

pathways, including neural active ligand-receptor 

binding and axon guidance (Figure 1C). The common 

DEGs are also enriched in five growth factor signaling 

pathways (Wnt, TGF-β, PI3K-AKT, Hippo, and STAT3-

JAK), all of which have been linked to PA pathogenesis 

or therapy [17–21]. These genes commonly changed 

across PA subtypes are also involved in cytokine 

production pathways (Figure 1C), consistent with 

decreased CD8
+
 T cell infiltration in both functional PAs 

and NFPAs (Figure 1D, 1E) and suggesting suppression 

of the immune response as a common etiology of PAs. 

 

Transcriptional signatures reveal altered pathways 

across PA subtypes 

 

To identify transcriptional signatures associated with 

each PA subtype, 54 transcriptomic datasets were used to 

construct a weighted gene coexpression network [22] 

consisting of 62 modules with a size of 30~1500 genes 

(Figure 2A). Analysis of module trait association 

revealed modular alterations of gene expression in each 

subtype (Figure 2B and Supplementary Figure 3). The 

two abnormal hormone-secretion subtypes share some 

coexpression modules (e.g., MEturquoise, MEgreen and 

MEdarkgreen), and the module MEturquoise genes was 

enriched with pathways related to protein synthesis 

(Figure 2C, 2D), indicating that abnormal macromolecule 

biosynthesis may be the basis of aberrant hormone 

production and secretion. Several coexpression modules 

were significantly associated with the nonfunctional PA 

subtype, e.g., the Module purple showed enrichment of 

genes in the insulin signaling pathway (Figure 2E). As 

patients with hormone-abnormal PA usually develop 

insulin resistance and glucose abnormalities [23], 

activated insulin signaling in NFPAs might antagonize 

metabolic disorders, thus preventing excessive hormone 

secretion. The high expression of genes in subtype-

correlated modules was confirmed by the heatmaps 

(Figure 2F). 
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Genomic copy number amplifications causally 

involved in gene transcriptional activation in PRL-PAs 

 
Next, we attempted to explore genomic alterations 

underlying the observed transcriptomic changes in PA 

patients. WGS data from 76 PA samples and paired 

blood samples were analyzed. We noticed a similar low 

mutation burden in these PA samples, consistent with 

previous observations. Some previously reported SNVs 

associated with PAs, such as GNAS and 1/11 in GH-

PAs, were identified with a low frequency of 

occurrence (Supplementary Material 1). Strikingly, we 

found widespread and recurrent copy number 

variations, especially amplifications, in PRL-PAs. The 

high-CNV feature occurred in nearly half of the PRL-

PA cases but rarely in other PA subtypes (Figure 3A). 

Specific genomic copy number amplification was not 

mentioned in a previous exome sequencing analysis of 

PAs, possibly because of the low number of PRL-PA 

patients involved. 

 

 
 

Figure 1. The transcriptional landscape of PAs. (A) Correlation heatmap of transcriptomic similarity among 21 PRL-PAs, 11 GH-PAs, 23 
NFPAs and 9 normal pituitary tissues (Normal). Pituitary adenoma subtype is indicated by the color bar above the heatmap. (B) Venn diagram 
showing the intersection of DEGs among three subtypes of PAs vs. Normal. DEGs were identified by the R package DESeq2 under the cutoff 
of adjusted P value < 0.05. (C) KEGG pathway enrichment analysis of 448 overlapping DEGs, the dot plot shows pathways with an adjusted P 
value < 0.05. (D) The infiltration of eight subtypes of immune cell populations and two endothelial cell types in PA samples and normal 
pituitary tissues was evaluated using the expression levels of cell type specific markers using the MCP-counter [38]. The abundances of each 
cell types were normalized by z transformation across samples. (E) Boxplots of z score from Figure 1D showing the reduced infiltration of 
CD8

+
 T cells was reduced across PA subtypes compared to normal pituitary tissues. 
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Figure 2. Weighted gene correlation network analysis (WGCNA) of transcriptome data reveals subtype specific coexpression 
modules. (A) WGCNA cluster dendrogram groups genes into distinct gene coexpression modules defined by dendrogram branch cutting.  
(B) Modules-subtype correlation heatmap of three PA subtypes and normal tissues. The cells in the heatmap were colored by the correlation 
between eigengene expression and each sample group, the correlation coefficients and P values were indicated in each cell. (C–E) KEGG 
pathway enrichment analysis of genes in the modules significantly associated with different PA subtypes. Adjusted P value < 0.05.  
(F) Expression profiles of genes in key modules associated with PA subtypes. 



 

www.aging-us.com 1280 AGING 

Table 1. Clinico-pathological characteristics of high- and low- CNV PRL-PAs. 

Sample Volume
1
 Invasive/non-Invasive CNV

2
 Drug resistance

3
 Ki-67 IHC

4
 

P906 Large Invasive High Resistance 8% 

P918 Large non-Invasive High NA <1% 

P1133 Large non-Invasive High NA 2% 

P1154 Giant Invasive High NA >3% 

P1037 Giant Invasive High Resistance 3% 

P1408 Giant non-Invasive High Resistance <1% 

P1100 Large non-Invasive High Resistance <1% 

P1694 Large Invasive High NA 5-8% 

P1711 Large non-Invasive High NA NA 

P1712 Giant Invasive High Resistance 6% 

P1736 Giant Invasive High Resistance 8% 

P1809 Large Invasive High Resistance 7% 

P25502 Large Invasive High Sensitive 3-5% 

P28607 Large Invasive High Resistance 1-2% 

P2890 Large non-Invasive High NA 2-3% 

P1824 Giant Invasive High Sensitive 5-10% 

P25505 Large Invasive High Resistance <1% 

P1821 Large non-Invasive High Resistance NA 

P1070 Large non-Invasive Low Sensitive 2% 

P961 Giant Invasive Low NA <1% 

P1483 Giant Invasive Low Sensitive <1% 

P1587 Large Invasive Low NA NA 

P_N6_30 Large non-Invasive Low Sensitive <1% 

P1199 Large Invasive Low Resistance <1% 

P1144 Large Invasive Low Sensitive <1% 

P1825 Giant Invasive Low NA 1% 

P640829 Large Invasive Low NA NA 

P29115 Large Invasive Low Sensitive 2-5% 

1 Tumor classification by volume, micro: <1 cm, large: 1-4 cm, giant: >4 cm. 
2 

According to the hierarchical clustering of CNV signatures. 
3 Drug (BCT) resistance, NA: no drug therapy was administered preoperatively. 
4 Ki-67 IHC staining, NA: not enough tissue. 
 

The genes located in copy number amplification regions 

significantly overlapped with the genes specifically 

upregulated in PRL-PAs compared to other subtypes 

(Figure 3B), implying a role of genomic CNV in 

shaping transcriptomic alterations in PRL-PAs. The 498 

overlapping genes were enriched in pathways 

downstream of mTOR signaling, including the 

biosynthesis of amino acids, lysosome pathway, 

ribosome and AMPK signaling (Figure 3C). Cyclin-

dependent kinase 6 (CDK6) was also transcriptionally 

activated by copy number amplification, which suggests 

the role of genomic copy number variation in the out-

of-control cell cycle and tumor progression of PAs. 

 

We further divided PRL-PA patients into high-CNV 

and low-CNV groups according to the hierarchical 

clustering of CNV signatures. Consistent with the 

increase in copy number, the expression fold change of 

PRL-PA specific upregulated genes was significantly 

higher in the high-CNV group (Figure 3D), suggesting  

a causal role of CNVs in transcriptional changes in 

PRL-PA patients. 

 

Genomic copy number amplifications cause high 

prolactin production and activation of genes 

downstream of the mTOR signaling pathway 
 

To investigate the influence of genomic copy number 

amplification on the clinical outcomes of PRL-PA 

patients, we used an immunohistochemistry (IHC) 

staining approach to probe key genes under copy number 

amplifications in PRL-PAs. The copy number-amplified 

genes BCAT1 and MYC were more abundant in the 

high-CNV group of patients (Figure 4A). To further 

analyze the pathological impacts of genomic copy 

number variation, we surveyed expression of prolactin in 
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Figure 3. Copy number amplifications in PRL-PAs cause gene transcriptional activation. (A) The heatmap of CNV profiles across 
PA subtypes. The sample subtype was indicated by color bar above the heatmap, samples were grouped according to the similarity of CNV 
profiles. The heatmap was colored by CNVs, red indicates gain of copy number and blue indicates loss of copy number. Frequent copy 
number amplification was observed in PRL-PAs. (B) 498 genes with the copy number amplifications in PRL-PAs overlapped with up-
regulated DEGs in the PRL-PAs compared to other subtypes. P value < 2.2e-16 by hypergeometric test. (C) KEGG pathway enrichment 
analysis of 498 up-regulated genes with both copy number amplifications and transcriptional up-regulation in PRL-PAs, the dot plot shows 
pathways with a P value < 0.05. (D) PRL-PAs samples were divided into two groups (high CNV and low CNV) according to the clustering 
results in (A). The boxplot shows the log2 expression fold-changes of PRL-PAs specific up-regulation genes relative to GH-PAs/NFPAs in the 
high CNV group and low CNV group. The high CNV group exhibited transcriptional up-regulation (Median log2 fold change ~0.75) while the 
low CNV group did not. 



 

www.aging-us.com 1282 AGING 

patients in the high- and low-CNV groups and found 

prolactin expression to be 4-fold higher in the former 

group (Figure 4B). ErbB signaling is a determinant of 

prolactin production, and the downstream transcription 

factor of ErbB signaling, MYC, also exhibited a 4-fold 

increase in the high-CNV group. These results suggest a 

significant impact of genomic CNVs on the excessive 

production of prolactin in PRL-PA patients. The 

transcriptomic differences between the high- and low-

CNV groups also involved numerous ribosome genes 

and branched-chain amino acid aminotransferase 1 

(BCAT1), implicating activation of the mTOR signaling 

 

 
 

Figure 4. Clinical relevance of genomic copy number variation in PRL-PAs. (A) Immunohistochemistry of BCAT1, MYC, Ki-67, PRL, 
and PIT1 in high and low CNV PRL-PAs. ×100 magnification, the scale bar = 100 μm. (B) Prolactin expression levels (TPM) in PRL-PAs with high 
CNV, PRL-PAs with low CNV, GH-PAs and NFPAs. *P<0.05, **P<0.01, ***P<0.001 (C) Copy number and expression level (TPM) of BCAT1 in 
different PA subtypes. Both copy number and expression level of BCAT1 were increased in PRL-PAs. (D) PRL-PA patients in the high CNV 
group more frequently developed drug resistance. The yellow bar indicates the number of patients that are sensitive to BCT treatment, while 
the blue bar indicates number of patients that are insensitive to the same treatment. P value = 0.026, Chi-Square test. (E) High CNV group in 
PRL-PAs exhibits a higher degree of malignancy. The PA malignancy was defined by the number of positive Ki-67 foci in IHC. P value = 0.059, 
Chi-Square test. (F) The Scatter plot shows positive correlation (spearman correlation coefficient: 0.47) of transcriptomic alterations in high 
CNV group relative to low CNV group (x-axis) and relapsed PAs relative to un-relapsed PAs (y-axis). 
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pathway in the high-CNV group (Figure 4C). BCAT1 

undergoes correlated copy number amplifications and 

gene expression increments in PRL-PAs. Both BCAT1 

and prolactin can activate the mTOR signaling pathway, 

which leads to excessive ribosome biogenesis. 

 

Genomic copy number amplifications are associated 

with worse prognosis 
 

Elevated Ki-67 IHC staining in the PRL-PA high-CNV 

group suggests a worse clinical prognosis (Figure 4A 

and Table 1). Dopamine agonists (bromocriptine, BCT) 

are the first choice for PRL-PA treatment (not applicable 

to patients with rapid visual loss and visual field 

defects), followed by surgery, which can reduce tumor 

size and prolactin levels [4, 24]. However, drug 

resistance arises in a subset of patients, as indicated by a 

maintained prolactin level or tumor size. The frequency 

of BCT resistance in patients in the high-CNV group 

(BCT resistance: 10/12 v.s. BCT sensitive: 1/6; p = 

0.006, chi-square test) was significantly higher than that 

in the low-CNV group (Figure 4D). The Ki-67 label 

index marks aggressive behavior in pituitary tumors, and 

the high-CNV group (Ki-67 positive ≥3%: 10/16 vs. Ki-

67 positive < 3%: 1/8; P value = 0.02, chi-square test) 

was associated with a higher Ki-67 label index (Figure 

4E). These data collectively support that copy number 

variations contribute to a worse prognosis in PRL-PA 

patients. 

 

The transcriptional signature related to relapse in PAs 

was determined by comparing patients who experienced 

early relapse (< 36 months) and those without any sign 

of relapse after a long period (> 60 months). Gene 

expression patterns in the high-CNV group in PRL-PA 

patients correlated with gene expression patterns that 

predict early relapse (Figure 4F), suggesting that the 

genes regulated by aberrant copy number in PRL-PAs 

are related to relapse. 

 

DISCUSSION 
 

In this study, we profiled transcriptomic alterations in 

three major subtypes of Pas revealing shared and 

subtype-specific alterations. The clinical subtypes  

of PAs were well separated according to their 

transcriptional signatures in clustering analysis, 

suggesting that gene expression abnormalities are an 

essential part of PA etiology. Interestingly, we found 

that the PA subtypes with abnormal hormonal secretion 

were more similar to normal pituitary tissue samples 

and that the number of DEGs between samples of  

these functional subtypes and normal pituitary tissues 

samples was less than that of functional subtypes.  

These findings suggest that the nonfunctional subtype 

of PA undergoes more widespread gene expression 

alterations, as opposed to aberration of specific 

hormonal pathways. 

 

We utilized WGCNA to generate coexpression networks 

in PAs and identified subtype-specific modules. The 

functional subtypes (GH-PAs and PRL-PAs) shared 

modules enriched in growth hormone pathways; PRL-

PAs were also enriched in ribosome genes and the 

mitochondrial oxidative phosphorylation pathways, 

suggesting a high demand of energy metabolism in the 

PRL-PAs. The transcriptional alterations in nonfunctional 

PAs were enriched in autophagy genes, and induction of 

autophagy might be beneficial in limiting PA 

progression. Indeed, autophagic cell death mediates the 

effects of bromocriptine and temozolomide on PA [25–

27]. Nevertheless, the specific roles of autophagy in 

antagonizing PA progression remain elusive. 

 

Consistent with previous reports, we observed a lack of 

high-frequency recurrent mutations in PAs [12]. 

However, we do demonstrate frequent genomic copy 

number amplifications in PRL-PAs. Moreover, these 

genomic CNVs in PRL-PAs play a causal role in PA 

etiology, including prolactin production, proliferative 

ability, and drug resistance. The impact of copy number 

amplifications on PA etiology might be caused by its 

direct influence on abnormal gene expression 

upregulation, such as genes in ribosome biogenesis, 

growth signaling and HIF signaling pathways, which 

facilitate the hypoxic adaptative ability of PAs. The copy 

number amplification and upregulated expression of 

BCAT1 may play a central role in the activation of genes 

downstream of the mTOR pathway through a feedback 

loop involving prolactin [28, 29]. In addition, PRL-PA-

specific upregulation of genes caused by copy number 

amplification includes chromogranin B (CHGB), which 

has been linked to tumor progression in PRL-PAs [30], 

further supporting the role of genomic copy number 

variation in PA progression. 

 

Altogether, we investigated the genomic and 

transcriptomic correlation in PAs in the present study 

and demonstrated for the first time that high CNVs in 

PRL-PAs play an important role in tumor development 

and are significantly associated with poor prognosis. 

We believe the findings have clinical relevance in 

defining prognostic subgroups as well as implications 

for developing new targeted treatments for PRL-PA. 

 

MATERIALS AND METHODS 
 

Patients samples 
 

All samples were obtained following transsphenoidal 

surgery performed at Beijing Tiantan Hospital from 

May 2013 to May 2017. The fresh tumor samples were 
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stored in liquid nitrogen. 28 PRL-PAs, 11 GH-PAs and 

37 NFPAs from the study population (age range, 20–75 

years) were diagnosed according to clinical features and 

pathological findings. 9 normal pituitary glands were 

obtained from a donation program. The study protocols 

were approved by the Internal Review Board of Beijing 

Tiantan Hospital affiliated to Capital Medical 

University and conformed to the ethical guidelines of 

the Declaration of Helsinki (No. KY-2013-02). 

 

High-throughput sequencing 
 

A total amount of 0.6 μg genomic DNA per sample was 

used as input material for DNA sample preparation. 

Sequencing libraries were generated using the Agilent 

SureSelect Human All Exon V6 kit (Agilent 

Technologies, CA, USA) following the manufacturer’s 

recommendations, and index codes were added to each 

sample. Clustering of the index-coded samples was 

performed using a cBot Cluster Generation System with 

a HiSeq PE Cluster Kit (Illumina, San Diego, CA, USA) 

according to the manufacturer’s instructions. After 

cluster generation, the DNA libraries were sequenced 

using the Illumina HiSeq platform, and 150-bp paired-

end reads were generated. A total amount of 2 μg RNA 

per sample was used as input material for RNA sample 

preparations. Sequencing libraries were generated using 

NEBNext® UltraTM RNA Library Prep Kit for 

Illumina® (NEB, Ispawich, USA) following the 

manufacturer’s recommendations, and index codes were 

added to attribute sequences to each sample. Clustering 

of the index-coded samples was performed on a cBot 

Cluster Generation System using TruSeq PE Cluster Kit 

v3-cBot-HS (Illumina) according to the manufacturer’s 

instructions. After cluster generation, the library 

preparations were sequenced using the Illumina HiSeq 

platform, and 125-bp/150-bp paired-end reads were 

generated. 

 

Transcriptomic analysis and identification of 

differentially expressed genes 

 

For RNA sequencing data, the paired-end clean reads 

were aligned to the human reference genome (hg19) 

using Hisat2 (v2.0.5) [31]. HTSeq (v 0.11.2) was  

used to count the read numbers mapped to each gene 

[32]. Hierarchical clustering analysis of all 

transcriptomic samples was performed using the 

pairwise similarity of each pair of samples determined 

by the Spearman correlation coefficient. Analysis of 

differentially expressed genes (DEGs) in each pair of 

comparisons was performed using the R package 

DESeq2 [33]. The P value of the differential test was 

corrected by a multiple hypothesis test, and DEGs were 

determined by controlling the FDR (false discovery 

rate) < 0.05. 

Genomic analysis 
 

For WGS data, valid sequencing data were mapped to 

the reference human genome (UCSC hg19) by Burrows-

Wheeler Aligner (BWA) software to obtain the original 

mapping results stored in BAM format [34]. If one or 

one paired read(s) were mapped to multiple positions, 

the strategy adopted by BWA is to choose the most 

likely placement. If two or more likely placements are 

presented, BWA selects one randomly. SAMtools and 

Picard (http://broadinstitute.github.io/picard/) were used 

to sort BAM files and perform duplicate marking, local 

realignment, and base quality recalibration to generate 

the final BAM file. GATK (v3.4) software 28 was 

employed for SNP calling. Genome regions with 

significant amplification or deletion in the samples were 

evaluated by GISTIC [35], and regions with high 

frequencies were screened, namely, recurrent CNV 

regions. The higher the GISTIC score is, the higher is 

the CNV frequency in this area. 

 

Pathway enrichment analysis 

 

KEGG pathway enrichment for functional analysis of 

gene lists was performed using the clusterprofiler 

package under R software (version 3.6.0) [36]. The 

significance of the enrichment analysis was defined using 

a hypergeometric test, and the resulting P values were 

corrected for multiple hypothesis testing with the BH 

(Benjamini & Hochberg, 1995) method [37]. The final 

reported enriched terms and pathways were filtered 

according to adjusted P values < 0.05 or P value < 0.05. 

 

Weighted gene expression network analysis 

(WGCNA) 

 

The PA coexpression network was constructed using the 

R package WGCNA (v 1.69) [22]. Biweight 

midcorrelations between each gene pair were calculated 

to build an adjacency matrix using the formula: 

adjacency = (0.5 * (1+cor) )^power. A thresholding 

power of 14 was chosen, and the resulting adjacency 

matrix was converted to a topological overlap (TO) 

matrix via the TOM similarity algorithm. The genes were 

hierarchically clustered based on TO similarity. Modules 

were assigned by the dynamic tree-cutting algorithm with 

default parameters. Modules were correlated with each 

group of samples to identify subtype-specific modules, 

and the correlation coefficients and P values are indicated 

in figures. 
 

Immunohistochemistry staining 
 

Tissue from PRL-PAs was fixed in 10% formalin and 

embedded in paraffin. Three core biopsies (2.0 mm in 

diameter) were selected from the paraffin-embedded 

http://broadinstitute.github.io/picard/
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tissue and transferred to tissue microarrays using a 

semiautomated system (Aphelys MiniCore, Mitogen, 

UK). The microarrays were cut into 4-μm sections and 

incubated with anti-BCAT1 (rabbit monoclonal, 1:600, 

ab197941, Abcam), anti-c-Myc (rabbit monoclonal, 

1:1000, ab32072, Abcam), anti-Ki-67 (rabbit 

monoclonal, 1:100, ab16667, Abcam), anti-PRL (rabbit 

polyclonal, 1:300, ab188229, Abcam), and anti-PIT1 

(mouse monoclonal, 1:500, sc393943, Santa-Cruz) 

primary antibodies. Staining intensity was scored as 

follows: 0, no staining: 1, weak; 2, moderate; and 3, 

strong staining. An H-score was calculated based on the 

percentage of positively stained cells at each intensity 

level using the following formula: [1 × (% weakly 

stained cells) + 2 × (% moderately stained) + 3 × (% 

strongly stained cells)]. 

 

Statistical analysis 

 

Chi test and Fisher's exact test were employed to 

determine the significance of categorical variables. 

Comparisons between two groups were performed using 

Student’s unpaired two-tailed t-test. A P value ≤0.05 

and/or adjusted P value ≤0.05 was considered statistically 

significant. 
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The study protocols were approved by the Internal 
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(No. KY2016-035-01). 

 

AUTHOR CONTRIBUTIONS 
 

Chuzhong Li, Yazhuo Zhang and Yiyuan Chen 

conceived the project and chose the technical route, 

Yiyuan Chen performed the experiments, analyzed the 

data, and wrote the manuscript. Hua Gao and Weiyan Xie 

designed the experiments and the technical route, 

Songbai Gui and Chunhui Liu helped to revise the 

manuscript. Jing Guo and Qiuyue Fang performed  

the IHC. Peng Zhao and Haibo Zhu assisted with the 

diagnostic assessment. Zhuang Wang and Jichao Wang 

collected the clinical data and specimens. All authors 

read and approved the manuscript. 

 

ACKNOWLEDGMENTS 
 

The authors thank the laboratory technicians, data 

collectors, and medical editors. 

 

CONFLICTS OF INTEREST 
 

The authors declare that they have no conflicts of interest. 

FUNDING 
 

This study was financially supported by the National 

Natural Science Foundation of China (81771489). 

 

REFERENCES 
 

1. Molitch ME. Diagnosis and treatment of pituitary 
adenomas: a review. JAMA. 2017; 317:516–24. 

 https://doi.org/10.1001/jama.2016.19699 
PMID:28170483 

2. Ezzat S, Asa SL, Couldwell WT, Barr CE, Dodge WE, 
Vance ML, McCutcheon IE. The prevalence of pituitary 
adenomas: a systematic review. Cancer. 2004; 
101:613–19. 

 https://doi.org/10.1002/cncr.20412 PMID:15274075 

3. Ntali G, Wass JA. Epidemiology, clinical presentation 
and diagnosis of non-functioning pituitary adenomas. 
Pituitary. 2018; 21:111–18. 

 https://doi.org/10.1007/s11102-018-0869-3 
PMID:29368293 

4. Mehta GU, Lonser RR. Management of hormone-
secreting pituitary adenomas. Neuro Oncol. 2017; 
19:762–73. 

 https://doi.org/10.1093/neuonc/now130 
PMID:27543627 

5. Chanson P, Maiter D. The epidemiology, diagnosis and 
treatment of prolactinomas: the old and the new. Best 
Pract Res Clin Endocrinol Metab. 2019; 33:101290. 

 https://doi.org/10.1016/j.beem.2019.101290 
PMID:31326373 

6. Inoshita N, Nishioka H. The 2017 WHO classification of 
pituitary adenoma: overview and comments. Brain 
Tumor Pathol. 2018; 35:51–56. 

 https://doi.org/10.1007/s10014-018-0314-3 
PMID:29687298 

7. Moreno CS, Evans CO, Zhan X, Okor M, Desiderio DM, 
Oyesiku NM. Novel molecular signaling and 
classification of human clinically nonfunctional 
pituitary adenomas identified by gene expression 
profiling and proteomic analyses. Cancer Res. 2005; 
65:10214–22. 

 https://doi.org/10.1158/0008-5472.CAN-05-0884 
PMID:16288009 

8. Lazzerini Denchi E, Attwooll C, Pasini D, Helin K. 
Deregulated E2F activity induces hyperplasia and 
senescence-like features in the mouse pituitary gland. 
Mol Cell Biol. 2005; 25:2660–72. 

 https://doi.org/10.1128/MCB.25.7.2660-2672.2005 
PMID:15767672 

9. Seltzer J, Ashton CE, Scotton TC, Pangal D, Carmichael 
JD, Zada G. Gene and protein expression in pituitary 

https://doi.org/10.1001/jama.2016.19699
https://pubmed.ncbi.nlm.nih.gov/28170483
https://doi.org/10.1002/cncr.20412
https://pubmed.ncbi.nlm.nih.gov/15274075
https://doi.org/10.1007/s11102-018-0869-3
https://pubmed.ncbi.nlm.nih.gov/29368293
https://doi.org/10.1093/neuonc/now130
https://pubmed.ncbi.nlm.nih.gov/27543627
https://doi.org/10.1016/j.beem.2019.101290
https://pubmed.ncbi.nlm.nih.gov/31326373
https://doi.org/10.1007/s10014-018-0314-3
https://pubmed.ncbi.nlm.nih.gov/29687298
https://doi.org/10.1158/0008-5472.CAN-05-0884
https://pubmed.ncbi.nlm.nih.gov/16288009
https://doi.org/10.1128/MCB.25.7.2660-2672.2005
https://pubmed.ncbi.nlm.nih.gov/15767672


 

www.aging-us.com 1286 AGING 

corticotroph adenomas: a systematic review of the 
literature. Neurosurg Focus. 2015; 38:E17. 

 https://doi.org/10.3171/2014.10.FOCUS14683 
PMID:25639319 

10. Tateno T, Izumiyama H, Doi M, Yoshimoto T, Shichiri 
M, Inoshita N, Oyama K, Yamada S, Hirata Y. 
Differential gene expression in ACTH -secreting and 
non-functioning pituitary tumors. Eur J Endocrinol. 
2007; 157:717–24. 

 https://doi.org/10.1530/EJE-07-0428 PMID:18057378 

11. Li C, Xie W, Rosenblum JS, Zhou J, Guo J, Miao Y, Shen 
Y, Wang H, Gong L, Li M, Zhao S, Cheng S, Zhu H, et al. 
Somatic SF3B1 hotspot mutation in prolactinomas. Nat 
Commun. 2020; 11:2506. 

 https://doi.org/10.1038/s41467-020-16052-8 
PMID:32427851 

12. Salomon MP, Wang X, Marzese DM, Hsu SC, Nelson N, 
Zhang X, Matsuba C, Takasumi Y, Ballesteros-Merino C, 
Fox BA, Barkhoudarian G, Kelly DF, Hoon DS. The 
epigenomic landscape of pituitary adenomas reveals 
specific alterations and differentiates among 
acromegaly, cushing’s disease and endocrine-inactive 
subtypes. Clin Cancer Res. 2018; 24:4126–36. 

 https://doi.org/10.1158/1078-0432.CCR-17-2206 
PMID:30084836 

13. Reincke M, Sbiera S, Hayakawa A, Theodoropoulou 
M, Osswald A, Beuschlein F, Meitinger T, Mizuno-
Yamasaki E, Kawaguchi K, Saeki Y, Tanaka K, Wieland 
T, Graf E, et al. Mutations in the deubiquitinase gene 
USP8 cause cushing’s disease. Nat Genet. 2015; 
47:31–38. 

 https://doi.org/10.1038/ng.3166 PMID:25485838 

14. Bi WL, Greenwald NF, Ramkissoon SH, Abedalthagafi 
M, Coy SM, Ligon KL, Mei Y, MacConaill L, Ducar M, 
Min L, Santagata S, Kaiser UB, Beroukhim R, et al. 
Clinical identification of oncogenic drivers and copy-
number alterations in pituitary tumors. Endocrinology. 
2017; 158:2284–91. 

 https://doi.org/10.1210/en.2016-1967 
PMID:28486603 

15. Bi WL, Horowitz P, Greenwald NF, Abedalthagafi M, 
Agarwalla PK, Gibson WJ, Mei Y, Schumacher SE, Ben-
David U, Chevalier A, Carter S, Tiao G, Brastianos PK, et 
al. Landscape of genomic alterations in pituitary 
adenomas. Clin Cancer Res. 2017; 23:1841–51. 

 https://doi.org/10.1158/1078-0432.CCR-16-0790 
PMID:27707790 

16. Song ZJ, Reitman ZJ, Ma ZY, Chen JH, Zhang QL, Shou 
XF, Huang CX, Wang YF, Li SQ, Mao Y, Zhou LF, Lian BF, 
Yan H, et al. The genome-wide mutational landscape of 
pituitary adenomas. Cell Res. 2016; 26:1255–59. 

 https://doi.org/10.1038/cr.2016.114  
PMID:27670697 

17. Gaston-Massuet C, Andoniadou CL, Signore M, 
Jayakody SA, Charolidi N, Kyeyune R, Vernay B, Jacques 
TS, Taketo MM, Le Tissier P, Dattani MT, Martinez-
Barbera JP. Increased wingless (Wnt) signaling in 
pituitary progenitor/stem cells gives rise to pituitary 
tumors in mice and humans. Proc Natl Acad Sci USA. 
2011; 108:11482–87. 

 https://doi.org/10.1073/pnas.1101553108 
PMID:21636786 

18. Recouvreux MV, Camilletti MA, Rifkin DB, Díaz-Torga 
G. The pituitary TGFβ1 system as a novel target for the 
treatment of resistant prolactinomas. J Endocrinol. 
2016; 228:R73–83. 

 https://doi.org/10.1530/JOE-15-0451 PMID:26698564 

19. Robbins HL, Hague A. The PI3K/Akt pathway in tumors 
of endocrine tissues. Front Endocrinol (Lausanne). 
2016; 6:188. 

 https://doi.org/10.3389/fendo.2015.00188 
PMID:26793165 

20. Xekouki P, Lodge EJ, Matschke J, Santambrogio A, Apps 
JR, Sharif A, Jacques TS, Aylwin S, Prevot V, Li R, Flitsch 
J, Bornstein SR, Theodoropoulou M, Andoniadou CL. 
Non-secreting pituitary tumours characterised by 
enhanced expression of YAP/TAZ. Endocr Relat Cancer. 
2019; 26:215–25. 

 https://doi.org/10.1530/ERC-18-0330 PMID:30139767 

21. Valiulyte I, Steponaitis G, Skiriute D, Tamasauskas A, 
Vaitkiene P. Signal transducer and activator of 
transcription 3 (STAT3) promoter methylation and 
expression in pituitary adenoma. BMC Med Genet. 
2017; 18:72. 

 https://doi.org/10.1186/s12881-017-0434-3 
PMID:28709401 

22. Langfelder P, Horvath S. WGCNA: an R package for 
weighted correlation network analysis. BMC 
Bioinformatics. 2008; 9:559. 

 https://doi.org/10.1186/1471-2105-9-559 
PMID:19114008 

23. Auriemma RS, De Alcubierre D, Pirchio R, Pivonello R, 
Colao A. Glucose abnormalities associated to prolactin 
secreting pituitary adenomas. Front Endocrinol 
(Lausanne). 2019; 10:327. 

 https://doi.org/10.3389/fendo.2019.00327 
PMID:31191454 

24. Maiter D. Management of dopamine agonist-resistant 
prolactinoma. Neuroendocrinology. 2019; 109:42–50. 

 https://doi.org/10.1159/000495775  
PMID:30481756 

25. Geng X, Ma L, Li Z, Li Z, Li J, Li M, Wang Q, Chen Z, Sun 
Q. Bromocriptine induces autophagy-dependent cell 
death in pituitary adenomas. World Neurosurg. 2017; 
100:407–16. 

https://doi.org/10.3171/2014.10.FOCUS14683
https://pubmed.ncbi.nlm.nih.gov/25639319
https://doi.org/10.1530/EJE-07-0428
https://pubmed.ncbi.nlm.nih.gov/18057378
https://doi.org/10.1038/s41467-020-16052-8
https://pubmed.ncbi.nlm.nih.gov/32427851
https://doi.org/10.1158/1078-0432.CCR-17-2206
https://pubmed.ncbi.nlm.nih.gov/30084836
https://doi.org/10.1038/ng.3166
https://pubmed.ncbi.nlm.nih.gov/25485838
https://doi.org/10.1210/en.2016-1967
https://pubmed.ncbi.nlm.nih.gov/28486603
https://doi.org/10.1158/1078-0432.CCR-16-0790
https://pubmed.ncbi.nlm.nih.gov/27707790
https://doi.org/10.1038/cr.2016.114
https://pubmed.ncbi.nlm.nih.gov/27670697
https://doi.org/10.1073/pnas.1101553108
https://pubmed.ncbi.nlm.nih.gov/21636786
https://doi.org/10.1530/JOE-15-0451
https://pubmed.ncbi.nlm.nih.gov/26698564
https://doi.org/10.3389/fendo.2015.00188
https://pubmed.ncbi.nlm.nih.gov/26793165
https://doi.org/10.1530/ERC-18-0330
https://pubmed.ncbi.nlm.nih.gov/30139767
https://doi.org/10.1186/s12881-017-0434-3
https://pubmed.ncbi.nlm.nih.gov/28709401
https://doi.org/10.1186/1471-2105-9-559
https://pubmed.ncbi.nlm.nih.gov/19114008
https://doi.org/10.3389/fendo.2019.00327
https://pubmed.ncbi.nlm.nih.gov/31191454
https://doi.org/10.1159/000495775
https://pubmed.ncbi.nlm.nih.gov/30481756


 

www.aging-us.com 1287 AGING 

 https://doi.org/10.1016/j.wneu.2017.01.052 
PMID:28137551 

26. Kun Z, Yuling Y, Dongchun W, Bingbing X, Xiaoli L, Bin X. 
HIF-1α inhibition sensitized pituitary adenoma cells to 
temozolomide by regulating presenilin 1 expression 
and autophagy. Technol Cancer Res Treat. 2016; 
15:NP95–P104. 

 https://doi.org/10.1177/1533034615618834 
PMID:26647409 

27. Leng ZG, Lin SJ, Wu ZR, Guo YH, Cai L, Shang HB, Tang 
H, Xue YJ, Lou MQ, Zhao W, Le WD, Zhao WG, Zhang X, 
Wu ZB. Activation of DRD5 (dopamine receptor D5) 
inhibits tumor growth by autophagic cell death. 
Autophagy. 2017; 13:1404–19. 

 https://doi.org/10.1080/15548627.2017.1328347 
PMID:28613975 

28. Tönjes M, Barbus S, Park YJ, Wang W, Schlotter M, 
Lindroth AM, Pleier SV, Bai AH, Karra D, Piro RM, 
Felsberg J, Addington A, Lemke D, et al. BCAT1 
promotes cell proliferation through amino acid 
catabolism in gliomas carrying wild-type IDH1. Nat 
Med. 2013; 19:901–08. 

 https://doi.org/10.1038/nm.3217 PMID:23793099 

29. Mossmann D, Park S, Hall MN. mTOR signalling and 
cellular metabolism are mutual determinants in 
cancer. Nat Rev Cancer. 2018; 18:744–57. 

 https://doi.org/10.1038/s41568-018-0074-8 
PMID:30425336 

30. Zhang W, Zang Z, Song Y, Yang H, Yin Q. Co-expression 
network analysis of differentially expressed genes 
associated with metastasis in prolactin pituitary 
tumors. Mol Med Rep. 2014; 10:113–18. 

 https://doi.org/10.3892/mmr.2014.2152 
PMID:24736764 

31. Baruzzo G, Hayer KE, Kim EJ, Di Camillo B, FitzGerald 
GA, Grant GR. Simulation-based comprehensive 
benchmarking of RNA-seq aligners. Nat Methods. 
2017; 14:135–39. 

 https://doi.org/10.1038/nmeth.4106  
PMID:27941783 

32. Anders S, Pyl PT, Huber W. HTSeq—a python 
framework to work with high-throughput sequencing 
data. Bioinformatics. 2015; 31:166–69. 

 https://doi.org/10.1093/bioinformatics/btu638 
PMID:25260700 

33. Love MI, Huber W, Anders S. Moderated estimation of 
fold change and dispersion for RNA-seq data with 
DESeq2. Genome Biol. 2014; 15:550. 

 https://doi.org/10.1186/s13059-014-0550-8 
PMID:25516281 

34. Li H, Durbin R. Fast and accurate short read alignment 
with burrows-wheeler transform. Bioinformatics. 2009; 
25:1754–60. 

 https://doi.org/10.1093/bioinformatics/btp324 
PMID:19451168 

35. Mermel CH, Schumacher SE, Hill B, Meyerson ML, 
Beroukhim R, Getz G. GISTIC2.0 facilitates sensitive and 
confident localization of the targets of focal somatic 
copy-number alteration in human cancers. Genome 
Biol. 2011; 12:R41. 

 https://doi.org/10.1186/gb-2011-12-4-r41 
PMID:21527027 

36. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R 
package for comparing biological themes among gene 
clusters. OMICS. 2012; 16:284–87. 

 https://doi.org/10.1089/omi.2011.0118 
PMID:22455463 

37.  Benjamini Y, Hochberg Y. Controlling the False 
Discovery Rate: A Practical and Powerful Approach to 
Multiple Testing. J R Stat Soc Series B Stat Methodol. 
1995; 57:289–300. 

 https://doi.org/10.1111/j.2517-6161.1995.tb02031.x 

38. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, 
Petitprez F, Selves J, Laurent-Puig P, Sautès-Fridman C, 
Fridman WH, de Reyniès A. Estimating the population 
abundance of tissue-infiltrating immune and stromal 
cell populations using gene expression. Genome Biol. 
2016; 17:218. 

 https://doi.org/10.1186/s13059-016-1070-5 
PMID:27765066 

  

https://doi.org/10.1016/j.wneu.2017.01.052
https://pubmed.ncbi.nlm.nih.gov/28137551
https://doi.org/10.1177/1533034615618834
https://pubmed.ncbi.nlm.nih.gov/26647409
https://doi.org/10.1080/15548627.2017.1328347
https://pubmed.ncbi.nlm.nih.gov/28613975
https://doi.org/10.1038/nm.3217
https://pubmed.ncbi.nlm.nih.gov/23793099
https://doi.org/10.1038/s41568-018-0074-8
https://pubmed.ncbi.nlm.nih.gov/30425336
https://doi.org/10.3892/mmr.2014.2152
https://pubmed.ncbi.nlm.nih.gov/24736764
https://doi.org/10.1038/nmeth.4106
https://pubmed.ncbi.nlm.nih.gov/27941783
https://doi.org/10.1093/bioinformatics/btu638
https://pubmed.ncbi.nlm.nih.gov/25260700
https://doi.org/10.1186/s13059-014-0550-8
https://pubmed.ncbi.nlm.nih.gov/25516281
https://doi.org/10.1093/bioinformatics/btp324
https://pubmed.ncbi.nlm.nih.gov/19451168
https://doi.org/10.1186/gb-2011-12-4-r41
https://pubmed.ncbi.nlm.nih.gov/21527027
https://doi.org/10.1089/omi.2011.0118
https://pubmed.ncbi.nlm.nih.gov/22455463
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1186/s13059-016-1070-5
https://pubmed.ncbi.nlm.nih.gov/27765066


 

www.aging-us.com 1288 AGING 

SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Comparison of the number of upregulated DEGs (Red) and downregulated DEGs (Blue) in 6 
pairwise DEGs analysis. DESeq2, FDR < 0.05. 
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Supplementary Figure 2. KEGG pathway enrichment analysis of genes among three PA subtypes vs. Normal. Adjusted P value < 
0.05. 
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Supplementary Figure 3. KEGG pathway enrichment analysis of genes in the modules significantly associated with different 
PA subtypes. Adjusted P value < 0.05. 
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Supplementary Table 
 

 

Supplementary Table 1. Clinical features of 76 PAs. 

Sample Gender Age (Y) Clinical Type Volume
1
 Invasive/non-Invasive PFS Time

2
 Relapse

2
 

Sequencing 

strategy 

P906 F 25 PRL-PAs Large Invasive 81 N WGS+RNA-seq 

P918 M 49 PRL-PAs Large non-Invasive 80 N WGS+RNA-seq 

P1133 F 61 PRL-PAs Large non-Invasive 66 N WGS+RNA-seq 

P1154 F 46 PRL-PAs Giant Invasive 65 N WGS+RNA-seq 

P1037 M 43 PRL-PAs Giant Invasive 37 Y WGS+RNA-seq 

P1408 M 45 PRL-PAs Giant non-Invasive 52 N WGS 

P1100 M 37 PRL-PAs Large non-Invasive 41 Y WGS 

P1694 F 44 PRL-PAs Large Invasive 39 N WGS+RNA-seq 

P1711 F 30 PRL-PAs Large non-Invasive - - WGS+RNA-seq 

P1712 M 31 PRL-PAs Giant Invasive 8 Y WGS+RNA-seq 

P1736 M 55 PRL-PAs Giant Invasive 17 Y WGS+RNA-seq 

P1809 F 20 PRL-PAs Large Invasive 34 N WGS+RNA-seq 

P25502 M 65 PRL-PAs Large Invasive - - WGS+RNA-seq 

P28607 F 28 PRL-PAs Large Invasive - - WGS+RNA-seq 

P2890 F 15 PRL-PAs Large non-Invasive - - WGS+RNA-seq 

P1824 M 22 PRL-PAs Giant Invasive 33 N WGS+RNA-seq 

P25505 M 27 PRL-PAs Large Invasive - - WGS 

P1821 F 22 PRL-PAs Large non-Invasive - - WGS 

P1070 F 50 PRL-PAs Large non-Invasive 71 N WGS+RNA-seq 

P961 M 42 PRL-PAs Giant Invasive 53 Y WGS+RNA-seq 

P1483 M 20 PRL-PAs Giant Invasive 49 N WGS+RNA-seq 

P1587 F 26 PRL-PAs Large Invasive 44 N WGS+RNA-seq 

P_N6_30 F 48 PRL-PAs Large non-Invasive 52 N WGS 

P1199 F 41 PRL-PAs Large Invasive 4 Y WGS+RNA-seq 

P1144 M 48 PRL-PAs Large Invasive 66 N WGS 

P1825 F 38 PRL-PAs Giant Invasive 33 N WGS+RNA-seq 

P640829 M 43 PRL-PAs Large Invasive - - WGS+RNA-seq 

P29115 M 37 PRL-PAs Large Invasive - - WGS 

P1087 M 46 NFPAs Giant Invasive 25 Y WGS 

P1169 F 57 NFPAs Giant Invasive 65 N WGS 

P1271 M 56 NFPAs Large non-Invasive 59 N WGS+RNA-seq 

P1301 F 55 NFPAs Large non-Invasive 14 Y WGS 

P1315 F 50 NFPAs Large non-Invasive 57 N WGS 

P1339 M 43 NFPAs Large Invasive 55 N WGS+RNA-seq 

P1356 M 47 NFPAs Large Invasive 36 Y WGS+RNA-seq 

P1391 M 51 NFPAs Large non-Invasive 52 N WGS 

P1409 M 60 NFPAs Large Invasive 52 N WGS 

P1423 F 66 NFPAs Large non-Invasive 51 N WGS+RNA-seq 

P1448 F 49 NFPAs Giant Invasive 44 Y WGS+RNA-seq 

P1454 F 71 NFPAs Giant non-Invasive 50 N WGS+RNA-seq 

P1467 F 54 NFPAs Giant Invasive 24 Y WGS+RNA-seq 

P1487 M 65 NFPAs Giant Invasive 49 N WGS+RNA-seq 

P1574 M 65 NFPAs Giant Invasive 3 Y WGS+RNA-seq 

P1582 M 66 NFPAs Giant Invasive 45 N WGS+RNA-seq 

P1594 M 67 NFPAs Large non-Invasive 44 N WGS 

P1605 F 44 NFPAs Large non-Invasive 44 N WGS+RNA-seq 

P1613 M 51 NFPAs Large Invasive 43 N WGS 

P1643 M 43 NFPAs Large non-Invasive 36 Y WGS+RNA-seq 

P_N6_15 M 49 NFPAs Giant Invasive 55 N WGS+RNA-seq 

P_N6_16 M 34 NFPAs Giant Invasive 55 N WGS+RNA-seq 

P_N6_20 M 61 NFPAs Giant Invasive 54 N WGS+RNA-seq 

P_N6_21 F 51 NFPAs Large Invasive 54 N WGS+RNA-seq 

P_N6_29 M 47 NFPAs Large non-Invasive 52 N WGS+RNA-seq 
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P_N6_32 M 64 NFPAs Giant Invasive 52 N WGS+RNA-seq 

P_N6_34 M 55 NFPAs Giant Invasive 52 N WGS+RNA-seq 

P_N6_4 F 32 NFPAs Large Invasive 57 N WGS+RNA-seq 

P_N6_48 M 64 NFPAs Giant Invasive 51 N WGS+RNA-seq 

P_N6_5 F 35 NFPAs Giant Invasive 57 N WGS+RNA-seq 

P_N6_50 F 41 NFPAs Large Invasive 51 N WGS 

P_N6_56 M 45 NFPAs Large Invasive 51 N WGS 

P_N6_61 F 49 NFPAs Giant Invasive 49 N WGS+RNA-seq 

P1183 F 57 NFPAs Giant Invasive 66 N WGS 

P1068 M 48 NFPAs Giant Invasive 19 Y WGS 

P1182 M 67 NFPAs Large Invasive 66 N WGS 

P1195 M 35 NFPAs Large non-Invasive 65 N WGS 

P1284 F 21 GH-PAs Giant Invasive 12 Y WGS+RNA-seq 

P1298 F 69 GH-PAs Large non-Invasive 57 N WGS+RNA-seq 

P1332 M 57 GH-PAs Giant Invasive 14 N WGS+RNA-seq 

P1352 M 31 GH-PAs Giant Invasive 3 Y WGS+RNA-seq 

P23 F 51 GH-PAs Giant Invasive 4 Y WGS+RNA-seq 

P46 F 44 GH-PAs Large non-Invasive 51 N WGS+RNA-seq 

P1603 M 45 GH-PAs Large non-Invasive 44 N WGS+RNA-seq 

P1563 M 32 GH-PAs Large Invasive 12 Y WGS 

P1547 F 33 GH-PAs Large non-Invasive 46 N WGS+RNA-seq 

P1520 M 21 GH-PAs Giant Invasive 17 Y WGS+RNA-seq 

P1660 F 51 GH-PAs Large non-Invasive 41 N WGS+RNA-seq 

1 Tumor classification by volume, micro: <1 cm, large: 1-4 cm, giant: >4 cm. 
2 Patients were lost to follow-up: - 
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Supplementary Material 
 

Supplementary Material 1. Sense mutations of CDS in 11 pairs GH-PAs. 

 

Please browse Full Text version to see the data of Supplementary Material 1. 


