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INTRODUCTION 
 

Osteoarthritis (OA) is the most common degenerative 

joint disorder, affecting more than one-third of adults 

aged 65 and older [1]. The major pathologic features of 

OA include progressive cartilage degradation, synovial 

inflammation, subchondral bone remodeling and pain [2, 

3]. Although the exact molecular mechanisms underlying 

the pathogenesis of OA are not fully understood, a 

number of risk factors have been characterized, with 

aging and obesity being the most prominent [2, 3]. Other 

risk factors include joint injury, knee malalignment and 

genetics. Current treatments for OA aim to alleviate the 

symptoms such as pain and disability, but to date there 

are no proven treatment than can cure OA. 

 

Progressive cartilage breakdown is a hallmark feature of 

OA and is predominantly mediated by proteolytic 

enzymes, most notably, a disintegrin and metalloproteinase 

with thrombospondin motifs 5 (ADAMTS-5) and 

matrix metalloproteinase 13 (MMP-13). Several studies 

reported that both enzymes play key roles in cartilage 
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ABSTRACT 
 

Osteoarthritis (OA) is the most common musculoskeletal disorder among the elderly. It is characterized by 
progressive cartilage degradation, synovial inflammation, subchondral bone remodeling and pain. Lipocalin 
prostaglandin D synthase (L-PGDS) is responsible for the biosynthesis of PGD2, which has been implicated in the 
regulation of inflammation and cartilage biology. This study aimed to evaluate the effect of L-PGDS deficiency 
on the development of naturally occurring age-related OA in mice. 
OA-like structural changes were assessed by histology, immunohistochemistry, and micro–computed 
tomography. Pain related behaviours were assessed using the von Frey and the open-field assays. 
L-PGDS deletion promoted cartilage degradation during aging, which was associated with enhanced expression 
of extracellular matrix degrading enzymes, matrix metalloprotease 13 (MMP-13) and a disintegrin and 
metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), and their breakdown products, C1,2C, VDIPEN 
and NITEG. Moreover, L-PGDS deletion enhanced subchondral bone changes, but had no effect on its 
angiogenesis. Additionally, L-PGDS deletion increased mechanical sensitivity and reduced spontaneous 
locomotor activity. Finally, we showed that the expression of L-PGDS was elevated in aged mice. Together, 
these findings indicate an important role for L-PGDS in naturally occurring age-related OA. They also suggest 
that L-PGDS may constitute a new efficient therapeutic target in OA. 
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breakdown during OA. Deletion of the ADAMTS5 gene 

was shown to prevent cartilage cleavage in a joint 

instability model of OA [4]. Moreover, MMP-13 

deficient mice are protected against [5], whereas MMP-

13–transgenic mice develop, spontaneous OA-like 

cartilage damage [6]. 

 

Several studies suggest an important role for 

prostaglandin (PG) D2 in the pathophysiology of OA. 

PGD2 was shown to enhance chondrogenic 

differentiation, as assessed by increased expression of 

collagen type II and aggrecan [7, 8] and to prevent 

chondrocyte apoptosis [9]. Our group has demonstrated 

that treatment of human chondrocytes with PGD2 

reduced IL-1-induced MMP-1 and MMP-13 expression, 

major effectors of cartilage breakdown during OA [10]. 

 

In addition to its anti-catabolic effects, PGD2 was 

reported to display anti-inflammatory properties. In 

vitro studies showed that treatment with PGD2 

suppressed inflammatory responses in monocytes/ 

macrophages [11], dendritic cells [12] and T cells [13]. 

PGD2 also has anti-inflammatory properties in vivo, and 

the administration of PGD2 was protective in several 

models of inflammatory conditions including chronic 

allergic lung inflammation [14], colitis [15], and atopic 

dermatitis [16]. The anti-inflammatory effect of PGD2 is 

further supported by the observation that overexpression 

of PGD2 synthase in mice attenuates, whereas its 

deletion exacerbates inflammation [17]. Finally, PGD2 

was shown to suppress angiogenesis [18, 19], a key 

process in the pathogenesis of OA [20].   

 

The biosynthesis of PGD2 from its precursor PGH2 is 

catalyzed by two PGD synthases (PGDSs): the lipocalin-

type PGDS (L-PGDS; also called β-trace) and the 

hematopoietic PGDS (H-PGDS) [21]. L-PGDS is mainly 

expressed in the central nervous system [22], the heart 

[23], and the retina [24]. H-PGDS is essentially expressed 

in mast cells [25], megakaryocytes [26] and T cells [27].  

 

We have shown that cartilage predominantly expresses 

L-PGDS [28, 29], however, the in vivo role of L-PGDS 

in the development of naturally occurring age-related 

OA is virtually unexplored. In the present study, we 

investigated the role of L-PGDS in the development of 

naturally occurring age-related OA using L-PGDS 

deficient mice. 

 

RESULTS 
 

L-PGDS deficiency accelerated cartilage degeneration 

with aging 

 

First, we determined whether the lack of L-PGDS 

influences the expression of the major components of 

the extracellular matrix of articular cartilage, i.e. type II 

collagen and aggrecan. Real-time polymerase chain 

reaction (RT-PCR) analysis revealed that the levels of 

type II collagen and aggrecan mRNA in the knee joint 

of 3-month-old L-PGDS-/- mice were virtually similar 

to those of their wild type (WT) littermates 

(Supplementary Figure 1) indicating that L-PGDS 

deletion does not affect the expression of these two 

genes. 

 

The body weight of L-PGDS-/- and WT mice was 

monitored throughout the experimental protocol. At 3 

and 9 months, there were no differences in weight 

between L-PGDS-/- mice and their WT littermates. At 

15 months, L-PGDS -/- mice were heavier than their 

WT littermates (Supplementary Figure 2A). EchoMRI 

analysis revealed that the differences in body weight at 

15 months of age was due to greater fat mass in L-

PGDS-/- mice (Supplementary Figure 2B). 

 

To determine whether L-PGDS deletion alters OA 

development, we evaluated the integrity of articular 

cartilage in the knee joints of L-PGDS -/- mice and their 

WT littermates. At 3 months, there were no differences 

in the intensity of Safranin O staining or cartilage 

structure between L-PGDS-/- mice and their WT 

littermates (Figure 1A). At 9 months, moderate loss of 

safranin O staining was observed in the L-PGDS-/- 

articular cartilage, while such loss was not evidently 

observed in WT cartilage. Moreover, at this age, small 

fibrillation and clefts appeared in L-PGDS-/- cartilage, 

while there was no evidence of these changes in WT-

type mice knees. At 15 months, L-PGDS -/- cartilage 

was severely fibrillated or eroded, while WT cartilage 

displayed only a moderate loss of safranin O staining 

and some small clefts (Figure 1A). 

 

Quantification by the OARSI grading system [30] 

confirmed that OARSI scores were 4- and 5-fold higher 

(p < 0.05) in 9 and 15-month-old L-PGDS -/- mice, 

respectively, when compared with their WT littermates 

(Figure 1B). These data suggest that L-PGDS 

deficiency accelerated cartilage degeneration with 

aging.   

 

L-PGDS deficiency increased the expression of 

cartilage-degrading enzymes and their products 

 

To define the mechanisms underlying cartilage 

degeneration in aged L-PGDS-/- mice, we analyzed the 

expression of key enzymes involved in cartilage 

degradation, i.e., MMP-13 and ADAMT-5 in the knee 

joints of L-PGDS-/-mice and their WT littermates at age 

3 and 9 months. At 3 months, there was little or no 

staining for MMP-13 and ADAMTS-5 in the knee joints 

of L-PGDS-/- and WT mice (Figure 2). At 9 months, 
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however, the number of cells staining for MMP-13 and 

ADAMTS-5 increased greatly (4- and 8-fold 

respectively, p < 0.05) in cartilage from L-PGDS-/- 

mice but remained very low in cartilage from WT mice 

(Figure 2). 

 

We also analyzed the expression level of extracellular 

cartilage matrix degradation products: C1,2C, VDIPEN, 

and NITEGE. At 3 months, we observed only a weak 

staining for C1,2C, VDIPEN, and NITEGE in the 

articular cartilage of both genotypes (Supplementary 

Figure 3). At 9 months, the staining for either 

degradation product was greatly (4.5-, 5-, and 1.5-fold 

respectively, p < 0.05) enhanced in cartilage from L-

PGDS-/- mice and very weak in cartilage from WT 

mice (Supplementary Figure 3). These data suggest the 

loss of L-PGDS accelerates cartilage degradation likely 

via increased expression of MMP-13 and ADAMTS-5. 

 

 
 

Figure 1. Deletion of L-PGDS accelerated cartilage erosion with age. (A) Coronal sections of whole knee joints from WT and  

L-PGDS-/- mice at ages 3, 9 and 15 months (n=8 mice/genotype/time point) were prepared and stained with Safranin O–fast green to assess 
the integrity of articular cartilage. The representative sections were selected based on the average score from each experimental group. Red 
arrow indicates loss of Safranin O staining. White arrow indicates areas of fibrillation and clefts. Yellow arrow indicates cartilage erosion. 
Scale bars=100 μM. (B) Summed histologic scores of knee cartilage from WT (open symbols) and LPGDS-/- (filled symbols) mice as 
determined using the OARSI scoring system. Results are presented as median with interquartile range. *P<0.05 versus WT mice. 
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L-PGDS deletion promoted synovitis in aged  

mice  
 

We also analyzed the effect of L-PGDS deletion on 

synovial changes during aging. At 3 months, there 

was no difference between L-PGDS-/- mice and their 

WT littermates for hyperplasia or synovial cell 

density (Figure 3A). At 15 months, the synovium of 

WT mice showed only minor changes. In contrast,  

the synovium of L-PGDS-/- mice showed  

marked thickening and hyperplasia (Figure 3A). 

Semiquantitative scoring confirmed a significant 

increase (4.5-fold, p < 0.05) in severity of synovitis in 

L-PGDS-/- mice at 15 months of age compared with 

WT mice (Figure 3B).  

L-PGDS deficiency increased OA-like bony changes 

in aged L-PGDS KO mice 
 

Subchondral bone changes play a crucial role in the 

pathogenesis of OA [2, 3]. We, therefore, used micro-CT 

to analyse subchondral bone changes at 3 and 15 months 

in WT and L-PGDS-/- mice. As illustrated in Figure 4A, 

subchondral bone sclerosis was found at the medial tibia 

of both WT and L-PGDS-/- mice at 15 months, relative 

to 3 months, although L-PGDS-/- mice sclerosis seemed 

higher. 

 

Quantification of subchondral bone microarchitectural 

parameters at 3 months showed that there was no 

difference in bone volume over total volume (BV/TV), 

 

 
 

Figure 2. L-PGDS deficiency enhanced MMP-13 and ADAMTS-5 expression in cartilage with age. Knee joint sections from 3- (n=6 

mice per genotype) and 9-month-old mice (n=6 mice per genotype) were analyzed by immunohistochemistry for MMP-13 and ADAMTS5 as 
described in the Materials and Methods section. (A) Representative images of immunohistochemical staining for ADAMTS5, and MMP-13 in 
knee joints from L-PGDS-/- and their WT littermates at 3 and 9 months of age. Scale bars=100 µm. (B) Percentage of chondrocytes expressing 
ADAMTS5, and MMP-13 in WT (open symbols) and L-PGDS-/- (filled symbols) mice. Data are presented as median with interquartile range of 
each group. *p<0.05 versus WT mice. 
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trabecular thickness (Tb.Th) and trabecular separation 

(Tb.Sp) between WT and L-PGDS-/- mice (Figure 4B). 

At 15 months, however, BV/TV and Tb.Th of L-PGDS-/- 

mice were significantly higher (28 and 30 %, 

respectively, p < 0.05) those of WT mice. In contrast, 

Tb.Sp was slightly (8%) lower (Figure 4B). 

 

Three dimensional reconstructions of the knee in  

L-PGDS-/- mice at 15 months showed OA-like bony 

changes, including osteophyte formation, joint space 

narrowing, meniscal calcification, and periarticular 

ectopic bone formation. In contrast, their WT 

counterparts at the same age showed unimpaired 

morphological features (Figure 4C). 

L-PGDS deficiency does not affect subchondral bone 

angiogenesis 
 

Previous studies reported that PGD2 has anti-angiogenic 

properties [18, 19] and abnormal angiogenesis is a 

known pathological feature of OA. We therefore  

used Microfil contrast-enhanced micro-CT-based 

microangiography to assess angiogenesis in subchondral 

bone of WT and L-PGDS-/- mice. As shown in  

Figure 5, the number and volume of blood vessels in 

subchondral bone were not different between L-PGDS-/- 

and WT mice at 3 months of age. These parameters 

were also not different between both genotypes at 15 

months. 

 

 
 

Figure 3. Deletion of L-PGDS increased synovitis in aged L-PGDS-/- mice. Coronal sections of whole knee joints from WT and  

L-PGDS-/- mice at ages 3, 9 and 15 months (n=8 mice/genotype/time point) were prepared and stained with hematoxylin and eosin  
to asses synovium changes. (A) Representative hematoxylin and eosin staining, and (B) summed synovitis scores of WT (open symbols) 
and L-PGDS-/- (filled symbols) mice at ages 3, 9, and 15 months. Scale bars=100 µm. The representative sections were selected based 
on the average score from each experimental group. Results are presented as median with interquartile range. *p<0.05 versus  
WT mice. 
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Angiogenesis at the osteochondral junction is also  

an important factor in the pathogenesis of knee  

OA. Using hematoxylin and eosin staining we found 

no evidence of osteochondral angiogenesis at the 

medial tibial plateaux of L-PGDS-/- mice and their 

WT littermates at 3 and 15 months of age (data not 

shown). These results suggest that L-PGDS deletion 

does not affect subchondral bone angiogenesis  

and likely does not aggravate OA via enhanced 

angiogenesis.  

 

 
 

Figure 4. Micro-CT analysis of the subchondral bone of the tibial plateau of WT and L-PGDS-/- mice at 3 and 15 months. Knee 

joints from 3- and 15-month-old WT and L-PGDS-/- mice (n=8 mice/genotype/time point) were evaluated by micro-CT. (A) Representative 
axial micro-CT images of the subchondral bone compartment. Scale bars=1 mm. (B) Quantification of BV/TV, Tb.Th, and Tb.Sp in the 
subchondral bone region of the medial tibial plateau of WT (open symbols) and L-PGDS-/- (filled symbols) mice. Data are presented as mean 
± SD. *p<0.05 versus WT mice. (C) Representative 3D reconstructions of the knee joints of WT and L-PGDS-/- mice at ages 3 months and 15 
months PGDS-/- mice. Scale bars=1 mm. 
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L-PGDS deficiency enhances pain-related behaviours 

 

To further investigate the relationship between  

L-PGDS deletion and OA, we compared OA-related 

pain (mechanical allodynia) in L-PGDS-/- and WT 

mice using the von Frey filament assay. At 3 months, 

L-PGDS-/- mice showed a slightly reduced (~20%) 

mechanical sensitivity, as indicated by higher paw 

withdrawal thresholds, compared to their WT 

littermates (Figure 6A). At 9 months, there was no 

significant difference between L-PGDS-/- and WT in 

mechanical sensitivity. At 15 months, however, L-

PGDS-/- mice showed higher mechanical sensitivity 

(~50%), compared to age-matched WT controls 

(Figure 6A). Thus, L-PGDS deletion causes increased 

mechanical sensitivity in aged mice. 

 

We also examined whether L-PGDS deletion impairs 

locomotor activity (non-evoked pain-like behaviour). 

We evaluated various standard parameters including 

total distance travelled, ambulatory time and rearing 

(standing on hind limbs). At 3 and 9 months, 

spontaneous locomotor activity parameters were similar 

in L-PGDS -/- and their WT littermates (Figure 6B–

6D). In contrast, at 15 months L-PGDS -/- mice 

displayed reduced total distance travelled, ambulatory 

time and rearing (60, 54 and 46%, respectively, p < 

0.05) compared to WT mice (Figure 6B–6D). These 

data suggest that L-PGDS deletion reduced spontaneous 

locomotor activity by 15 months. 

 

Up-regulation of L-PGDS during ageing in WT mice 

 

Finally, we examined the expression level of L-PGDS 

mRNA in the knee joint of WT mice at 3 and 15 months 

of age. Results are expressed as -fold change, 

considering the value of control animals (3-month-old 

mice) as 1. We found that the level of L-PGDS mRNA 

was significantly increased (2.2-fold, p < 0.05) in the 

joint of 15-month-old mice compared to those of 3-

month-old mice (Figure 7A).  
 

To determine whether the observed changes in the 

mRNA levels were paralleled by changes in the protein 

levels, we performed immunohistochemical analysis. 

As shown in Figure 7B, 7C, the levels of L-PGDS 

 

 
 

Figure 5. Micro-CT-based microangiography of the tibial subchondral bone of WT and L-PGDS-/- mice at 3 and 9 months. 
Subchondral bone angiogenesis in WT and L-PGDS-/- mice at 3 (n = 5 for WT, n = 6 for L-PGDS-/-) and 9 months (n = 6 per genotype) of age 
was evaluated by micro-CT angiography. (A) Representative 3D micro-CT-based micro-angiography of tibial subchondral bone at 3 and 15 
months. Scale bars=1 mm. (B) Quantification of vessel volume (VV) and vessel number (VN) in the subchondral bone region of WT (open 
symbols) and L-PGDS-/- (filled symbols) mice. Data are presented as mean ± SD.  
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protein was also increased (2.4-fold, p < 0.05) at  

15 months of age. Moreover, the level of PGD2 was 

increased (1.8-fold, p < 0.05) in the knee of 15-month-

old mice (Figure 7D). Hence, the expression level of  

L-PGDS in cartilage increased in aged WT mice. 

 

DISCUSSION 
 

In the present study, we showed for the first time  

that L-PGDS plays an important role in the 

development of naturally occurring age-related OA. 

We demonstrated that L-PGDS deletion promotes 

cartilage degradation during aging, and that it was 

associated with enhanced expression of cartilage 

degrading enzymes, MMP-13 and ADAMTS-5, and 

their breakdown products, VDIPEN, C12C and 

NITEG. In addition, L-PGDS deletion enhanced 

subchondral bone changes and mechanical sensitivity, 

and reduced locomotor activity. Finally, we showed 

that the expression of L-PGDS was elevated in aged 

WT mice. These findings suggest that L-PGDS has 

protective properties in OA and may constitute an 

attractive therapeutic target.  

 

To define the role of L-PGDS in aging associated-OA, 

we analyzed age-related structural changes in the knee 

joints of L-PGDS-/- and their WT littermates. We found 

that L-PGDS-/- mice displayed enhanced and 

accelerated cartilage degeneration with age and was 

associated with increased expression of MMP-13, and 

ADAMTS-5 and their degradation products, VDIPEN, 

NITEG and C12C. This is in accordance with our recent 

findings showing that L-PGDS deletion enhanced the 

expression of MMP-13 and ADAMTS-5 and cartilage 

degradation in a mouse model of instability-induced OA 

[31]. Similarly, deletion of DP1, a PGD2 receptor, leads 

to increased expression of MMP-13 and ADAMTs and 

exacerbated cartilage damage in both aging associated 

 

 
 

Figure 6. Pain-related behaviours during aging in WT and L-PGDS-/- mice. (A) Mechanical allodynia (50% paw withdrawal threshold 

(PWT)) in WT and L-PGDS-/- mice at 3, 9 and 15 months (n = 8 mice/genotype/time point) of age. Total distance travelled (B), ambulatory 
time (C) and number of rears (D) during 1 h testing period. Data are presented as mean ± SD. *p<0.05 versus WT mice. 



 

www.aging-us.com 24786 AGING 

and instability-induced OA [32]. The increased  

level of cartilage degrading enzymes in L-PGDS-/- mice 

is also in agreement with our previous in vitro studies 

showing that PGD2 prevented the expression of MMP-13 

and MMP-1 in cultured chondrocytes and cartilage 

explants [10]. 

 

In the present study, aged L-PGDS-/- mice exhibited 

increased body weight, suggesting that excess 

mechanical stress may contribute to the disease in aged 

L-PGDS -/- mice. It is well known that overweight is 

associated with the incidence and progression of OA, 

and weight loss was found to reduce the risk for OA, 

relieve symptoms, and improve functions in human OA 

[33, 34]. Similarly, animal studies showed that 

overweight increased the severity of aging-associated 

OA [35] and instability-induced OA [36, 37]. Increased 

weight enhances the mechanical load of the weight-

bearing joints, leading to alterations in the composition, 

structure, metabolism, and mechanical properties of 

articular cartilage, subchondral bone, and other joint 

tissues, and consequently promoting the degeneration of 

articular cartilage [38]. 

In addition to increasing body weight, adipose tissue is 

the source of a wide variety of pro-inflammatory 

cytokines termed adipokines. One adipokine, leptin, is 

known to play a key role in the onset and progression of 

OA. For example, treatment with leptin, alone or in 

synergy with IL-1, induced cartilage degradation via 

upregulation MMP-1 and MMP-13 expression [39]. 

Treatment with leptin was also reported to induce the 

production of several pro-inflammatory mediators 

known for their role in the pathogenesis of OA, 

including NO, IL-1, IL-6 and IL-8 [40]. Injection of 

leptin into the knee joint of rats increased the expression 

of several cartilage degrading enzymes including MMP-

1, MMP-3, MMP-13, ADAMTS-4 and DAMTS-5 [41]. 

Griffin et al showed in leptin-deficient (ob/ob) and 

leptin receptor–deficient (db/db) mice that adiposity is 

insufficient to induce OA in the absence of leptin 

signaling [42]. Moreover, serum and synovial leptin 

levels are increased in OA patients [43, 44]. It should be 

noted that the circulating levels of leptin were reported 

to increase in aged L-PGDS-/- mice [45]. Thus, elevated 

levels of leptin could contribute to the development of 

OA in aged L-PGDS-/- mice. 

 

 
 

Figure 7. Increased expression of L-PGDS in cartilage of aged WT mice. (A) Total RNA was extracted from the joints of 3- and 15-

month-old mice (n=6 mice/genotype/time point), and the levels of L-PGDS mRNA were determined by real-time RT-PCR. Results are 
expressed as -fold change, considering the value for 3-month-old mice as 1. (B) Representative images of immunohistochemical staining for L-
PGDS in knee joints from of 3- and 15-month-old mice. Scale bars=100 µm. (C) Percentage of chondrocytes expressing L-PGDS in cartilage 
(n=6 mice/genotype/time point). Results are shown as median with interquartile range. (D) PGD2 levels in knee joint of 3- and 15-month-old 
mice (n=6 mice/genotype/time point), as determined by ELISA. *p<0.05 versus 3-month-old mice. 
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We also observed a marked synovitis in aged L-PGDS-/- 

mice. This is probably due to the anti-inflammatory 

effects of L-PGDS and is in agreement with previous 

finding showing that L-PGDS metabolites, PGD2 [46] or 

15-PGJ2 [47], attenuate synovitis in inflammatory 

arthritis. Moreover, treatment with PGD2 or with its 

analog BW245, was reported to reduce inflammatory 

responses in experimental models of allergic lung 

inflammation [14], colitis [15], and atopic dermatitis 

[16]. It is also possible that the observed synovitis in aged 

L-PGDS-/- mice is exacerbated by increased body 

weight. Previous studies have shown that obesity 

aggravates synovitis in aging-associated [48] and 

surgically-induced [49] OA. Finally, the observed 

synovitis in aged L-PGDS-/- mice may also be due to 

increased leptin levels. Some studies reported that 

intraarticular injection of leptin increased synovial 

hyperplasia in collagen-induced arthritis in mice [50], 

and enhanced leptin levels were shown to be associated 

with synovitis in human OA [51]. Thus, in the present 

study, it seems that loss of L-PGDS results in not only 

cartilage degradation but also in increased synovial 

inflammation1synovitis. 

 

We also investigated the effect of L-PGDS deficiency 

on subchondral bone changes during aging. Micro-CT 

analysis revealed that aged L-PGDS-/- mice had 

enhanced subchondral bone sclerosis, osteophyte 

formation, periarticular ectopic bone formation, 

increased mineralization of the meniscus and joint space 

narrowing. Bony changes in L-PGDS-/- mice might 

likely have resulted from lower levels of PGD2. Several 

studies showed that PGD2 plays important roles in bone 

metabolism. PGD2 inhibits osteoclastogenesis and bone 

resorption [52], promotes osteoclast apoptosis [53], 

stimulates osteoblast calcification [54], and prevents 

ovariectomy-induced decreased bone mineral density 

[55]. The increased mechanical stress due to obesity 

could also contribute to subchondral sclerosis and bony 

changes in aged L-PGDS-/- mice. Another factor that 

may be involved in bone remodeling in L-PGDS-/- mice 

is the increased levels of leptin, which have both direct 

and indirect effects on bone metabolism [56].  

 

Pain is the most common symptom of OA and a 

primary reason for patients with OA to seek medical 

attention. In the present study, we showed that young L-

PGDS-/- mice displayed reduced responses to 

mechanical stimuli, which concurs with a previous 

study showing that L-PGDS deletion attenuated PGE2-

induced allodynia [57]. In contrast, aged L-PGDS-/- 

mice displayed mechanical hypersensitivity (enhanced 

responses to mechanical stimuli). These findings 

suggest that the effect of L-PGDS deletion on 

mechanical sensitivity is age-dependent, attenuating 

pain in young mice, but enhancing it in aged mice. A 

context dependent effect of PGD2 on pain has been 

previously reported by Telleria-Diaz et al, who 

demonstrated that topical application of PGD2 to the 

spinal cord of normal knee rats had no effect on 

responses to mechanical stimulation of the knee joint. In 

contrast, these responses were decreased in inflamed 

knee joints [58].  

 

The observed pain behaviour in aged L-PGDS-/- mice 

may also be caused by increased body weight and is 

consistent with previous studies showing a functional 

relationship between obesity and OA pain. Obesity and 

overweight are strongly associated with onset and 

exacerbation of pain [59], and weight loss decreases the 

pain as well as the risk of OA [34]. Leptin can also 

participate in pain behaviour in aged L-PGDS-/- mice. 

Indeed, leptin was reported to critically contribute to 

neuropathic allodynia in rats [60]. Moreover, leptin-

deficient mice showed reduced tactile allodynia, which 

was reversed by the administration of leptin [61]. 

 

In addition, we showed that aged L-PGDS -/- mice 

exhibited decreased locomotor activity compared to WT 

mice, suggesting that reduced physical activity could 

also contribute to OA exacerbation in L-PGDS -/- mice. 

Indeed, reduced physical activity has been reported to 

aggravate OA in obese mice [35]. 

 

Angiogenesis contributes to the initiation and progression 

of OA, and PGD2 was reported to have anti-angiogenic 

properties [18, 19]. In the present study, we found that 

the number and volume of blood vessels in subchondral 

bone were not different between L-PGDS-/- and WT 

mice at 3 and 15 months of age. Additionally, vascular 

invasion into calcified cartilage at the osteochondral 

junction was not obvious in aged L-PGDS-/- mice and 

their WT littermates. Although we cannot exclude that 

there may be differences in angiogenesis that we did not 

detect with the assays used in the present study, these 

results suggest that the acceleration of OA development 

in L-PGDS deficient mice is not due to enhanced 

subchondral bone angiogenesis. 

 

Our inability to detect vascular changes in aged OA L-

PGDS-/- mice contrasts with previous data showing 

subchondral neovascularization in mouse models of OA 

[62, 63] and osteochondral vascularization in aged mice 

[64]. The reasons for these discrepancies are unclear but 

are most likely due to differences in experimental 

design. Indeed, the studies reporting increased 

subchondral neovascularization were performed with 

surgical models [62, 63], which are more severe than 

the aging model used in the present study. The study 

reporting angiogenesis at the osteochondral junction 

was performed with 20-24 month-old mice [64], while 

in the present study we utilized 15-month old mice.  
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Finally, we showed that the expression of L-PGDS was 

up-regulated in aged mice, suggesting that although 

protective, the increased level of L-PGDS is not enough 

to optimally attenuate the development of OA. This is in 

agreement with previous findings reporting that L-

PGDS [65, 66] levels increased with age. This is also 

consistent with our findings showing increased L-PGDS 

expression in human [28] guinea pig, dog [29] and 

mouse [31] OA cartilage. Increased expression of L-

PGDS was also reported in other age-related conditions, 

such as glaucoma [67] and atherosclerosis [68]. The 

observed elevated levels of L-PGDS in cartilage could 

be induced by mechanical loading and/or inflammatory 

factors. Both mechanical loading and pro-inflammatory 

cytokines were reported to up-regulate L-PGDS 

expression in chondrocytes [28, 69]. 

 

This study has some limitations. First, we used only  

male mice because age-related OA is more prevalent and 

more severe in males than females [70, 71]. Second, we 

did not evaluate food intake and energy expenditure. 

Further studies are warranted to define the exact role of 

weight gain, fat content and leptin in the pathogenesis of 

OA in aged L-PGDS -/- mice. Third, while our data 

suggests that L-PGDS deletion accelerates the 

development of OA via up-regulation of the key cartilage 

degrading enzymes ADAMT-5 and MMP-13, the 

molecular mechanisms underlying these processes are not 

fully unraveled. More research will be required to shed 

light on the exact molecular and cellular mechanisms 

underlying the acceleration and exacerbation of OA in L-

PGDS-/- mice.  Finally, although our findings clearly 

demonstrate that L-PGDS deletion accelerated OA 

development, it is not clear whether this was due to L-

PGDS loss in cartilage, bone or both, because L-PGDS is 

expressed in both chondrocytes and osteoblasts. In 

addition, L-PGDS is present in many tissues, suggesting 

that loss of L-PGDS in other tissues could also contribute 

to the exacerbation of OA. Further studies using mice 

with tissue specific deletion of L-PGDS may be needed to 

fully understand the mechanisms by which L-PGDS 

deficiency promotes OA. 

 

These findings indicate an important role for L-PGDS 

in naturally occurring age-related OA. They also raise 

the possibility that the induction of L-PGDS pathway 

could be an attractive new strategy for the treatment of 

OA, as well as various other arthritic diseases. 

 

MATERIALS AND METHODS 
 

Mice 

 

All animal experiments were approved by the 

Institutional Animal Protection Committee of the 

University of Montreal Hospital Research Centre 

(CRCHUM), and performed in accordance with the 

Animal Research Reporting of in Vivo Experiments 

(ARRIVE) guidelines [72]. L-PGDS-/- mice were 

generated as described previously [57]. In these mice, 

the L-PGDS gene was disrupted by replacing a 1.84-kb 

fragment containing parts of exons II-V with the 

neomycin resistance gene. L-PGDS-/- mice were 

backcrossed onto the C57BL/6 background for 10 

generations. L-PGDS-/- and WT mice used in these 

experiments were generated by breeding heterozygous 

littermates, and genotypes were identified by PCR of 

tail biopsy DNA extract.  

 

Mice were maintained under standard pathogen-free 

conditions and a 12-hour light/dark cycle, with water 

and a pelleted standard normal diet (catalog no. 2918; 

Teklad Global, Harlan Laboratories, Indianapolis, IN, 

USA) made available ad libitum. Mice were housed 

individually in filter-top cages (38 x 20 x 15 cm in 

dimension). Cotton nestlets and hard plastic tubes were 

placed in each cage for environmental enrichment. The 

mice appeared healthy and showed normal behaviour 

throughout the study. Nine mice were excluded from 

this study due incomplete decalcification (n=3) or 

inadequate perfusion (n=6). 

  

After behavioural tests, mice were sacrificed at 3, 9 and 

15 months of age. Knees were harvested, and subjected 

to micro-CT, histological and immunohistochemical 

analyses.  

 

Body composition 

 

The body fat content of the mice was determined by 

magnetic resonance imaging using EchoMRI (Echo 

Medical Systems, Houston Scientific, Houston, TX, 

USA). 

 

Histological evaluation of osteoarthritic changes 

 

The harvested knee joints were fixed in TissuFix 

(Chaptec, Montreal, QC, Canada), decalcified in 10% 

EDTA for 14 days at 4° C, and embedded in paraffin. 

Coronal sections (5 μm) were obtained through the 

entire joint at 80 μm intervals and stained with Safranin 

O–fast green (eight sections per joint) or hematoxylin 

and eosin (five sections per joint). Cartilage damage 

was assessed in accordance with the recommendations 

of the Osteoarthritis Research Society International 

(OARSI) guidelines [30]. Synovitis was assessed using 

a synovitis scoring system which evaluate the 

enlargement of the synovial lining cell layer on a scale 

of 0-3 (0 = 1-2 cells, 1 = 2-4 cells, 2 = 4-9 cells and 3 = 

10 or more cells)  and cellular density in the synovial 

stroma on a scale of 0-3 (0 = normal cellularity, 1 = 

slightly increased cellularity, 2 = moderately increased 
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cellularity and 3 = greatly increased cellularity) [73]. 

All sections were graded by two scorers (YO and MN) 

in a blinded manner. The four quadrants (medial tibial 

plateau, medial femoral condyle, lateral tibial plateau, 

and lateral femoral condyle) of the knee were assessed, 

and the scores were added to obtain the summed 

histologic score. 

 

Immunohistochemistry 

 

Knee joints were fixed in TissuFix, decalcified in 10% 

EDTA for 14 days at 4° C, and embedded in paraffin. 

Immunohistochemical analysis was performed as 

previously described [31, 32, 74]. Briefly, sections (4 

sections per joint) from the weight bearing area were 

pre-incubated with chondroitinase ABC (0.25 U/ml in 

PBS pH 8.0) for 60 min at 37° C, followed by a 30 min 

incubation with Triton X-100 (0.3%) at room 

temperature. Slides were then washed in phosphate-

buffered saline (PBS) followed by 2% hydrogen 

peroxide/PBS for 15 min. They were further incubated 

for 45 min with 2% normal serum (Vector Laboratories, 

Burlingame, CA) and overlaid with the primary 

antibody for 18 hours at 4° C in a humidified chamber. 

The following antibodies were used: rabbit polyclonal 

anti-L-PGDS (1:200 dilution; Cayman Chemical, Ann 

Arbor, MI), rabbit polyclonal anti-ADAMTS5 (1:100 

dilution; Cedarlane, Hornby, ON), rabbit polyclonal 

anti-MMP-13 (1:100 dilution; Sigma-Aldrich), rabbit 

polyclonal  anti-C1,2C (1:500 dilution; IBEX 

Technologies, Mont-Royal, QC, Canada), rabbit 

polyclonal anti-VDIPEN (1:800 Gladys dilution; a 

generous gift from Dr. J. Mort, Hospital for Children, 

McGill University Hospital Centre, Montreal, Quebec, 

Canada), and rabbit polyclonal anti-NITEG (1:100 

dilution; Novus Biologicals, Littleton, CO). Each slide 

was washed 3 times in PBS (pH 7.4) and incubated with 

a secondary antibody using the Vectastain ABC kit 

(Vector Laboratories) following the manufacturer’s 

instructions. The color was developed with 3,3’-

diaminobenzidine (DAB) (Vector Laboratories) 

containing hydrogen peroxide. The slides were 

counterstained with eosin. The specificity of the 

staining was confirmed by substituting the primary 

antibody with a non-specific IgG from the same host as 

the primary antibody. 

 

For ADAMTS-5, MMP-13 and NITEG staining, the 

total number of chondrocytes and the number of 

chondrocytes staining positive were evaluated and 

results were expressed as the percentage of 

chondrocytes staining positive (cell score). For C1,2C 

and VDIPEN staining, images were captured at 250X 

with a Leitz Diaplan microscope connected to 

BIOQUANT OSTEO 2012 software. Surface area of 

positively stained extracellular cartilage matrix was 

measured, and data expressed as % of positive stained 

area over total area. Each slide was examined and 

scored by 2 independent observers (MN and YO), who 

were blinded to group allocation.  

 

Micro-CT analysis of bone 

 

The knee joints were scanned using the SkyScan 1176 

micro-CT scanner (SkyScan, Aartselaar, Belgium) at 50 

kV, 500 μA, with a pixel size of 9 μm and a 0.5-mm 

aluminum filter. Data were recorded at every 3-degree 

rotation step through 180 degrees. Image slices were 

reconstructed using NRecon software (version 1.6.3.2, 

SkyScan). The region of interest (ROI) included the 

area between the epiphyseal growth plate and the 

articular cartilage. The following morphometric 

parameters: BV/TV, Tb.Th. and Tb.Sp. were 

determined using CT-Analyser software (SkyScan). 

CTVox software (SkyScan) was used to create 3-D 

images. 

 

Micro-CT-based microangiography  

 

Blood vessels in subchondral bone were imaged by 

angiography of Microfil-perfused bones as previously 

described [63]. Mice were anesthetized with isoflurane, 

the thoracic cavity was opened, and inferior vena cava 

was severed. The vascular system was flushed with 

0.9% normal saline containing heparin sodium (100 

U/ml) at a flow rate of 0.5 ml/minute via a needle 

inserted into the left ventricle. 

 

The specimens were then pressure fixed with 10% 

neutral buffered formalin, which was washed off (from 

the vessels) with heparinized saline solution. The 

vasculature was then injected with a radiopaque silicone 

rubber compound containing lead chromate (Microfil 

MV-122; Flow Tech Inc., Carver, MA, USA), and the 

bodies were stored at 4° C overnight to allow full 

polymerisation. The hind limbs were isolated and fixed 

in 10% neutral buffered formalin for five days and 

decalcified in RDO Rapid Decalcifier (Apex 

Engineering Products Corporation, Aurora, IL, USA) 

for two hours. The specimens were scanned using 

SkyScan 1176 micro-CT scanner with the resolution of 

9 μm isotropic voxel size. The region of interest (ROI) 

began below the subchondral plate and extended for 0.3 

mm distally. Histomorphometric parameters including 

vessel volume (Vess. Vol), and vessel number (Vess. 

Nb) were evaluated using CT-Analyser software, while 

3D images were created using CTVox software.  

 

Mechanical allodynia 

 

Mechanical allodynia was measured according to the 

method described by Chaplan et al [75]. Mice were 
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acclimatized to a metal mesh grid for two hours prior 

to testing, and a calibrated set of von Frey filaments 

(Stoelting Co., Wood Dale, IL, USA) was applied to 

the plantar surface of the hind paw and was 

maintained for up to six seconds. The 0.16 g filament 

was always the first stimulus. A rapid withdrawal of 

the hind paw was recorded as a positive response. The 

force of the von Frey filament was increased or 

decreased following a negative or positive response, 

respectively. The 50% paw withdrawal threshold was 

determined twice on each hind paw and averaged, 

with sequential measurements made at five-minute 

intervals. 

 

Locomotor activity  
 

Mice were acclimated to the testing room for two hours 

before open-field testing. Locomotor activity was 

assessed using the VersaMax Animal Activity 

Monitoring System (AccuScan Instruments, Columbus, 

OH, USA). Mice were placed into the center of 

individual chambers (29 x 22 x 22 cm) and allowed free 

exploration for 60 minutes. The following parameters 

were measured: total distance travelled, ambulatory 

time, and rearing. 

 

Statistical analysis 

 

Sample size calculations were based on our primary 

outcome "OA histopathology" and our previous studies 

[32, 74]. Our sample size would provide > 80% power 

to detect a 50% change in mean OARSI scores with a 

significance level of p=0.05. Histological and 

immunohistochemical data were assessed using the 

Mann-Whitney U test (for comparison of two groups), 

or Kruskal-Wallis followed by Dunn’s multiple 

comparisons test (for comparison between more than 

two groups). Subchondral bone, blood vessels and 

behavioural (mechanical allodynia and locomotor 

activity) data were analyzed using Student’s t-test (for 

comparison of two groups) or one-way ANOVA 

followed by Bonferroni's multiple comparisons test (for 

comparison between more than two groups). P-value < 

0.05 was considered significant. All analyses were 

performed using Prism 8.0 (GraphPad Software, San 

Diego, CA). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Expression of aggrecan and Col II mRNA in WT and L-PGDS-/- joints. Total RNA was extracted from the 

joints of three-month-old L-PGDS-/- mice and their WT littermates (n=6 per genotype), and the levels of aggrecan and Col II mRNA were 
determined by real-time RT-PCR. Results are expressed as -fold change, considering the value for WT mice as 1. *p<0.05 versus WT mice. 

 

 
 

Supplementary Figure 2. Body weight and composition/fat content/fat mass of WT and L-PGDS-/- mice. (A) Body weight of WT 

and L-PGDS-/- mice at 3, 9 and 15 months of age (n=8 mice/genotype/time point). (B) Fat mass/ Percentage of body fat of WT and L-PGDS-/- 
mice at 15 months of age (n=8 mice/genotype). Data are presented as mean±SD. *p<0.05 versus WT mice. 
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Supplementary Figure 3. L-PGDS deletion enhanced the expression of C1, 2C, NITEG and VDIPEN in cartilage. Knee joint 

sections from 3- (n=6 mice per genotype) and 9-month-old mice (n=6 mice per genotype) were analyzed by immunohistochemistry for C1,2C, 
NITEG and VDIPEN, as described in the Materials and Methods section. (A) Representative images of immunohistochemical staining for 
C1,2C, NITEG and VDIPEN. Scale bars=100 µm. (B) Percentage of positive stained area (C1,2C and VDIPEN), and positive chondrocytes (NITEG) 
in WT (open symbols) and L-PGDS-/- (filled symbols) mice. Data are presented as median with interquartile range. *p<0.05 versus WT mice. 


