
www.aging-us.com 1 AGING 

INTRODUCTION 
 

Chronic low-grade inflammation that develops with 

aging, termed inflammaging, is a common factor for 

comorbidities predisposing to severe forms of COVID-

19 with acute respiratory distress syndrome (ARDS) 

[1]. Inflammaging is the long-term result of chronic 

physiological stimulation of the innate immune system, 

which can become damaging during aging [2]. 

 

Inflammaging leads to T-cell senescence, a T-cell 

dysfunction state that occurs in chronic infections [3–

5]. Reduced counts with functional exhaustion of T-

cells and cytokine release syndrome have been 

identified as adverse factors in patients suffering from 

SARS-CoV-2 infection [3, 4]. Severe COVID-19 can 

therefore mimic a state of immune senescence [6]. 

Immunosenescence is defined as age-related alteration 

to the immune system leading to a progressive 

reduction in ability to trigger effective antibody and 

cellular responses to infections and vaccinations [7].  

 

Immunosenescence is linked to autoimmunity in age-
related disorders [8]. It can be potentiated by COVID-

19, thus highlighting the role of infectious agents in 

triggering an autoimmune response [9]. 
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ABSTRACT 
 

Inflammaging constitutes the common factor for comorbidities predisposing to severe COVID-19. Inflammaging 
leads to T-cell senescence, and immunosenescence is linked to autoimmune manifestations in COVID-19. As in 
SLE, metabolic dysregulation occurs in T-cells. Targeting this T-cell dysfunction opens the field for new 
therapeutic strategies to prevent severe COVID-19. Immunometabolism-mediated approaches such as 
rapamycin, metformin and dimethyl fumarate, may optimize COVID-19 treatment of the elderly and patients at 
risk for severe disease. 
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Investigation into possible factors for inflammaging, 

immunosenescence and autoimmunity in COVID-19 

patients is ongoing. Immunometabolism dysfunction 

may be at their core. Immunometabolism represents 

the changes that occur in intracellular metabolic 

pathways within immune cells during activation [10, 

11]. It is widely accepted that T-cell senescence is due 

in part to dysfunction in normal glycolytic CD8 T-cell 

metabolism [10]. Metabolic pathways are important 

regulators of immune differentiation and activation, 

and as such influence the immune response to SARS-

CoV-2 [11, 12].  

 

This review details how SARS-CoV-2 might induce or 

amplify inflammaging, immunosenescence and 

autoimmunity from an immunometabolic perspective 

and puts forward therapeutic approaches for restoring 

T-cell functionality. 

 

Severe forms of COVID-19 promoted/enhanced 

by inflammaging and immunosenescence  
 

Risk factors for severe COVID-19 have been 

characterized by China Center for Disease Control 

and Prevention findings based on 44 672 COVID-19 

patients [13]. Old age and age-related disorders such 

as cardiovascular disease, obesity, diabetes mellitus, 

chronic respiratory disease, hypertension, and cancer 

were linked to greater risk of death [13, 14]. A meta-

analysis of seven studies involving 1576 COVID-19 

patients indicated that the most prevalent 

comorbidities were hypertension (21.1%, 95% CI: 

13.0–27.2%) and diabetes mellitus (9.7%, 95% CI: 

7.2–12.2%), followed by cardiovascular (8.4%, 95% 

CI: 3.8–13.8%) and respiratory disease (1.5%, 95% 

CI: 0.9–2.1%) [15]. In addition, of the 3615 

individuals who tested positive for COVID-19, 775 

(21%) were obese, and 595 (16% of the total cohort) 

were severely obese [16]. In 124 consecutive COVID-

19 patients admitted to the ICU, 47.6% were obese 

and 28.2% severely obese [17].  

 

Biologically, onset of severe COVID-19 is 

characterized by a cytokine storm with hyper secretion 

of pro-inflammatory cytokines [18]. 

 

Age-related disorders such as risk factors for COVID-

19 are connected to low-grade, persistent inflammation 

(inflammaging) and have detrimental effects on the 

immune system [19].  

 

Inflammaging is linked to mitochondrial dysfunction 

[14], SASP and age-related autoimmune 

predisposition [20]. Mitochondrial dysfunction has 

been shown in SARS-COV-2 infected lung cell lines 

where upregulation of genes involved in 

mitochondrial cytokine/inflammatory signalling and 

downregulation of genes involved in organization, 

respiration and autophagy has been demonstrated 

[14]. SASP releases cytokines (IL-1α/β, IL-6, IL-8, 

TGF-β, and TNF-α) [21], some of which are able to 

increase senescence via a “bystander effect” [22]. IL-

1α is the main upstream regulator of SASP, while IL-

1β and TGF-β are senescence transmission mediators, 

and IL-6 and IL-8 reinforce autocrine senescence 

[22]. In the elderly, especially elderly men, IL-6 is 

chronically upregulated [23] and its elevation is 

predictive of mortality [24]. Tissue accumulation of 

senescent cells and SASP secretion are instrumental in 

provoking a cytokine storm, that is a major 

contributor to ARDS and multiple organ dysfunction 

syndrome [18, 19]. (Figure 1) 

 

COVID-19: an immunosenescence model 
 

Cellular senescence 

 

Senescence is a biological process that implicates each 

body cell [21, 25]. The concept of senescence originates 

from a work by Hayflick et al., describing loss of 

replicative capacity in fibroblast cell cultures [26]. 

Aging cells cease to function properly, fail to 

accomplish their normal tasks, and lose their ability to 

divide [21, 25]. Instead of dying off, they accumulate in 

tissues [21, 25]. Cellular senescence is thus a major 

cause of aging and age-related diseases, including 

diabetes mellitus, obesity, and cardiovascular disorders 

[21, 25]. 

 

Senescent cells also prevent surrounding healthy cells 

and tissues from functioning at peak capacity [27], 

and they secrete harmful compounds such as SASP 

[21, 25]. SASP induces senescence in other cells, and 

so the destructive process continues [21, 25]. 

Senescent cells are associated with dysfunctional 

mitochondria [14], contribute to chronic 

inflammation [21, 25] and promote clotting [28] and 

clotting-related conditions such as sepsis-induced 

coagulopathy or disseminated intravascular 

coagulopathy that are found in COVID-19 [29].  

 

Immunosenescence in COVID-19 

 

Senescence also affects immune cells, and features of 

immunosenescence have been found in severe COVID-

19 patients [3, 4, 30–33].  

 

Immunosenescence is characterized by decreased naïve 

T-cells, increased memory T-cells, and poor response to 
newly-encountered antigens and vaccines [34, 35]. T-

cells play a vital role in viral clearance through 

cytotoxic molecule secretion [4].  
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Higher ongoing SARS-CoV-2 viral loads cause 

overstimulation of CD8 T-cells via TCR signaling, 

inducing CD8+ T-cell senescence [36, 37]. In severe 

COVID-19, circulating T-cells show signs of 

senescence by expressing PD-1, Tim-3, CTLA-4 and 

TIGIT [3, 4, 30, 31]. CD4+ and CD8+ T-cells have 

been observed in patients over 60 years of age and those 

receiving ICU care. There is an inverse correlation 

between decrease in total number of T-cells and patient 

survival [3]. Moreover, senescent CD8+ T-cells are 

unable to secrete cytotoxic perforin, granzyme and IFN-

γ [4] in these patients.  

 

Senescent T-cells also secrete the cytokines, 

chemokines, proteases and growth factors [38] that 

define SASP [38], and contribute to the cytokine storm 

that occurs in severe COVID-19 [3].  

 

Pre-existing factors that render patients vulnerable to 

COVID-19 could lead to immunosenescence [20, 39].  

 

Firstly, CMV infection is highly prevalent (>90%) in 

the elderly, and leads to immunosenescence through 

phenotypic changes and loss of T-cell repertoire 

diversity [40]. Higher CMV viral loads cause CD8+ T-

cells to overstimulate via TCR signaling, thus inducing 

CD8+ T-cell senescence [37]. Diversity in clonally-

expanded CMV-specific memory CD8+ T-cells and 

concomitant decreased naïve T-cells results in poor 

response to influenza vaccines in the elderly [7]. 

Chronic CMV infection may bring about a diminished 

immune response to SARS-CoV-2 infection and to any 

future vaccination [41]. 

 

Secondly, aging attenuates the upregulation of co-

stimulatory molecules critical to T-cell priming and 

reduces antiviral IFN production by means of alveolar 

macrophages and dendritic cells [42]. The ability of 

DCs and macrophages to elicit CD8+T-cell response 

and proliferation and to release antiviral cytokines is 

thus impaired [42]. In the lung, delayed IFN production 

leads to cellular damage to airway and alveolar 

epithelia, and contributes to  cytokine storm [43]. In 50 

COVID-19 patients, severe and critically ill patients had 

impaired type I IFN response, persistent blood viral 

load and exacerbated inflammatory response [44]. The 

international “COVID Human Genetic Effort” 

consortium has shown that inborn errors of TLR3- and

 

 
 

Figure 1. Immunometabolism at cornerstone of inflammaging, immunosenescence, and autoimmunity in COVID-19. 
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IRF7-dependent type I IFN immunity can underlie life-

threatening COVID-19 pneumonia in 3%-4% of 

patients with no prior severe infection [45].  

 

Autoimmune diseases can also neutralize  type I IFN 

activity via IgG auto-antibodies at the onset of critical 

disease as found in 10% of severe forms of COVID-19 

[45, 46].  

 

Coronaviruses themselves can hinder early induction of 

type I IFN [43] through proteases that antagonize 

STING whose role is to recognize cytosolic viral DNA 

[43], or in SARS-CoV-1 through addition of a 2’ O-

methyl group to viral RNA, to evade detection by 

MDA-5 [43].  

 

Taken together, elderly patients and those with risk 

factors for severe COVID-19 cannot mount an efficient 

adaptive antiviral immune response [43].  

 

Thirdly, age-related thymic involution reduces the 

output of naïve T-cell and TCR repertoire [40], thus 

producing a characteristic immunosenescence profile 

[40]. Lymph nodes undergo age-related changes, and 

become less able to maintain naïve T-cell homeostasis 

and to coordinate new immune responses to emerging 

infections [43]. The balance of bone marrow immune 

cell production is affected, involving reduced 

lymphopoiesis and enhanced myelopoiesis [47]. 

Senescent lymphoid organs can compromise an efficient 

immune response against COVID-19. 

 

Fourthly, angiotensin converting enzyme-2 (ACE2) 

expression which is the primary target receptor for 

SARS-CoV-2 occurs in the lungs, oral mucosa, gut 

enterocytes, and endothelial cells [42]. It has a 

protective effect on endothelial cells and lung function 

by limiting angiotensin II-mediated pulmonary capillary 

leakage and inflammation [42]. ACE2 downregulation 

by the spike protein of SARS-CoV-2 in the lung might 

be implicated in ARDS through release of 

proinflammatory chemokines and cytokines [42]. 

 

Fifthly, obesity, metabolic syndrome, and diabetes 

mellitus are linked to systemic immunometabolic 

inflammation. In this “metaflammation” the circulating 

cytokine levels are increased by activation of the NLR 

family pyrin domain-containing 3 (NLRP3) 

inflammasome/IL-1 axis, NF-κB and JNK pathways 

[14, 48, 49]. Interaction between macrophages and 

adipocytes are early molecular events in subclinical 

inflammation, further inducing insulin resistance, 

glucotoxicity, lipotoxicity, endothelial dysfunction, 

systemic inflammation and cardiovascular disease [48]. 

Obesity is  linked to dysregulated adaptive immunity 

and failure to generate antibodies following infection or 

vaccination [49]. Obesity entails an increased risk for 

hypertension, diabetes mellitus, and cardiovascular 

disease, three of the most important underlying 

conditions in severe COVID-19 [50].  

 

Lastly, telomere shortening, that is linked to cellular 

aging, may play a role in severe COVID-19 [42]. Older 

adults whose telomeres were comparatively short had 

mortality rates over eight times higher from infectious 

disease  and over three times higher from heart disease 

than those whose telomeres were longer [51]. T-cells 

from chronically virus-infected individuals age 

prematurely or are senescent due to telomere attrition 

and erosion [7]. Accelerated telomere loss in various 

leukocyte subpopulations is a common feature of ARDS 

and autoimmune disease and enhances proinflammatory 

cytokine production [42]. The mechanisms linking 

telomere attrition, cell senescence, and aging are not 

restricted to the inhibition of cell division, but also rely 

on the acquisition of pro-inflammatory secretome  

by senescent cells known as SASP [42, 52].  

Prompt recovery of the immune response requires 

massive lymphopoiesis which is telomere length-

dependent [53], and in COVID-19 lymphopenia is 

linked to mortality [32]. 

 

A vicious circle is then established whereby pre-

existing senescence factors worsen acquired senescence, 

which itself amplifies age-related senescence. 

 

Immunosenescence and autoimmunity in 

COVID-19 
 

Following infection by COVID-19, there have been 

reports [9] of autoimmune disease onset including 

autoimmune thrombocytopenia [54], autoimmune 

hemolytic anemia [55], cold agglutinin disease [56], 

Guillain-Barré syndrome [57], encephalopathy involving 

choreiform movements [58], and antiphospholipid 

syndrome [59].  

 

Lymphopenia is one of the hallmarks of severe COVID-

19 [60]. It is also a characteristic feature of human SLE 

and RA [8], and a risk factor  for NOD mouse 

autoimmune diabetes [8]. Lymphopenia is linked to 

premature aging of the immune system [8]. When 

lymphopenia occurs, the CD4+ T-cells undergo 

homeostatic proliferation, which, when sustained, 

increases the risk for autoimmunity [61]. SARS-CoV-2 

may act as a triggering factor for activation of 

autoreactive lymphocytes [9]. 

 

In COVID-19, tissue infection can also induce a local 

innate immune response that involves overexpression 

of costimulatory molecules and cytokines by tissue 

antigen-presenting cells [62]. These cells are able to 
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stimulate self-reactive T-lymphocytes [63]. COVID-

19 thus has the capacity to disrupt T-cell tolerance 

and promote the survival and activation of self-

reactive T-cells [9]. Thymic epithelial cell involution, 

which plays an essential role in central T-cell self-

tolerance, also contributes to self-tolerance 

breakdown [61]. 

 

TCR diversity deteriorates with age, and oligoclonal 

cell populations are common in the elderly [64]. This 

population also exhibits a diminished response to 

vaccination indicative of a decline in T-cell functional 

response, and a Th2 profile [64]. This switch from a 

Th1 to Th2 profile that is also observed in severe 

COVID-19 patients may lead to an ineffective antiviral 

immune response [3, 6, 65].  

 

Making use of IL-6 [66], COVID-19 expands Th17 

cells [30, 67] which provide antibacterial protection, but 

are also associated with the development of 

autoimmune diseases [68]. Pro-inflammatory Th17 cells 

are in homeostatic balance with anti-inflammatory 

Tregs [30, 67]. Tregs are able to suppress autoimmune 

phenomena and dampen allergic reactions, but they can 

also inhibit a protective immune response to invading 

pathogens [30, 35]. The Th17/Treg ratio is higher in 

patients with SLE, RA, multiple sclerosis, and 

inflammatory bowel disease much the same as in severe 

COVID-19 [30, 68]. Follow-up of COVID-19 patients 

is important to assess the occurrence rate of induced 

autoimmune diseases. 

 

Since SARS-CoV-2 is able to produce antigens that 

resemble self-antigens, immune responses to these 

peptides can result in an autoimmune attack by 

molecular mimicry [9]. This may account for the 

autoimmune neurological complications and 

autoimmune anemia observed in COVID-19 patients 

[69, 70].  

 

In the brain, damage to the respiratory pacemaker 

known as the pre-Bötzinger complex (preBötC) 

through mimicry between viral and neuronal proteins 

of the preBötC contributes to respiratory failure in 

COVID-19 [69]. In autoimmune hemolytic anemia, 

the erythrocyte membrane protein ANK-1 shares an 

epitope that is 100% identical to the SARS-CoV-2 

spike surface glycoprotein [70]. Age-related 

conditions associated with severe COVID-19 also 

provoke endotheliitis and endothelial dysfunction 

[29]. Hence abnormal expression of plasma  

membrane molecules in endothelial cells, resulting 

from post-translational modification of intracellular 

proteins such as heat shock proteins, can predispose 

cells and tissues to molecular mimicry leading to 

autoimmunity [71].  

COVID-19: a systemic disease mimicking 

systemic lupus erythematous crosstalk  

between immunosenescence, autoimmunity  

and immunometabolism  
 

The metabolism drives immune T-cell activation and 

differentiation [10, 11, 72]. Cytokines, metabolic 

substrates, epigenetic reprogramming and other 

microenvironmental factors regulate this process by 

influencing T-cell activation and function [10, 11, 35, 

72]. The metabolic status of T-cells depends on their 

differentiation stage [10]. Both naïve CD4+ and CD8+ 

T-cells use the oxidative phosphorylation pathway at 

rest [10]. Treg and memory CD4+ T-cells use fatty acid 

oxidation to support oxidative phosphorylation and cell 

proliferation [10]. Differentiated effector CD4+ cells, 

such as Th1 and Th17, prefer glutaminolysis, rapid 

glycolysis and fatty acid synthesis [10]. Upon 

activation, the naïve T-cell metabolism shifts towards 

aerobic glycolysis (Warburg effect) and embarks on a 

pentose phosphate pathway to generate nucleotides, 

amino acids, lipids and NADPH so as to enhance 

cellular antioxidants [10]. 

 

SLE is a chronic autoimmune disease characterized by 

abnormal T-cell responses to self-antigens resulting in 

multi-organ involvement [73]. Lymphopenia and 

senescent T-cells, two characteristic features of SLE, 

are also found in severe COVID-19 patients. In SLE, 

senescent PD-1+ CD4+ and PD-1+ CD8+ T-cells are 

correlated with increased disease activity and 

autoantibody production [74, 75].  

 

A link has been made between immunosenescence in 

SLE patients and immunometabolic alterations such as 

mitochondrial dysfunction, oxidative stress, glycolysis, 

glutaminolysis and lipid metabolism contributing to 

pro-inflammatory T-cell responses [73]. In SLE, T-cells 

have: i) dysfunctional oxidative phosphorylation 

pathways which can reduce Treg counts and functional 

exhaustion; ii) enhanced glycolysis which increases 

Th17-associated autoimmunity; iii) reduced naïve 

CD4+T-cells and increased memory CD4+T-cells [76].  

 

In CD4+ T cells from SLE patients, autophagy 

suppression induced by mTOR activation leads to  

their dysfunction in the differentiation and effector 

functions [77].  

 

The energy metabolism of senescent PD-1+ CD4+ T-

cells is different from non-senescent CD4+ T-cells [75]. 

When T-cells fail to use aerobic glycolysis, they 
enhance PD1 expression and develop a defect in IFN-γ 

production [14, 78]. The same metabolic mechanism 

could account for INF- γ deficiency in severe COVID-

19 patients [11].   
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As in SLE, lymphocyte subsets with higher central 

memory CD4+T-cell subpopulations (CD45RA+) were 

found in 39 severe COVID-19 patients [30]. CD45RA 

expression characterizes senescent T-cell populations 

which sustain low proliferative activity, high levels of 

DNA damage and loss of telomerase activity [79]. 

 

These 39 severe COVID-19 patients were also 

characterized by higher percentages of CD8+ T-cell 

terminal effector cells expressing CD38 alone or in 

combination with CD57, and by activated effector 

memory cells expressing PD1 or CD57 [30]. They 

displayed significantly lower percentages of naïve and 

central memory T-cells, which could suggest that the 

CD8+ T-cell compartment was senescent in these 

patients. [30] In SLE patients suffering from infections, 

the CD8+CD38highT-cell population is expanded [80]. 

These cells demonstrate reduced cytotoxic function [80] 

similar to senescent T-cells found in severe COVID-19 

[3, 4, 30, 31]. 

 

Targeting immunosenescence and 

immunometabolism to prevent cytokine  

storm in COVID-19  
 

Three therapeutic approaches that target T-cell 

senescence by reversing metabolic dysfunction are 

available in severe COVID-19 (Figure 2). 

 

Rapamycin, an mTOR inhibitor 

 

The PI3K/Akt/mechanistic mammalian target of the 

rapamycin (mTOR) pathway is a central regulator of 

inflammation within the immune system, acting as a 

sensor for oxidative stress and cell metabolism [6, 11, 

12]. mTOR pathway activation increases protein 

synthesis, glycolysis and other proliferation and 

survival processes [12].  

 

In COVID-19, the mTOR pathway may provide 

valuable targets for controlling cell injury, oxidative 

stress, impaired autophagy and onset of 

hyperinflammation [6, 77]. mTORC1 mediates Th1 and 

Th17 differentiation upon viral antigen presentation by 

dendritic cells (DC) and mTORC2 mediates Th2 

differentiation. Both complexes restrict Treg 

differentiation [81].  

 

In T-cell metabolism, the oxidative stress and 

inflammation that activate mTORC1 can be blocked 

by N-acetylcysteine and/or rapamycin (sirolimus) in 

SLE patients [82]. Rapamycin, an mTOR inhibitor 

with the capacity to promote autophagy and suppress 
SASP, may restore T-cell functionality and attenuate 

cytokine storm in COVID-19 [6, 77]. In elderly 

patients with increased senescent PD-1+ T-cells, 

everolimus (an analog of rapamycin) enhanced 

immune function, and improved T-cell responses to 

antigenic stimulation with an acceptable risk/benefit 

balance [5]. In elderly coronary artery disease patients, 

rapamycin brought down serum senescence markers 

through IL-6 suppression [23]. In patients infected 

with the H1N1 influenza virus, early adjuvant 

rapamycin therapy over a short period (2 mg/day for 

14 days) was significantly linked to enhanced viral 

clearance, greater improvement in lung injury (i.e. less 

hypoxemia), and a decrease in multiple organ 

dysfunction [83]. Duration of mechanical ventilation 

in survivors was also shorter [83]. In mouse models, 

H1N1 causes acute lung injury via an IL-17-dependent 

mechanism [84]. mTOR blockade by rapamycin may 

inhibit Th17 cell expansion in COVID-19 patients 

similarly to SLE patients [85]. H1N1 and SARS-CoV-

2 both activate mTOR, and NLRP3 inflammasome 

pathways [86, 87] leading to production of IL-1β, a 

mediator of lung inflammation, fever and fibrosis. The 

NLRP3 pathway induces pyroptosis, that is a 

hyperinflammatory form of cell death [88]. Rapamycin 

inhibits H1N1-induced mTOR pathway activation, and 

thus IL-1β secretion [6]. In COVID-19 the binding of 

SARS-CoV-2 to TLR, which induces IL-1β 

production, is potentially reversed by rapamycin [89]. 

Rapamycin promotes de novo Foxp3 expression in 

naïve T-cells, leading to Treg proliferation and 

survival [81]. Rapamycin inhibits effector T-cell 

proliferation and enhances Treg accumulation [81].  

 

In addition, rapamycin was recently identified in a 

network-based drug repurposing study as a candidate 

for potential use in COVID-19 [89]. When administered 

early in the onset of the cytokine storm phase, it is 

possible that rapamycin prevents progression to severe 

forms of COVID-19 through the down-regulation of 

SASPs, of the mTOR-NLRP3-IL-1β axis, of the IL-6 

pathway, and of senescent T-cell counts [6].  

 

In combination with antiviral therapy, rapamycin is 

likely to optimize treatment of COVID-19 patients with 

advanced chronological age, and/or co- morbidities, or 

those with reduced T-cell counts who are more likely to 

progress to severe disease [6] (Figure 3). 

 

Metformin: an AMPK activator 

 

AMPK regulates tissue energy metabolism and controls 

immune responses through its cooperation with immune 

signaling pathways [90]. AMPK is also able to 

positively regulate autophagy [77]. AMPK signaling 

inhibits pro-inflammatory NF-κB pathways [90]. 

AMPK also downregulates JAK/STAT signaling 

pathways, known to drive cytokine signaling, cell 

growth, and apoptosis [90].  
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AMPK increases expression of and stabilizes ACE2 via 

phosphorylating ACE2 Ser680 in HUVECs [91]. T-cell 

activation in response to TCR engagement is linked to 

robust AMPK activation via a Ca2+/calmodulin-

dependent protein kinase pathway, an ubiquitous and 

evolutionarily conserved pathway that regulates energy 

homeostasis [92].  

 

Re-purposing metformin, which activates AMPK in 

hepatocytes, may be useful in COVID-19. While 

metformin was originally introduced as an anti-

influenza drug, it has glucose-lowering side effects [91] 

and is therefore a first-line therapy for diabetes mellitus 

[93]. It can also reduce inflammation and obesity [93] 

and is currently under evaluation for aging [94] and 

SLE [95]. Metformin lessens the hallmarks of aging by 

improving nutrient sensing, enhancing autophagy and 

intercellular communication, protecting against 

macromolecular damage, delaying stem cell aging, 

modulating mitochondrial function, regulating 

transcription, and lowering telomere attrition and 

senescence [96]. Mechanistic studies have illustrated its

 

 

Figure 2. CD8+ T-cell metabolism in COVID-19. (A) In comorbidity-free patients developing asymptomatic/mild symptomatic forms of 

COVID-19, cytotoxic immune response mediated by effector CD8+ T-cells results in eradication of virus and patient recovery. Normal antigen 
levels in antigen-presenting cells and cytokine levels (interleukin IL-2 released by helper CD4+ T-cells) stimulate TCRs and co-receptors such as 
CD28, thus enhancing mTOR signaling via PI3K and protein kinase B that increases glycolysis. Cells shift from OXPHOS/FAO to glycolytic-based 
metabolism, whereby anabolic processes activate effector cells to clear infection. This includes production of cytotoxic factors (type 1 
Interferon, granzyme, perforin) and enhanced proliferation. Massive increase in glycolysis results in production of ATP (less than OXPHOS but 
sufficient to inhibit AMPK, preventing mTOR pathway blockade. ROS production activates Nrf2, reducing inflammation and apoptosis by 
inhibiting NF-κB and pro-inflammatory cytokine production. (B) Aging and age-related disorders cause CD8+ T-cell senescence in severe 
COVID-19.  Excess antigens upregulate inhibitory receptors (programmed death-1: PD-1) that block TCR activation, thus reducing signaling 
required for glycolytic metabolic phenotype itself crucial to proper effector functioning. Malfunction is compounded by upregulation of PD-1 
expression-enhancing transcription factors, reduction in helper cell survival and proliferation signaling (IL-2), and increase in inhibitory 
signals. Senescent CD8+ T cells secrete SASP, paracrinely amplifying production of inflammatory cytokines and triggering cytokine storm. 
Massive decrease in glycolysis causes fall in ATP production and fails to sufficiently inhibit AMPK which then partially inhibits mTOR pathway. 
Substantial ROS production activates Nrf2 but fails to inhibit NF-κB pathway and pro-inflammatory cytokine production. These events 
combined make cells malfunction metabolically, inhibit cytotoxic function and exhaust the phenotype. 
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role in Th17 cell differentiation via the 

AMPK/mTOR/STAT3 pathway [95]. In COVID-19, as 

in SLE, an increase in Th17 cells occurs38. Metformin 

can also normalize CD4+ T-cell glucose metabolism via 

inhibition of mitochondrial complex I and oxidative 

phosphorylation [95]. Since glucose metabolism is 

crucial to the activation, proliferation and differentiation 

of CD4+ T-cells, metformin can reduce overactive 

effector T-cells (including Th1 and Th17) and 

proinflammatory cytokines (including interferon IFN-γ 

and IL-17) in SLE [95]. CD8+ T-cells play a vital role 

in viral clearance, particularly through secretion of 

cytotoxic molecules such as perforin, granzyme and 

IFN-γ [6]. At doses administered in the treatment of 

diabetes mellitus, metformin may restore T-cell 

functionality and attenuate the cytokine storm in 

COVID-19 [90, 91, 97]. 

 

Furthermore, metformin results in phosphorylation of 

ACE2 by virtue of AMPK activation, and mitigates 

binding with SARS-CoV-2 [91].  

 

Clinical reports suggest that treating diabetes mellitus 

patients with metformin decreases the risk of death in 

COVID-19 [97–99], possibly due to the effect of TNF-α 

[98]. In an observational study involving 2333 

hospitalized COVID-19 patients, metformin was 

significantly associated with reduced mortality in obese 

or diabetic patients [98]. In 600 patients with diabetes 

mellitus and COVID-19, administration of metformin 

was associated with a reduction in mortality of almost 

70% after adjustment for multiple confounders [99]. In 

four other studies, metformin was associated with an 

overall reduction in death of 25% (P < .00001), albeit 

with relatively high heterogeneity (I² = 61%) [97]. 

 

Since mTOR is a downstream signaling molecule in the 

AMPK pathway [90], metformin combined with 

rapamycin may offer the possibility of restoring T-cell 

functionality and preventing severe progression in 

COVID-19, provided it is initiated early in the cytokine 

storm phase (Figure 3). 

 

Dimethyl fumarate: a Nrf2 activator 
 

Nrf2 is a redox-sensitive transcription factor that 

regulates the expression of ARE-dependent genes, 

among which HO-1 and NQO1 [100]. Under normal

 

 
 

Figure 3. Immunometabolism-Mediated therapies targeting T-cell dysfunction in COVID-19. Onset of cytokine storm as treatment 

opportunity via rapamycin, metformin, and dimethyl fumarate. Inhibition of mTOR by rapamycin, AMPK by metformin and Nrf2 activation by 
dimethyl fumarate may restore CD8+ T-cell functionality and improve antiviral response and patient outcome.  
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conditions, Nrf2 is retained in the cytoplasm in a 

silent form by its repressor protein, Keap1, which 

contains reactive cysteine residues. Oxidative stress 

modifies Keap1 cysteine residues, enabling Nrf2 

translocation to the nucleus where it binds to ARE 

[100].  

 

Due to its antioxidative stress activity, Nrf2 plays a 

protective role in antiviral and antibacterial processes 

in lung infections [101]. In COVID-19 pneumonia, 

Nrf2 activators may i) inhibit virus entry by inducing 

antioxidant enzyme gene expression; ii) protect lung 

alveoli through  induction of antiviral IFN, RIG-I and 

IFN-β gene expression; iii) have anti-inflammatory 

and anti-apoptotic effects by inhibiting NF-κB, TNF-

α, IL-6, MCP-1, MIP-2 and downregulating selectins 

and VCAM-1; iv) inhibit TLR expression of these 

receptors [101].  

 

Re-purposing DMF, which is a drug that has been 

approved for the treatment of multiple sclerosis (MS), 

may therefore be of use in COVID-19 [101]. DMF 

suppresses inflammation through Nrf2 activation, NF-

κB blockade and glutathione modulation [101]. It can 

inhibit  SARS-CoV-2 entry into lung alveolar cells 

via: i) an increase in anti-protease secretory leukocyte 

protease inhibitor; a decrease in transmembrane serine 

protease; iii) ACE2 upregulation that competes with 

the virus at the binding site [101]. To date, there have 

been no reported cases of severe COVID-19 

infections in DMF-treated MS patients [102]. DMF 

treatment was not discontinued in young and non-

lymphopenic MS patients affected by COVID-19 

[102, 103].  

 

For COVID-19 patients, further assessment of the 

benefits of administering DMF at an early stage to 

prevent a cytokine storm from occurring is required 

(Figure 3). 

 

CONCLUSIONS 
 

The COVID-19 pandemic has demonstrated that this 

disease follows the classic kinetics of a viral infection 

in young subjects with no comorbidities. In the 

elderly and in patients with co-morbidities, the 

adaptive immune response is less efficient due to 

senescent lymphocytes and inflammaging. A link can 

be established between senescence and autoimmune 

manifestations induced by COVID-19. As in SLE, T-

cell metabolism becomes deregulated. Therefore, 

there is a strong possibility that rapamycin, metformin 

and DMF, as an immunometabolism-mediated 
approach, optimize COVID-19 treatment in the 

elderly and in patients who have risk factors for 

severe disease.  
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