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INTRODUCTION 
 

A tremendous growth in the proportion of elderly people 

raises a range of challenges to societies worldwide. 

Healthy aging should therefore be a main priority for all 

countries across the globe. However, science behind the 

study of age-associated diseases is increasing and 

common molecular mechanisms that could be used to 

dissect longevity pathways and develop safe and 

effective interventions for aging are being explored. In 

this regard, novel methodologies using the power of 

artificial intelligence (AI) are emerging to cope with the 

massive amount of data that are becoming available [1]. 

A collaborative effort based on transfer of technology 

and knowledge between academia and industry is also 

needed to accelerate aging discoveries and facilitate 

better transition of effective interventions into clinics. To 

accelerate this, the Aging Research and Drug Discovery 

(ARDD) meeting was founded seven years ago in Basel, 

Switzerland. This year‟s meeting, organized by Alex 

Zhavoronkov, Insilico Medicine, Morten Scheibye-

Knudsen, University of Copenhagen and Daniela Bakula, 

University of Copenhagen, was particularly challenging 

due to the ongoing COVID-19 pandemic. The 7
th
 ARDD 

meeting, 1
st
 to 4

th
 of September 2020, moved online with 

local hosting at the University of Copenhagen. We were 

very fortunate to have 65 fantastic speakers and more 

than 2200 „ARDDists‟ (Figure 1). This report provides an 

overview of the presentations covering topics on some of 

the latest methodologies to study aging, molecular 

characterization of longevity pathways, existing aging 

interventions and the importance of aging research for the 

global society and economy. 

Novel approaches to study aging 
 

The progress in discoveries of basic mechanisms of 

aging as well as development of novel interventional 

strategies depends primarily on approaches and tools 

that are used in the lab. During the last couple of 

decades, methodological strategies for emerging big 

data from various cell-, tissue- and organ-types have 

accelerated towards development of high-throughput 

screening techniques and computational approaches 

using the power of artificial intelligence [1]. However, 

despite the capacity of data analysis, existing methods 

are constantly improving and becoming integrated as a 

part of intervention-screening platforms. Martin Borch 

Jensen, Gordian Biotechnology, San Francisco, USA, 

presented their approach for conducting high-

throughput screens of many therapies in a single animal, 

using single-cell sequencing. By identifying cells within 

a diseased tissue that appear healthy after receiving one 

of many interventions, they are able to test in vivo 

efficacy of therapies much faster than traditional drug 

development. Another achievement in the development 

of advanced technology has been made in the area of 

proteomics, discussed by Andreas Mund, University of 

Copenhagen, Denmark. In particular, single cell 

proteomes can be analysed to extract valuable 

information regarding disease mechanisms. Its integ-

ration with multiplexed imaging of human-derived 

tissue samples and deep learning techniques enables the 

creation of an advanced deep visual proteomics pipeline 

for discovery of novel biomarkers and effective 

therapeutics that could potentially be used in clinics [2]. 

Further, Ieva Bagdonaite, University of Copenhagen, 
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ABSTRACT 
 

Aging is emerging as a druggable target with growing interest from academia, industry and investors. New 
technologies such as artificial intelligence and advanced screening techniques, as well as a strong influence 
from the industry sector may lead to novel discoveries to treat age-related diseases. The present review 
summarizes presentations from the 7th Annual Aging Research and Drug Discovery (ARDD) meeting, held online 
on the 1st to 4th of September 2020. The meeting covered topics related to new methodologies to study aging, 
knowledge about basic mechanisms of longevity, latest interventional strategies to target the aging process as 
well as discussions about the impact of aging research on society and economy. More than 2000 participants 
and 65 speakers joined the meeting and we already look forward to an even larger meeting next year. Please 
mark your calendars for the 8th ARDD meeting that is scheduled for the 31st of August to 3rd of September, 2021, 
at Columbia University, USA. 
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Denmark, underlined the value of investigating protein 

glycosylation that undergoes dynamic changes in age-

associated diseases, as well as highlighted the 

importance of mapping complex glycoproteome using 

advanced quantitative proteomics for both developing 

efficient therapies and biomarker discovery [3]. 

 

Benefits of omics-based big data analysis were also 

presented by Christian Riedel, Karolinska Institutet, 

Sweden, who developed an advanced screening approach 

for geroprotector discovery. In this approach, screening 

of novel compounds is based on the transcriptome 

analysis of human tissues from people of varying ages 

and the application of machine learning to create age 

classifiers that predict biological age [4]. He looks for 

compounds that can shift transcriptomes of “older” 

towards “younger” tissues and thereby identifies drug 

candidates with potential geroprotective capabilities. 

Transcriptomics and other omics-based tools are also 

actively used by Vadim Gladyshev‟s team, Brigham  

and Women‟s Hospital, Harvard Medical School,  

USA. Particularly, comparative analysis of global 

transcriptomics and metabolomics data across species 

with different lifespan, across known longevity 

interventions, and across cell types with different lifespan 

can be used to develop an unbiased approach for the 

discovery of novel longevity interventions [5, 6]. Such 

approach can be intensely applied to determine the 

relationship among different types of interventions and its 

association with lifespan extension [7]. Identification of 

common signatures of longevity also raises great 

opportunities for high-throughput screening for novel 

 

 
 

Figure 1. Statistics from ARDD2020. 
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compounds that are candidates for lifespan extension. 

Besides interventions, genetic studies enable the 

identification of novel factors contributing to aging. 

Using available genotyping data and genetic traits from 

two human cohort studies, ultra-rare damaging mutations 

were identified including rarest protein-truncating 

variants that negatively affect lifespan and healthspan [8]. 

Interestingly, genetic variation that supports longevity is 

also protective against COVID-19, which emerges as a 

disease of aging [9, 10]. A genetic approach to 

understand aging in humans was also described by 

Yousin Suh, Columbia University, USA. Studies of 

common and rare genetic variants in centenarians can be 

used to dissect longevity-associated genetic variants that 

may potentially be applied to understand the molecular 

basis of healthy aging as well as to develop new therapies 

for improving healthspan [11, 12]. 

 

Novel animal models are also being explored for the 

study of aging. Dario Riccardo Valenzano, Max Planck 

Institute for Biology of Ageing, Cologne, Germany, 

demonstrated how host-microbiota interactions can be 

important determinants for maintaining homeostasis  

and modulating lifespan using the short-lived model 

organism African turquoise killifish [13, 14]. He showed 

that fecal transplantation of young microbiota to old 

animals rescued age-dependent decrease in abundance of 

microbiota and extended the lifespan of the fish. 

Modulation of microbial function can also impact the 

effect of potential pharmacological interventions in 

hosts, as was highlighted by Filipe Cabreiro, Imperial 

College London, UK, who suggested that age-dependent 

changes in gut microbial composition can be potentially 

considered one of the hallmarks of aging [15]. Using  

the well-known pro-longevity drug metformin and a 

combination of model organisms such as C. elegans  

and D. melanogaster together with computational 

approaches for modelling human microbiome data, 

Filipe‟s team showed that diet can impact the beneficial 

effect of metformin. His team developed a high-

throughput screening platform to identify dietary 

metabolites and microbial molecular pathways that are 

responsible for the effect of metformin on health- and 

lifespan [16]. In worms, this and other potential aging 

interventions can be tested using a novel approach to 

measure health by atomic force microscopy based on the 

assessment of worm stiffness and cuticle senescence 

(roughness) across age spectrum [17]. 

 

Deep aging clocks 
 

Application of artificial intelligence for the development 

of novel therapeutics and biomarker discovery have been 

actively highlighted during the ARDD meeting. In 

particular, for the last couple of years several aging 

clocks have been developed to predict chronological and 

biological age based on certain clinical parameters [18]. 

Steve Horvath, University of California, Los Angeles, 

USA, demonstrated their importance in predicting not 

only chronological age, but also mortality risks across 

mammalian species referring to second generation 

epigenetic clocks, including PhenoAge and GrimAge 

[19, 20]. The translational value of epigenetic clocks was 

also highlighted in regard to testing aging interventions 

and their application in clinical trials [21]. The 

assessment of health state and life expectancy using deep 

learned clocks was further presented by Alice Kane, 

Harvard, USA. She developed a deep learned aging 

measure using a frailty index as a fast non-invasive 

mortality predictor for mice [22]. Another talk on 

estimation of chronological age was given by Anastasia 

Georgievskaya, Haut.AI, Tallinn, Estonia. Anastasia 

took an advantage of face and hand images from 

different age groups to create multimodal age prediction 

analyses as a part of a pipeline for the development of 

non-invasive visual biomarkers of human aging [23]. 

The importance of deep learning applications in 

healthcare and biomarker discovery was also discussed 

by Polina Mamoshina, Deep Longevity, Hong Kong. In 

particular, because different biological aging clocks may 

be associated with different aging processes, Deep 

Longevity aims to combine multiple clocks to estimate 

and monitor biological age over time [18, 24]. 

 

Interestingly, in humans, drug repurposing and its 

efficiency can be estimated not only by applying various 

aging clocks, but also using life-course trajectories and 

health-to-disease transition analyses presented by Søren 

Brunak from Novo Nordisk Foundation Center for 

Protein Research, University of Copenhagen, Denmark 

[25]. Using large datasets on millions of patients, this in 

silico approach enables the understanding of how one 

disease follows another and estimates if certain genes are 

linked to diseases [26]. The use of single patient disease 

trajectories spanning up to 20 years when predicting 

intensive care mortality highlighted how aging data and 

machine learning can be made actionable at the bedside 

as opposed to statistical assessment of larger groups of 

individuals [27]. 

 

Genome maintenance in aging and longevity 
 

Age-dependent alterations in cellular pathways lead to a 

decline in organ function and progression of disease. 

Understanding what causes aging and examining 

common patterns of changes on gene, protein and post-

translational levels during the lifespan and across 

multiple tissues is one of the challenging tasks for aging 

researchers. Jan Vijg, Albert Einstein College of 

Medicine, USA, underlined that somatic mutations, 

including point mutations and genomic rearrangements, 

accumulate during aging and may contribute to mortality 
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and disease [28]. Applying single-cell sequencing allows 

the identification of an age-dependent exponential 

increase in mutation frequency in human B lymphocytes 

[29] and liver hepatocytes [30], and propose mechanisms 

of how de novo mutations accumulate from early 

embryogenesis to adulthood and old age, and lead to the 

development of disease [28]. A topic of chromosomal 

aging was also highlighted in regard to reproductive 

lifespan by Eva Hoffmann, University of Copenhagen, 

Denmark. Investigations of changes in fertility rate 

during aging showed that chromosome errors and 

aberrations in oocytes control natural fertility in humans 

[31]. Based on current knowledge of genetic regulation 

of reproductive aging, interventions for pregnancy loss 

are being developed and were discussed during the 

ARDD meeting. 

 

Interestingly, a genetic network that controls reproductive 

aging and somatic maintenance is primarily related to 

pathways associated with DNA repair and cell cycle 

regulation. Substantial research in aging has been done 

towards investigating nuclear DNA damage, which 

associates with multiple hallmarks of aging [32], as  

well as developing interventional strategies for protecting 

the aging genome [33]. Björn Schumacher, University of 

Cologne, Germany, characterized molecular 

consequences of DNA damage either in germline or 

somatic cells [34, 35] and examined molecular pathways 

that regulate somatic maintenance using C. elegans as a 

model organism. His recent discovery of epigenetic 

modifiers that are required for maintaining lifespan after 

DNA damage [36] shed light on novel molecular 

pathways linking DNA damage, epigenetics and 

longevity. A connection between DNA damage/repair, 

post-translational modifications and longevity was also 

presented by Vera Gorbunova, University of Rochester, 

USA, who applies a comparative biology approach to 

study short- and long-lived animals. Her team showed 

that the DNA double strand break (DSB) repair 

efficiency shows strong positive correlation with 

maximum lifespan across mammalian species. Higher 

DNA repair efficiency in long-lived species was, in large 

part, due to the higher activity of the histone deacetylase 

and mono-ADP-rybosylase, Sirtuin 6 (SIRT6) [37]. 

Vera‟s talk also included unpublished data in humans 

showing that rare missense mutations in SIRT6 sequence 

identified in human centenarians are associated with 

more efficient DNA DSB repair. The functional role of 

SIRT6 in DNA repair also includes acting as a sensor of 

DSB, observed by Debra Toiber, Ben Gurion University 

of the Negev, Israel. Her data illustrates that SIRT6 

directly binds to DNA, is recruited to the site of damage 

independently of PARP, MRE11 and KU80 and triggers 

activation of a DNA damage response [38]. Considering 

that SIRT6 depletion leads to accelerated aging and 

neurodegeneration phenotypes in mice, targeting it could 

be a potential strategy for the development of novel 

neuroprotective therapeutics [39, 40]. 

 

Importantly, genome maintenance and age-dependent 

changes in gene expression patterns are primarily 

dependent on chromatin state and epigenetic 

modifications [41]. David Sinclair, Harvard, USA, 

showed that DSBs may drive age-dependent epigenetic 

alterations and loss of cellular identity. Using a 

transgenic mouse system for inducible creation of DSBs, 

he revealed that loss of epigenetic structures, an 

accumulation of epigenetic noise and increased predicted 

DNA methylation changes increase with age and DNA 

damage [42, 43]. Importantly, the introduction of an 

engineered vector expressing Yamanaka transcription 

factors, excluding c-Myc, regenerated axons after optic 

nerve crush injury and restored vision in old mice [44]. 

The effect was dependent on the DNA demethylases 

Tet1, Tet2 and TDG and was accompanied by a reversal 

of methylation patterns and resetting the DNA 

methylation clock. Interestingly, epigenetic modifications 

in aging were studied also in other model organisms. In 

worms, one of the euchromatin-associated epigenetic 

marks known to affect lifespan is H3K4me3, controlled 

by the COMPASS complex [45]. Carlos Silva Garcia, 

Harvard, USA, showed that COMPASS-related longevity 

in C. elegans is dependent on activation of SREBP1, a 

master regulator of lipid metabolism leading to an 

increase in monosaturated fatty acids that is required for 

lifespan extension in COMPASS-deficient C.elegans 

[45], and presented novel data on the involvement of 

CREB-regulated transcriptional coactivator CRTC1 in 

COMPASS-mediated lifespan extension [46]. Here, 

Alexey Moskalev, the Russian Academy of Sciences, 

Russia, discussed mechanisms associated with lifespan-

prolonging effects of chromatin modifier E(z) histone 

methyltransferases in D. melanogaster. The increase in 

lifespan of heterozygous E(z) mutant flies is associated 

with higher resistance to different stressors and changes 

in expression of genes related to immune response, cell 

cycle, and ribosome biogenesis [47]. 

 

Longevity pathways 
 

Longevity-associated molecular pathways are actively 

being explored in different model organisms. In rodents, 

differential gene expression in multiple tissues were 

described by David Glass from Regeneron, Inc., USA. 

Studies revealed an increase in gene expression 

variability during aging where bioenergetics pathways 

were identified to be significantly down-regulated in 

kidney, skeletal muscle and liver, while inflammatory 

signaling was upregulated in these tissues [48]. While 

old animals demonstrated increased activity of 

mammalian Target Of Rapamycin (mTOR) in skeletal 

muscle, it was highlighted that mTOR needs to be down-
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regulated for healthspan benefits but not completely 

inhibited. By using rapalogs, inhibitors of mTOR, the 

authors observed improvements in the kidney of old rats 

and identified key regulators, including c-Myc, that are 

involved in the beneficial effect of mTOR inhibition 

[49]. In a mouse study, partial mTOR down-regulation 

was also shown to be beneficial for skeletal muscle – 

decreasing degeneration/regeneration, and, surprisingly, 

increasing skeletal muscle mass [50]. Another 

mechanism by which down-regulation of mTOR 

signaling leads to longevity, was presented by Collin 

Ewald, ETH Zurich, Switzerland. Collin‟s team 

discovered a hydrogen sulfide pathway as a potential 

longevity mechanism that is up-regulated by ATF4 in 

dietary restriction (DR) as a stress response to a decrease 

in global mRNA translation [51]. Interestingly, hydrogen 

sulfide has already been shown to possess beneficial 

effects in age-related diseases with currently running 

clinical trials for cardio-vascular improvements 

(NCT02899364 and NCT02278276). However, in 

addition to activation of hydrogen sulfide signaling, 

decreased mRNA translation and ATF4 expression have 

a strong regulatory link to the mitochondrial translation 

machinery that was also shown to impact longevity [52]. 

Riekelt Houtkooper, Amsterdam UMC, Netherlands 

showed that down-regulation of mitochondrial ribosomal 

proteins extends lifespan [52] and presented novel  

data that disruption of mitochondrial dynamics [53] 

synergizes with reduced mitochondrial mRNA 

translation in C.elegans [54]. Marte Molenaars, 

Amsterdam UMC, Netherlands demonstrated that there 

is a balance between mRNA translation in the cytosol 

and in mitochondria, and inhibiting mitochondrial 

translation leads to the repression of cytosolic translation 

and lifespan extension via atf-5/ATF4 [55]. 

 

Another molecular mechanism tightly related with 

mitochondria and other organelles maintenance that is 

impaired during aging is autophagy [56]. Ana Maria 

Cuervo, Albert Einstein College of Medicine, USA, 

presented the importance of selective, and in particular, 

chaperone-mediated autophagy (CMA) in aging and 

age-related diseases [57]. Her recently developed mouse 

model to monitor CMA in vivo revealed that CMA 

activity is activated upon starvation in multiple organs, 

but that there are cell-type specific differences in this 

response [58]. CMA decline in most organs and tissues 

at different rate and contributes to loss of proteostasis 

and subsequent cell function. In the case of neurons, 

reduced CMA in mice leads to gradual alterations in 

motor-coordination and cognitive function suggesting 

that targeting selective autophagy can be a treatment 

option in neurodegenerative diseases [59]. Anais Franco 

Romero, University of Padova, Italy, presented data on 

the identification of novel FOXO-dependent genes that 

are related to longevity. One of the hits, the MYTHO 

gene, was found to be highly up-regulated in old mice 

and humans compared to young ones, and is associated 

with impairments in the autophagy machinery and motor 

function alterations in C. elegans and D. Rerio model 

organisms. A novel mechanism linking lysosomal 

function and mitochondria was presented by Nuno 

Raimundo, Universitätsmedizin Göttingen, Germany, 

who studied the consequences of impaired lysosomal 

acidification in aging and the development of 

neurodegeneration. Specifically, the data illustrates that 

blockage of lysosomal acidification via vATPase 

inhibition leads to the accumulation of iron in lysosomes 

and cellular iron deficiency resulting in impaired 

mitochondrial function and development of 

inflammation both in cultured neurons and in the brain 

of mice [60]. 

 

Importantly, because multiple cellular maintenance 

pathways associated with longevity requires high energy 

consumption, mitochondrial function can be considered 

to possess a pivotal role to affect biological aging. Luigi 

Ferrucci, National Institute on Aging - NIH, USA, 

highlighted that restoration of mitochondrial biogenesis 

and function may be achieved by temporary but not 

long-term blockage of major energy-consuming 

regulatory pathways. More specifically, Luigi‟s talk was 

aimed at explaining why mitochondrial function declines 

with age and presented evidence of reduced resting 

muscle perfusion, altered lipid biosynthetic pathways 

and impaired activity of the carnitine shuttle [61, 62]. 

 

Lifestyle strategies for metabolic interventions 
 

Identification of longevity-associated molecular 

pathways and the discovery of novel biomarkers of 

human aging goes along with the development of 

effective strategies for interventions. Currently, multiple 

interventions have been developed to target cellular 

metabolism, which is considered to possess a critical 

function in aging process [63]. Lifestyle interventions, 

including diet and its nutrient composition, regulate 

metabolic balance and affect lifespan across different 

species. Andrey Parkhitko, University of Pittsburgh, 

USA, discussed the role of the non-essential amino acid 

tyrosine in aging. In fly experiments, tyrosine levels 

decrease with age, accompanied by an increase of 

tyrosine-catabolic pathways. Preliminary data revealed 

that down-regulation of enzymes of tyrosine 

degradation, including the rate-limiting tyrosine 

aminotransferase (TAT), extends the lifespan of D. 
Melanogaster [64]. How protein affects lifespan has 

been further explored by Dudley Lamming, University 

of Wisconsin, USA [65]. Dudley‟s team dissected the 

role of essential dietary amino acids in regulating 

lifespan. Reduction of branched chain amino acids 

(Leucine, Isoleucine and Valine) increases metabolic 
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health, reducing adiposity and improving glucose 

tolerance in mice [66]. Further studies revealed that the 

low BCAA diet possess geroprotective properties, 

extending the lifespan of two progeroid mouse models, 

improving metabolic health in wild-type mice 

throughout their lifespan, and extending the lifespan and 

reducing the frailty of wild-type male, but not female, 

mice. These effects may be mediated in part by a sex-

specific effect of a low BCAA diet on mTORC1 

signaling [67]. Furthermore, Heidi Pak, University of 

Wisconsin, USA, illustrated that fasting is required for 

the beneficial effect of caloric restriction on healthspan 

and lifespan (unpublished data). Specifically, fasting was 

necessary to detect improvements in insulin sensitivity 

and to obtain the distinct metabolomic and 

transcriptomic signatures observed in caloric restricted 

male mice. Similarly, Pam Taub, UC San Diego, USA 

described the beneficial role of fasting as a part of 

lifestyle strategies for patients with cardiometabolic 

disease [68]. Importantly, the circadian rhythm was 

highlighted to have an important role for driving 

metabolism and affecting the efficiency of interventions. 

One dietary intervention that does not affect the 

robustness of the circadian rhythm is time-restricted 

eating (TRE). Pam‟s recently published study illustrated 

that 10 h TRE can be used as a safe and effective 

lifestyle intervention, together with standard medications 

that are applied for treatment of cardiometabolic 

syndrome. However, besides metabolic diseases, fasting 

and caloric restriction display beneficial effects also in 

diseases associated with premature aging. Jan 

Hoeijmakers, Erasmus Medical Center Rotterdam, 

Netherlands, presented data that caloric restriction 

positively affects behavior and extends the lifespan in 

ERCC1-deficient progeroid mice, and reduces tremors 

and improves the cognitive function in a human patient. 

 

Another lifestyle intervention that has a beneficial role 

for healthy aging is exercise. Thomas Rando, Stanford, 

USA, underlined the regenerative potential of skeletal 

muscles from young species that decline during aging. 

He showed that exercise in the form of running improves 

functionality of muscle stem cells almost to the level of 

young cells and increases the aged muscle capacity to 

repair injury in mice [69]. The improved function of 

muscle stem cells in old animals after exercise was 

associated with up-regulation of Cyclin D1, suppression 

of TGFbeta signaling and an exit from quiescence [69]. 

However, besides a decreased capacity of muscle 

regeneration, a decline in muscle function is also known 

to occur during aging. Gerard Karsenty, Columbia 

University, USA highlighted that age-dependent decline 

in muscle function and exercise capacity can be restored 

using osteocalcin. Circulating levels of this bone-derived 

hormone dramatically decreases already in middle age, 

surges after running and this hormone favors muscle 

function during exercise without affecting muscle mass, 

through two mechanisms in part. First, osteocalcin 

signaling in myofibers promotes uptake of glucose and 

fatty acids and the catabolism of these nutrients to 

produce ATP molecules needed for muscle function 

during exercise. Second, osteocalcin signaling in 

myofibers up-regulates the release in the circulation of 

muscle-derived interleukin-6 that in a feed forward loop 

increases the release of osteocalcin by bone during 

exercise and thereby exercise capacity [70]. Injection of 

osteocalcin increases the exercise capacity, fully restores 

muscle function and increases muscle mass in aged mice 

[70, 71]. Recent data also revealed that osteocalcin 

outperforms one of the leading compounds that is being 

tested for sarcopenia already in late clinical trials. 

 

Benefits of exercise training for muscle function were 

also described in the context of maintenance of 

nicotinamide adenine dinucleotide (NAD
+
) metabolism 

by Jonas Thue Treebak, University of Copenhagen, 

Denmark. A rate-limiting enzyme of NAD
+
 metabolism, 

nicotinamide phosphoribosyltransferase (NAMPT), 

declines with age and was shown to be the only enzyme 

from the NAD
+
 salvage pathway that is restored by 

aerobic and resistance exercise training in human 

skeletal muscle [72]. Recent studies revealed that 

knockout of NAMPT in mouse skeletal muscle leads to 

a strong reduction in muscle function, dystrophy and 

premature death, suggesting a crucial role of NAMPT 

for maintaining NAD
+ 

levels in skeletal muscle. 

 

Pharmacological approaches to modulate 

healthspan and lifespan 
 

Molecular and therapeutic importance of NAD
+
 

metabolism for aging was underlined in multiple talks at 

the ARDD meeting. Eric Verdin, Buck Institute, USA 

introduced the concept of competition among major 

NAD
+
-utilizing enzymes for NAD

+
 that may explain its 

age-dependent decline across multiple tissues [73]. The 

main focus of the talk was CD38, a NAD
+
-metabolizing 

enzyme that increases with age in adipose tissues [74]. 

Verdin‟s team discovered that CD38 activity is 

increased in M1 macrophages during aging and its 

activation depended on key cytokines from the 

senescence-associated secretory phenotype (SASP) 

secreted by senescent cells. Brenna Osborne, University 

of Copenhagen, Denmark further illustrated that 

depletion of CD38 appears to exacerbate some of the 

aging phenotypes in the mouse model of Cockayne 

syndrome, where another major NAD
+
-utilizing enzyme 

poly(ADP) ribose polymerase 1 (PARP1), is 

hyperactivated. Overall, current data suggest that a 

crosstalk between NAD
+
-utilizing enzymes needs to be 

continuously investigated in order to develop safe and 

effective interventions targeting NAD
+ 

metabolism. 
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However, precursors of NAD
+ 

are actively being tested 

in various age-associated disorders. Evandro Fei Fang, 

University of Oslo, Norway underlined the importance 

of the NAD
+
-mitophagy/autophagy axis in aging and 

neurodegeneration and presented data on how 

impairment of this axis contributes to the progression in 

accelerated aging diseases as well as in the most 

common dementia, the age-predisposed Alzheimer‟s 

disease [75, 76]. Induction of mitophagy either by 

NAD
+ 

or other mitophagy stimulators inhibits amyloid-

beta and p-Tau aggregates, as well as improves memory 

impairments in several models of Alzheimer‟s disease 

[77, 78]. Similar results were observed by Lene Juel 

Rasmussen from Center for Healthy Aging, University 

of Copenhagen, Denmark. Lene‟s team uses in vitro and 

in vivo animal models with a deficiency in the DNA 

repair gene REV1, which causes replication stress and 

premature aging. Suppression of REV1 is associated 

with high PARP1 activity, low endogenous NAD
+
 and 

low SIRT1 expression [79]. Presented data showed that 

mitochondrial dysfunction and morphology changes 

were suppressed, and autophagy was increased after 

nicotinamide riboside (NR) supplementation in REV1-

deficient cells and that NR increased the lifespan and 

healthspan of REV1-deficient nematodes. Importantly, 

the underlying cause of the development of premature 

aging disorders described before are impairments in 

genes associated with DNA repair [80]. Morten 

Scheibye-Knudsen, University of Copenhagen, 

Denmark, demonstrated the importance of targeting 

DNA repair for healthy aging and illustrated how the 

power of AI can be applied to find novel DNA repair 

stimulators. Particularly, an in silico approach enabled 

the identification of novel compounds that are able to 

delay replicative aging and reverse senescent 

phenotypes in multiple primary cells, as well as 

improve the behavior and extend the lifespan in wild-

type D. Melanogaster (unpublished data). 

 

Another recently uncovered molecule that is able to 

improve mitochondrial function via mitophagy is 

Urolithin A, a gut microbiome metabolite known to 

improve mitochondrial function via mitophagy, increases 

muscle function and possesses geroprotective features 

across multiple species [81]. Pénélope Andreux, 

Amazentis, Switzerland presented results from a double 

blinded placebo controlled study showing that urolithin A 

administration in healthy elderly people is safe and was 

bioavailable after single or multiple doses over a 4-week 

period [82]. Oral consumption of urolithin A decreased 

plasma acylcarnitines, a sign of improved systemic 

mitochondrial function, and displayed transcriptomic 

signatures of improved mitochondrial and cellular health 

in muscle. Interventions targeting autophagy pathways 

were also highlighted by Rafael de Cabo, National 

Institute on Aging-NIH, USA, in the context of obesity 

and metabolic health. Recent data showed that disulfiram 

treatment prevents high-fat diet-induced obesity in mice 

by reducing feeding efficiency, decreasing body weight, 

and increasing energy expenditure [83]. Moreover, 

disulfiram prevents pancreatic islet hyperplasia and 

protects against high-fat diet-induced hepatic steatosis 

and fibrosis. Further experiments uncovered common 

molecular signatures after disulfiram treatment, revealing 

pathways associated with lipid and energy metabolism, 

redox, and detoxification and identified autophagy as one 

of the key targets by which disulfiram mediates its 

beneficial effects in cell culture [84]. The link between 

metabolic health and age-related bone loss was 

highlighted by Moustapha Kassem, Molecular 

Endocrinology Unit, University of Southern Denmark, 

Denmark, who suggested targeting skeletal mesenchymal 

stem cells (MSC) for the treatment of age-related 

osteoporosis. A decline in bone marrow composition, as 

well as alterations in the function of MSC in bone 

remodelling, are known to occur during aging [85]. The 

Kassem team identified the KIAA1199 protein to be 

highly secreted from hMSCs during osteoblast 

differentiation in vitro [86] and is associated with 

recruitment of hMSC to bone formation sites [85]. 

 

Another “classical” pro-longevity pathway that is 

explored for the development of aging interventions is 

the IGF signaling pathway. For example, targeting 

IGFBP-specific PAPP-A protease using genetically 

modified mouse models leads to lifespan extension [87, 

88]. Here, Adam Freund, Calico Life Sciences LLC, 

USA, investigated targeting PAPP-A using antibodies. 

RNA sequencing revealed treatment with anti-PAPP-A 

to down-regulate collagen and extracellular matrix genes 

across multiple tissues. Further investigations identified 

MSCs to be a primary responder to PAPP-A inhibition. 

Restraining MSC activity is likely to be a mechanism 

driving a systemic response of tissues to PAPP-A 

inhibition. However, further experiments are required for 

the development of safe and effective therapeutic 

strategies for reducing IGF signaling. 

 

Importantly, IGF-1 and other pro-aging factors may 

trigger activation of the NF-kB signaling cascade 

leading to inflammation and the development of 

senescent phenotypes, suggesting that NF-kB plays a 

key role in modulating the aging process [89, 90]. Lei 

Zhang, University of Minnesota, USA, applied an in 

silico approach to screen compounds capable of 

disrupting IKKβ and NEMO association thereby 

inhibiting NF-kB transcriptional activation [91]. A small 

molecule called SR12343 was identified to suppress 

lipopolysaccharide (LPS)-induced acute pulmonary 

inflammation in mice and attenuate necrosis and muscle 

degeneration in a mouse model of Duchenne muscular 

dystrophy [91]. SR12343 also attenuated senescent cell 
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phenotypes in vitro as well as in mouse models of 

premature aging. A late life intervention with SR12343 

in naturally aged mice demonstrated a decrease in 

senescent markers in liver and muscle. Hence, 

pharmacological targeting of NF-kB activation offers 

considerable potential for improving healthspan. 

 

Interventions targeting senescent cells 
 

Notably, studies of multiple interventions in different 

aging models include examinations of various markers 

of cellular senescence. Its significance for the aging 

process has been shown multiple times across model 

systems [92]. Senescent cells occur in all organs, 

including post-mitotic brain tissues, during aging and at 

sites of age-related pathologies. The SASPs of senescent 

cells lead to chronic inflammation and may contribute to 

the development of various cellular phenotypes 

associated with aging and diseases. Hence, a novel class 

of drugs targeting senescent cells are emerging, 

including senolytics (selective elimination of senescent 

cells) and senomorphics (selective modification of 

senescent cells). However, it should be considered that 

cellular senescence is a balancing act between its 

beneficial and detrimental roles in maintaining tissue 

homeostasis, as described by Judith Campisi from Buck 

Institute, USA. For instance, removal of senescent cells 

by senolytic drugs is one strategy to combat aging 

phenotypes [93]. However, no single senolytic drug 

eliminates all senescent cells, likely due to the 

heterogeneity among cells and distinct cell-type specific 

differences and variations in the SASP [94]. Moreover, it 

was highlighted that the SASP also varies depending on 

the senescence inducer [93] underlining the question: 

“what drives cells into senescence during natural 

aging?”. In particular, this question was addressed by 

Kotb Abdelmohsen, National Institute on Aging - NIH, 

USA, who presented data on the identification of a 

transcriptome signature of cellular senescence based on 

RNA sequencing [95]. His team identified the 

microRNA miR-340-5p to be highly expressed in 

senescence triggered by several inducers across multiple 

cell types. MiR-340-5p promotes senescence through the 

downstream effector Lamin B receptor (LBR). They also 

discovered that miR-340-5p is senolytic-associated or 

senomiR that sensitizes senescent cells to senolytic 

drugs. 

 

Several strategies were proposed to target senescent 

cells. Marсo Demaria, ERIBA, Netherlands, 

demonstrated the important role of oxygen in the 

development of the senescence phenotype [96]. Data 

illustrated that growth arrest, lysosomal activity and 

DNA damage signalling were similarly activated in 

senescent cells cultured at 1% or 5% oxygen, but 

induction of the SASP was suppressed by low oxygen. 

Tissues exposed to low oxygen also expressed a lower 

SASP than more oxygenated ones. It was demonstrated 

that hypoxia restrains SASP via AMPK activation and 

mTOR inhibition, and that intermittent treatment with 

hypoxia mimetic compounds can serve as a potential 

strategy for the reduction of SASP in vivo. Further, Peter 

de Keizer, University Medical Center Utrecht, 

Netherlands underlined again the problem of the 

existence of distinct subtypes of cellular senescence and 

the absence of senescence-specific markers. A strategy 

of FOXO4-p53 targeting using a designed FOXO4 

peptide and other FOXO4-p53 inhibitory compounds 

can be applied to selectively eliminate senescence cells 

that appear during aging, as well as “senescence-like” 

chemoresistant cancer cells [97]. Laura Niedernhofer, 

University of Minnesota, USA, demonstrated a senolytic 

activity of fisetin, a natural flavonoid that improves the 

health- and lifespan in mouse models of normal and 

accelerated aging [98]. It was highlighted that several 

clinical trials with fisetin, also in regard to COVID-19, 

are under way. 

 

Another application of small molecules, resveralogues, 

to target senescent cells by reversing their phenotype 

was presented by Richard Faragher, University of 

Brighton, UK [99]. A range of compounds based on 

resveratrol were able to reverse senescent phenotypes 

and restore proliferative capacity by altering mRNA 

splicing and moderating splicing factor levels [100]. 

Those compounds that were also able to activate SIRT1 

demonstrated greater abilities to rescue cells from the 

senescence state [101]. 

 

Interestingly, screening of novel molecules using 

advanced AI-based tools and targeting senescent cells is 

also emerging. Carolina Reis, OneSkin, USA, underlined 

the importance of skin aging and illustrated why 

targeting senescent cells with novel senotherapeutic 

compounds can promote skin health in order to delay the 

onset of age-related diseases. Cell-based drug screening 

identified a lead compound, OS-1, that was able to 

reduce senescent cell burden and protect cells from 

UVB-induced photoaging. In addition, OS-1 was shown 

to reduce the molecular age of the skin using their 

developed skin-specific epigenetic clock [102] and 

showed benefits for skin health in a clinical study. 

Further experiments are being performed to examine 

whether OS-1 affects lifespan and healthspan in model 

organisms. 

 

Besides that application of lifestyle strategies that in 

many cases can mimic pharmacological therapies or 

possess synergetic effects for healthspan and lifespan, 

one should consider more upstream events on the level of 

prediction of disease. In this regard, development of non-

invasive biomarkers for human aging acquires special 
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significance. Majken Jensen, University of Copenhagen, 

Denmark illustrated the value of investigating high-

density lipoprotein (HDL) in the context of cardiovascular 

diseases and demonstrated HDL containing apoC3 to be 

the only subtype of HDL that was associated with higher 

risk of heart disease [103]. The problem of missing stable 

biomarkers for dementia prediction and Alzheimer 

disease was also underlined in Jensen‟s talk. Recently, 

published data revealed plasma apoE in HDL and lacking 

apoC3 was associated with lower dementia risk and 

better cognitive function [104]. This and other novel 

biomarkers for Alzheimer disease can be discovered 

using non-targeted proteomic profiling in cerebrospinal 

fluid (CSF) [105]. The importance of aging of the 

tissue producing the CSF was further demonstrated  

by Nanna MacAulay, University of Copenhagen, 

Denmark. Alterations associated with dysregulation  

of CSF can lead to several pathologies, including 

stroke-related brain edema and hydrocephalus. Water 

cotransporter mechanisms, rather than conventional 

osmotic driving forces, were highlighted to play a crucial 

role in the production of CSF and secretion from the 

blood to the brain. The Na
+
/K

+
/2Cl

-
 cotransporter 

(NKCC1) was identified to mediate approximately half of 

the CSF production, and thus provides opportunities for 

developing novel interventional strategies for pathologies 

associated with elevated brain fluid levels [106]. 

 

Challenges in aging: science, society and economy 
 

Currently, our understanding of the molecular basis of 

aging and age-associated diseases is improving. 

However, challenges in the aging field exist and refer to 

both science and society in general. Nir Barzilai, Albert 

Einstein College of Medicine, USA, highlighted several 

concerns including (1) the translational value of 

identified longevity mechanisms and effective 

interventions from animals to humans, (2) the discovery 

of reliable biomarkers for estimation of efficiency of 

various therapies and (3) the existence of possible 

antagonistic effects between different gerotherapeutics. 

Importantly, these challenges may be overcome because 

evolutionarily conserved molecular signatures of 

longevity between humans and animals have been 

identified (unpublished) and novel aging biomarkers that 

distinguish specific signatures of longevity are emerging 

[107]. Current knowledge also highlights careful 

consideration of the combination of geroprotectors that 

potentially may not lead to synergistic effects, with the 

example of the known pro-longevity drug metformin 

[108]. Additionally, COVID-19 research was mentioned 

in regard to the study of aging as an opportunity to 

advance geroscience. Aubrey de Grey from SENS 

Research Foundation, USA, also highlighted this topic 

and underlined the importance of thinking about 

COVID-19 in a broader way to target not only the 

immune system but aging in general, which raises a 

challenge to disseminate this knowledge to the public to 

raise awareness of the biology of aging and the 

possibility of interventions. Hence, novel strategies need 

to be implemented in order to engage the public into the 

field of aging. 

 

Another challenging topic discussed by Brian Kennedy, 

National University of Singapore, Singapore, related to 

the pros and cons of different ways of testing longevity 

interventions. Aging interventions would benefit most 

by applying prevention-based approaches and biomarker 

discovery [109]. Understanding how different 

physiological measures and aging clocks correspond to 

each other could allow targeted testing of different types 

of aging interventions, including the recently published 

life-extending molecule 2-oxoglutarate [110]. Further, 

João Pedro de Magalhães, University of Liverpool, UK, 

touched upon the topic of longevity interventions and 

highlighted the exponential growth of pharmacological 

approaches (DrugAge database), while research in genes 

associated with longevity have plateaued in recent years 

(GenAge database). Such shift towards drug discovery is 

accompanied by the appearance of an anti-aging biotech 

sector that could bring huge economic benefits in the 

future [111]. However, the lifespan of anti-aging 

companies is relatively small due to limitations in the 

time and ability to validate interventions, likely related 

to a lack of reliable aging biomarkers. Hence, in silico-

based approaches are being applied to overcome such 

limitations to identify either novel genes associated with 

aging phenotypes [112] or discover drug candidates for 

life extension [113]. 

 

AI in aging and longevity 
 

At the meeting several talks have been presented 

showing the power of AI in healthcare and the longevity 

industry. Kai-Fu Lee, Sinovation Ventures and 

Sinovation AI Institute, China explained different 

aspects of artificial intelligence and underlined deep 

learning to possess amazing attributes and provide great 

opportunities for the longevity sector. Particularly, deep 

learning is emerging in every aspect of healthcare and 

could advance longevity research with new analyses of 

omics-based big data. Different types of deep learning, 

including reinforcement learning and transfer learning, 

were highlighted in the context of building a 

knowledge-based network for health status prediction. 

Machine learning techniques are also used to develop a 

broad range of aging clocks that can be pooled together 

to conduct AgeMetric, a master predictor of the heath 

state of an individual [114]. Application of AgeMetric 

scores were further discussed by Alex Zhavoronkov, 

Insilico Medicine, Hong Kong who presented how AI-

based drug discovery can lead to commercial innovation 
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in longevity. In particular, next generation AI 

accelerates multiple aspects of biotechnology, including 

identification of novel targets, a rapid development of 

small molecules based on known targets [115] and 

prediction of outcomes of clinical trials. AI outperforms 

in many aspects humans if enough data is provided. By 

using different types of data and training a network on 

relatively healthy people, it is possible to re-train the 

network on particular disease and identify features that 

are specific to the diseases. Application of Agemetric 

scores and other AI-powered preventive medicine 

strategies in longevity medicine not only enables the 

prediction of biological age and tracking of healthy 

state, but also can be used to understand whether an 

individual is aging faster and how to intervene and slow 

down aging. 

 

The power of big data was also underlined by Wei-Wu 

He, Human Longevity Inc., USA, who discussed using  

big data to personalize aging interventions. These 

included not only omics data but also whole-body 

imaging techniques such as MRI. The possibility of 

combining very large amount of data is a unique 

opportunity for tailor made longevity solutions for every 

individual [116]. 

 

Sergey Young, Longevity Vision Fund, USA, further 

unravelled key driving forces within the longevity 

sector and explained why it is a favorable time to invest 

in the industry. This includes the appearance of several 

breakthrough innovations and a growing number of 

elderly people, along with an exponential increase in the 

prevalence of chronic age-related disease and unhealthy 

lifestyle. Further, the integration of AI and technology 

into medicine, healthcare and the longevity space will 

likely lead to business opportunities. All this is 

accompanied by an increase in capital and favourable 

support in the context of policies and regulations by the 

government. 

 

Last, Jim Mellon, Juvenescence, UK talked about how 

Juvenescence focuses on ways for improving human 

healthspan with the mission to extend healthy lifespan 

by 8-10 years in the upcoming future. It was highlighted 

that the biotech world possesses high risks with further 

complications in predictions of outcomes and 

achievements. One of the strategies to overcome such 

limitations is investment in multiple higher risk projects, 

with the likelihood that one or two of them will succeed. 

An important aspect of funded projects is the application 

of AI to accelerate drug development and bring drugs to 

market as quickly as possible. A Juvenescence pipeline 

includes focusing on diseases that have a major 

commercial impact on pro-longevity effects later on, 

with the example of targeting chronic kidney disease, 

Alzheimer disease and liver disease. In addition, a 

fruitful partnership with leading experts in aging and 

pharma companies facilitates upcoming fully developed 

products and FDA-approved clinical trials. 

 

CONCLUSIONS 
 

Current knowledge shows that aging is a very complex 

but plastic process. Conserved molecular pathways 

underlining aging can be manipulated using genetic, 

pharmacological and non-pharmacological approaches 

to significantly improve the healthspan and lifespan in 

model organisms, and perhaps humans. A collaborative 

effort between academic research with a growing 

number of emerging biotech companies, as well as 

increased investment funds to accelerate discoveries, 

will most likely bring effective aging pharmaceuticals 

in the near future. Undoubtedly, we will see more in the 

coming ARDD meeting in September 2021 in New 

York City. The future is bright. 
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