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INTRODUCTION 
 

Breast cancer remains the most common malignancy 

and the leading cause of cancer mortality for women 

worldwide, accounting for 24.2% of total cancer cases 

and 15.0% of total cancer deaths [1]. Therapy concepts 

for breast cancer have taken locoregional tumor load 

and molecular subtype into account. Breast cancer is 

generally classified into four main molecular subtypes: 

luminal A, luminal B, human epidermal growth factor 

receptor 2 (HER2)-enriched, and triple-negative [2, 3]. 

Although therapy has progressed substantially over the 

past years—following adoption of multidisciplinary 

treatment including surgery, radiotherapy, 

chemotherapy, and endocrine and anti-HER2 

therapies—, 20%-30% of patients develop distant 

metastasis and present poor prognosis [4]. This 

therefore highlights the need for identifying biomarkers 

with a crucial role in the development of breast cancer, 

to improve patient diagnosis and prognosis. 

 

Cell cycle deregulation is a defining hallmark of cancer 

[5]. Differential expression and mutational changes in 
cyclin-dependent kinases (CDKs), a set of key 

regulatory enzymes that drive cell cycle transitions, 

have been shown to contribute to the development of 
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numerous neoplasias [6]. Besides their classical 

function in cell cycle control, a more extensive role in 

the transcriptional regulation of gene expression has 

been revealed for several of the more than 20 members 

of the CDK family identified so far [6]. The CDK 

family is broadly divided into two subfamilies: cell 

cycle-associated CDKs (for example, CDK1, CDK2, 

CDK4, and CDK6) that directly promote cell cycle 

progression, and transcription-associated CDKs (TA-

CDKs, i.e., CDK7/8/9/10/11/12/13/19/20) that regulate 

gene transcription [6, 7]. TA-CDKs are conserved both 

in sequence and function and regulate gene transcription 

by reversibly phosphorylating the carboxy-terminal 

domain of the largest subunit (Rpb1) of RNA 

polymerase II, a major but not exclusive, TA-CDK 

target [8]. Despite this categorization, the function of 

many family members of the TA-CDK class are 

frequently combined. Given that CDKs play crucial 

roles in cancer cell survival, many efforts have been 

made to exploit strategies to inhibit CDKs in cancer 

cells. This has led to the development of CDK4/6 

inhibitors (palbociclib, ribociclib, and abemaciclib), 

which have been approved by the FDA for the treatment 

of estrogen receptor (ER)-positive breast cancer [9]. 

The addition of CDK4/6 inhibitors to endocrine therapy 

has resulted in a significant improvement in 

progression-free survival (PFS) for this subtype of 

breast cancer [10]. In contrast, although accumulating 

evidence suggests that TA-CDKs have important 

functions in cancer, their precise involvement in breast 

cancer remains inconclusive, and thus their potential as 

therapeutic targets has not been clearly established [8]. 

 

The expression patterns of TA-CDKs and their 

relationship with clinicopathological characteristics and 

prognosis have not been fully reported in breast cancer. 

With the rapid development of microarray and RNA-

sequencing technologies and the establishment of 

various public databases, comprehensive analysis of 

TA-CDKs has become feasible. In this study, we 

conducted a comprehensive bioinformatics analysis of 

the expression and mutations of TA-CDKs in patients 

with breast cancer and assessed their potential value as 

prognostic biomarkers. Our results provide novel 

insights that may foster prognostic accuracy in breast 

cancer and highlight the relevance of TA-CDKs as 

attractive therapeutic targets to improve patient 

outcomes. 

 

RESULTS 
 

Aberrant expression of TA-CDKs in patients with 

breast cancer 

 

We first performed comparative transcriptional analysis 

of 10 TA-CDKs using breast cancer and normal breast 

tissue data from the Oncomine database. The results 

revealed that the mRNA expression of CDK7, CDK8, 

CDK9, CDK10, CDK12, CDK19, and CDK20 was 

upregulated in patients with breast cancer (Figure 1 and 

Table 1). Further comparisons with normal breast tissue 

revealed that CDK7 was upregulated in ductal breast 

carcinoma (fold change = 1.734) in Sorlie’s dataset, and 

in lobular breast carcinoma (fold change = 1.841) and 

ductal breast carcinoma (fold change = 1.697) in 

Sorlie’s dataset 2. CDK7 mRNA was also elevated in 

lobular breast carcinoma (fold change = 1.761) and in 

ductal breast carcinoma (fold change = 1.991) in Zhao’s 

dataset. In turn, CDK8 mRNA expression was increased 

in ductal breast carcinoma (fold change = 1.670) in 

Richardson’s dataset. CDK9 was found to be highly 

expressed in invasive breast carcinoma (fold change = 

1.725) in the TCGA dataset, and in invasive lobular 

breast carcinoma (fold change=1.778) in Turashvili’s 

dataset. Radvanyi et al. showed that CDK10 

transcription levels were increased in invasive mixed 

breast carcinoma (fold change = 2.056) and in invasive 

lobular breast carcinoma (fold change = 1.590). Higher 

expression of CDK12 was found in both invasive ductal 

breast carcinoma (fold change = 3.586) and invasive 

mixed breast carcinoma (fold change = 3.193) in 

Radvanyi’s database, and in invasive ductal breast 

carcinoma (fold change=1.938) and invasive lobular 

breast carcinoma (fold change = 1.603) in Zhao’s 

dataset. Compared also to normal tissue, CDK12 was 

found to be overexpressed in invasive ductal and lobular 

carcinoma, invasive breast carcinoma, and intraductal 

cribriform breast adenocarcinoma in the TCGA dataset, 

in invasive breast carcinoma in Gluck’s dataset, and in 

ductal breast carcinoma in situ in Ma’s dataset. CDK19 

was increased in invasive ductal breast carcinoma (fold 

change = 1.682) in TCGA. Higher CDK20 expression 

was in turn found in both intraductal cribriform breast 

adenocarcinoma (fold change = 2.225) and invasive 

ductal and lobular carcinoma (fold change = 1.645) in 

TCGA. 

 

Next, we further compared the transcriptional 

expression of the above CDKs in breast cancer and 

normal tissues in the GEPIA2 database. The results 

showed that although the mRNA expression of CDK7, 

CDK8, CDK19, and CDK20 was higher in breast 

cancer tissues, none of these transcripts’ values reached 

statistical significance. In contrast, CDK11A mRNA 

levels were significantly lower in breast cancer tissues 

than in normal ones (Figure 2). We also analyzed 

potential relationships between the mRNA levels of 

TA-CDKs and tumor stage in patients with breast 

cancer in GEPIA2. The results showed no correlation 
for any TA-CDK mRNA with patients’ cancer stages 

(Supplementary Figure 1). Meanwhile, on the TCGA 

portal, we found that CDK7, CDK8, CDK9, CDK12, 
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CDK19, and CDK20 mRNA levels were differentially 

expressed in the 4 molecular tumor subtypes 

(Supplementary Figure 2). Expression and mutation 

analysis in the TCGA portal showed that PIK3CA, 

TP53, and CDH1 were the 3 most common mutated 

genes associated with dysregulated expression of the 10 

TA-CDKs (Supplementary Figure 3). 

 

We further explored the protein expression patterns of 

TA-CDKs in the Human Protein Atlas (HPA). CDK13 

and CDK19 were not expressed or lowly expressed in 

normal breast tissues, whereas medium expression of 

these two proteins was observed in breast cancer tissues 

(Figure 3). CDK7, CDK10, and CDK11 were 

moderately expressed in normal breast tissues and 

highly expressed in breast cancer tissues. In turn, high 

expression of CDK9 and CDK12 and medium 

expression of CDK20 were observed in both tissue 

types (Figure 3). These results indicated that aberrant 

expression of several TA-CDKs also occurs at the 

protein level in patients with breast cancer. 

Prognostic value of the expression of TA-CDKs in 

patients with breast cancer 

 

We next explored the prognostic value of TA-CDKs in 

patients with breast cancer using the UALCAN, TCGA 

portal, and Kaplan-Meier Plotter platforms. Increased 

CDK8 mRNA levels were associated with shorter OS in 

UALCAN (P = 0.038), TCGA portal (P = 0.019) and 

Kaplan-Meier Plotter (P = 0.015) (Figure 4 and 

Supplementary Figure 4). Higher mRNA expression of 

CDK19 tended to be associated with shorter OS in 

UALCAN (P = 0.077). In the Kaplan-Meier plotter 

database, higher combined expression of the CDK7, 

CDK8, CDK9, CDK10, CDK12, and CDK13 mRNAs 

was associated with poorer RFS (HR, 1.19, P = 0.03, 

Supplementary Figure 4A). On analyses of individual 

CDK transcripts, higher expression of CDK7 (HR, 1.21, 

P<0.001) and CDK8 (HR, 1.48, P<0.001) was 

associated with inferior RFS, whereas higher CDK13 

levels were associated with favorable RFS (HR, 0.72, 

P<0.001) and increased OS (HR, 0.67, P = 0.012) 

 

 
 

Figure 1. TA-CDK mRNA expression levels in different types of cancers (ONCOMINE). The numbers of datasets with overexpression 
(red) or underexpression (blue) of the target gene are shown. 
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Table 1. Differential transcriptional expression of TA-CDKs in different types of breast cancer (Oncomine database). 

Gene Breast cancer type P value T test 
Fold 

change 

Source and/or reference 

(PMID) 

CDK7 

Lobular breast carcinoma vs. 

Normal 
0.007 3.101 1.841 Sorlie Breast 2 (12829800) 

Ductal breast carcinoma vs. Normal 8.26E-4 4.773 1.697 Sorlie Breast 2 (12829800) 

Lobular breast carcinoma vs. 

Normal 
8.45E-7 7.576 1.761 Zhao Breast (15034139) 

Invasive ductal breast carcinoma vs. 

Normal 
2.05E-6 12.305 1.991 Zhao Breast (15034139) 

Ductal breast carcinoma vs. Normal 0.004 3.975  1.734 
 

Sorlie Breast (11553815) 

CDK8 Ductal breast carcinoma vs. Normal 6.93E-6 4.877  1.670 
 

Richardson Breast 2 (16473279) 

CDK9 

Invasive ductal and lobular 

carcinoma vs. Normal 
2.17E-4  6.172 

 

1.725 TCGA Breast 

Invasive lobular breast carcinoma 

vs. Normal 
0.028  2.130 

 

 1.778 
 

Turashvili Breast (17389037) 

CDK10 

Invasive mixed breast carcinoma vs. 

Normal 
0.005  3.224 

 

 2.056 
 

Radvanyi Breast (16043716) 

Invasive lobular breast carcinoma 

vs. Normal 
 0.039 

 

1.925 1.590 Radvanyi Breast (16043716) 

CDK12 

Invasive ductal breast carcinoma vs. 

Normal 
0.002  3.794 

 

 3.586 
 

Radvanyi Breast (16043716) 

Invasive mixed breast carcinoma vs. 

Normal 
 0.007 

 

4.501 3.193 Radvanyi Breast (16043716) 

Invasive ductal breast carcinoma vs. 

Normal 
3.51E-7 5.940  1.938 

 

Zhao Breast (15034139) 

Lobular breast carcinoma vs. 

Normal 
 3.86E-4 

 

3.930 1.603 Zhao Breast (15034139) 

Invasive ductal and lobular 

carcinoma vs. Normal 
 1.96E-25 

 

12.876 1.799 TCGA Breast 

Invasive breast carcinoma vs. 

Normal 
7.88E-14  8.244 

 

 1.678 
 

TCGA Breast 

Intraductal cribriform breast 

adenocarcinoma vs. Normal 
0.005  5.291 

 

1.979 TCGA Breast 

Invasive breast carcinoma vs. 

Normal 
 7.33E-4 

 

 6.866 
 

 1.849 
 

Gluck Breast (21373875) 

Ductal breast carcinoma in situ vs. 

Normal 
 0.001 

 

 3.956 
 

1.588 Ma Breast 4 (19187537) 

CDK19 
Invasive ductal breast carcinoma vs. 

Normal 
 1.67E-28 

 

14.135 1.682 TCGA Breast 

CDK20 

Intraductal cribriform breast 

adenocarcinoma vs. Normal 
3.23E-19 17.058 2.225 TCGA Breast 

Invasive ductal and lobular 

carcinoma vs. Normal 
2.04E-6 8.862 1.645 TCGA Breast 

Normal: non-tumor breast tissue. 

(Supplementary Figure 4A, 4B). In contrast, the 

individual mRNA expression levels of CDK9, CDK10, 

CDK11A, CDK11B, CDK12, and CDK20 showed no 

significant correlation with prognosis in breast cancer 

patients. These results indicated that the transcriptional 

expression levels of CDK7/8/13/19 represent prognostic 
factors for breast cancer and might be exploited as 

biomarkers for prognosis evaluation and individualized 

therapy. 

Genetic mutations in TA-CDKs and associations 

with prognosis in patients with breast cancer 
 

We next accessed the cBioPortal tool to evaluate 

potential correlations between genetic alterations in TA-

CDKs and prognosis in breast cancer. A total of 1082 

patients on the TCGA PanCancer dataset were 

analyzed. Among the 4 different breast cancer types, the 

genetic alteration rate ranged from 29.4% to 60.9% 
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(Figure 5A). The percentages of genetic alterations in 

TA-CDKs varied from 8 to 22% for individual genes, 

with an overall alteration rate of 56% (606/1082) in the 

queried patients (CDK7, 12%; CDK8, 11%; CDK9, 

10%; CDK10, 8%; CDK11A, 8%; CDK11B, 10%; 

CDK12, 22%; CDK13, 15%; CDK19, 10%; CDK20, 

12%; Figure 5B). Kaplan-Meier plots demonstrated that 

genetic alteration of these CDKs was significantly 

associated with inferior OS (P<0.01) (Figure 5C), and 

tended to confer also shorter disease-specific survival 

(DSS, P = 0.07) (Figure 5D). These results suggest that 

genetic alterations in TA-CDKs occur at a high rate in 

breast cancer patients and are associated with 

unfavorable prognosis. 

 

Functional enrichment analysis of TA-CDKs and 

neighboring genes in breast cancer 

 

We next identified the 100 closest neighboring genes 

significantly associated with the expression of TA-CDKs 

 

 
 

Figure 2. Expression of TA-CDK mRNAs in breast cancer (GEPIA2). (A) Scatter diagram. (B) Box plot. *P < 0.05. 
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in the GEPIA2 platform and conducted functional and 

pathway enrichment analyses of these gene sets in 

Metascape. The top 20 GO enrichment items included 

cyclin-dependent protein serine/threonine kinase 

activity, transferase complex, transcription factor 

binding, transcription cofactor binding, DNA-templated 

transcription, nuclear body, and regulation of signal 

transduction by p53 class mediator, among others 

(Figure 6A). The representative terms from GO analysis 

were then converted into a network (Figure 6B), and a 

protein-protein interaction enrichment analysis was 

subsequently performed (Figure 6C). Upon identification 

of MCODE components in the corresponding gene lists, 

biological function analysis indicated main relationships 

with RNA polymerase II CTD heptapeptide repeat 

kinase activity, cyclin-dependent protein serine/ 

threonine kinase activity, cyclin-dependent protein 

kinase activity, ubiquitin ligase complex, protein 

polyubiquitination, and ubiquitin-protein transferase 

activity (Figure 6D, 6E). 

 

 
 

Figure 3. Representative images of TA-CDK immunohistochemistry in normal breast and breast cancer tissues (Human 
Protein Atlas). (A) CDK7. (B) CDK9. (C) CDK10. (D) CDK11. (E) CDK12. (F) CDK13. (G) CDK19. (H) CDK20. 
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DAVID 6.8 was further utilized to predict the functions 

of TA-CDKs and their closest 200 neighboring genes 

through GO and KEGG analyses. The 10 most highly 

enriched functions in BP, CC, and MF are shown in 

Figure 7. As expected, the top KEGG pathways 

included hsa04110: Cell cycle, hsa03430: Mismatch 

repair, and hsa03022: Basal transcription factors (Figure 

8), all of which are involved in the tumorigenesis and 

pathogenesis of breast cancer (Figure 9). 

 

DISCUSSION 
 

Although the fundamental role of CDKs in cell cycle 

control has been firmly established, multiple recent 

studies provide mounting evidence for the involvement 

of these kinases in other functions, such as gene 

transcription, DNA damage repair, cell death, and 

differentiation. Stemming from these findings, TA-

CDKs are emerging as critical tumor biomarkers and 

targets in cancer treatment [7]. Numerous studies have 

suggested that TA-CDKs are involved in regulating 

gene expression at multiple levels, affecting 

transcription, splicing, and epigenetic modifications [6, 

8]. However, although TA-CDKs have been show to 

impact tumorigenesis and metastasis in several 

malignancies, their prognostic value and biological 

function in breast cancer remain to be fully elucidated. 

Therefore, in this study we systematically explored the 

expression patterns, genetic alterations, potential 

functions, and prognostic utility of TA-CDKs in breast 

cancer. Our results indicate that CDK7, CDK8, and 

CDK13 could be prognostic biomarkers for breast 

cancer patients. 

 

CDK7 has a general role in the phosphorylation of the 

carboxyterminal domain of RNA polymerase II that 

contributes to the initiation of transcription [11]. The 

expression of CDK7 and its cofactors cyclin H and 

MAT1 was found to be elevated in breast cancer 

compared with normal breast tissue. Interestingly, 

survival analysis showed an association between CDK7 

expression and better outcome [12]. In our study, 

analysis of Oncomine and HPA datasets revealed that 

CDK7 expression was significantly higher in breast 

cancer than in normal breast tissue. In turn, survival 

analysis indicated that higher mRNA expression of 

CDK7 was significantly associated with inferior RFS in 

breast cancer patients. CDK7 knockout can lead to the 

exhaustion of adult stem cells [13], and its inhibition 

was shown to enhance anti-tumor immunity in small-

cell lung cancer (SCLC) [14]. Inhibition of CDK7 

suppressed the metastasis of osteosarcoma [15]. The 

 

 
 

Figure 4. Prognostic value of the mRNA expression of distinct TA-CDKs in breast cancer patients. (A) UALCAN tool. (B) TCGA 

portal. 
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covalent CDK7 inhibitor THZ1 showed potent efficacy 

in human T-cell acute lymphoblastic leukemia, which is 

dependent on transcription for maintenance of  

the oncogenic state [16]. Subsequently, other 

transcriptionally addicted malignancies, including 

MYCN-amplified neuroblastoma and MYC/MYCL-

amplified SCLC showed also sensitivity to CDK7 

inhibition [17]. Triple-negative breast cancer (TNBC) 

cells are exceptionally dependent on CDK7, and a vital 

cluster of genes in TNBC is especially sensitive to 

CDK7 inhibition [18]. Accordingly, CDK7 inhibition 

induced apoptotic cell death and inhibited the growth of 

patient-derived xenografts of TNBC [18]. The above 

results suggest that CDK7 may represent a therapeutic 

target in breast cancer. 

 

CDK8 is part of the Mediator complex that regulates 

transcription [11] and can function as either a tumor 

suppressor or an oncogene in different contexts. In 

colorectal cancer, CDK8 may function as an oncogene 

by regulating β-catenin activity [19]. CDK8 

overexpression was detected in a subset of melanoma 

cells with macroH2A loss and suppression of CDK8 

inhibited the proliferation of melanoma cells [20]. In 

contrast, CDK8 deletion in the ApcMin intestinal tumor 

model led to shortened survival and increased tumor 

burden [21]. The tumor suppressor effect of CDK8 was 

also observed in endometrial cancer [22]. Inhibition of 

CDK8 with cortistatin A has an anti-leukemic effect 

both in vitro and in vivo [23]. Although CDK8 

inhibition exhibited weak antiproliferative activity in 

colon cancer cell lines [24], the CDK8/19 inhibitor 

Senexin B exerted a potent antitumor effect and 

augmented the effects of fulvestrant on ER-positive 

breast cancer [25]. In our study, increased mRNA levels 

of CDK8 were significantly associated with inferior OS 

and RFS for patients with breast cancer in the TCGA 

portal and in the UALCAN and Kaplan-Meier Plotter 

databases. Along with available preclinical data, these 

findings therefore support a pro-oncogenic role for 

CDK8 in breast cancer. 

 

CDK13 is a close homolog of CDK12, with their kinase 

domains sharing ~92% identity [7]. This similarity 

 

 
 

Figure 5. Genetic alterations in TA-CDKs and their association with OS and DSS in breast cancer patients (cBioPortal). (A) 
Summary of alterations in TA-CDKs in different breast cancer types. (B) OncoPrint visual summary of genetic alterations detected in TA-CDKs. 
(C) Kaplan–Meier curves comparing OS in breast cancer cases with or without genetic alterations in TA-CDKs. (D) Kaplan–Meier curves 
comparing DSS in breast cancer cases with or without genetic alterations in TA-CDKs. 



 

www.aging-us.com 8103 AGING 

makes it difficult to generate specific CDK12 or 

CDK13 inhibitors. CDK12 function is associated with 

the expression of a restricted set of DNA damage 

response (DDR) genes. Studies have suggested that 

loss-of-function mutation of CDK12 may lead to 

sensitivity to PARP inhibitors, platinum chemotherapy, 

and other targeted agents [7]. Interestingly, inactivation 

of CDK12 could identify a subgroup of advanced 

prostate cancer that may benefit from immune 

checkpoint inhibitors [26]. Knockout of CDK12 in an in 
vivo osteosarcoma model of lung metastasis 

significantly decreased the ability of OS to metastasize 

the lung [27]. In patient-derived xenografts models from 

patients with heavily pre-treated ovarian cancer, THZ1 

 

 
 

Figure 6. Enrichment analysis of TA-CDKs and their closest 100 neighboring genes in breast cancer (Metascape). (A) Heatmap 

of GO enriched terms colored by p-values. (B) Network of GO enriched terms colored by cluster. (C) Protein-protein interaction enrichment 
analysis (degree-sorted circular layout). (D) Functional enrichment analysis of the MCODE components. (E) Network representation of the 
major protein interaction clusters identified by the MCODE algorithm. 
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Figure 7. GO enrichment of TA-CDKs and their closest 200 neighboring genes. Significant GO terms across the CC, BP, and MF 
categories were extracted using DAVID 6.8. 

 

 
 

Figure 8. KEGG pathway analysis of TA-CDKs and their closest 200 neighboring genes. The analysis was performed using the 
DAVID 6.8 tool. 



 

www.aging-us.com 8105 AGING 

 
 

Figure 9. Regulatory actions of TA-CDKs in breast cancer. (A) Cell cycle processes/pathways. (B) Pathways involving basal transcription 
factors. 
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(a chemical that inhibits CDK7, CDK12, and CDK13) 

repressed MYC expression and suppressed tumor 

growth. Notably, MYC suppression required the 

combined inhibition of CDK7, CDK12, and CDK13 

[28]. In our study, the expression levels of CDK13 in 

breast cancer tissues were significantly higher than in 

normal breast tissues. Survival analysis showed that 

although higher mRNA expression of CDK13 in breast 

cancer was significantly associated with favorable RFS 

and OS in the Kaplan-Meier Plotter, genetic alteration 

in transcription-associated CDKs was instead associated 

with shorter OS in cBioPortal. In HER2-enriched breast 

cancer, CDK12 promotes tumor initiation and 

trastuzumab resistance, while CDK12 inhibition 

enhances the efficacy of trastuzumab [29]. In TNBC, 

the novel CDK12/CDK13 inhibitor SR-4835 has been 

shown to provoke deficiencies in DNA damage repair, 

which synergizes with chemotherapy and PARP 

inhibitors [30]. Thus, CDK12/CDK13 inhibitors may be 

a promising treatment option for breast cancer. 

 

In this report, the expression of CDK9/10/11/12/19/20 

was not significantly correlated with the prognosis of 

patients with breast cancer. Among those CDKs, the 

expression levels of CDK10 and CDK19 were 

significantly higher in breast cancer than in normal 

breast tissues in Oncomine and the HPA datasets. 

Meanwhile, mRNA expression levels of CDK9/12/20 

were significantly higher in breast cancer than in normal 

breast tissues in the Oncomine database, but did not 

differ at the protein level in the HPA. The novel CDK9 

inhibitor MC180295 was reported to possess broad 

antitumor efficacy in vitro and in vivo, and to sensitize 

to immune checkpoint inhibition in vivo [31]. Several 

clinical trials evaluating CDK9 inhibitors in advanced 

malignancies are currently ongoing. CDK10 was 

identified as a determinant of endocrine therapy 

resistance in breast cancer, with early recurrence being 

observed on tamoxifen-treated ERα-positive breast 

cancer patients with low CDK10 expression levels [32]. 

Human CDK11 is encoded by two highly homologous 

genes, CDK11A and CDK11B. Silencing of CDK11 

expression led to significant growth inhibition and 

apoptosis in breast cancer cells [33]. CDK19 is a 

paralog of CDK8 and was identified as a therapeutic 

target in prostate cancer and leukemia [23, 34]. CDK20 

inhibition was found to enhance the efficacy  

of immune-checkpoint blockade in hepatocellular 

carcinoma [35]. Despite all this evidence supporting 

important contributions of TA-CDKs to tumorigenesis, 

additional work is required to determine their precise 

role in breast cancer. 

 
In conclusion, our results demonstrated that 

CDK7/10/13/19 expression is significantly higher in 

breast cancer than in normal breast tissues, both at the 

mRNA and protein levels. At the mRNA level, 

overexpression of CDK7 or CDK8 was associated with 

inferior prognosis, whereas higher CDK13 expression 

was associated with favorable prognosis in breast 

cancer patients. Furthermore, a high genetic alteration 

rate (56%) for TA-CDKs was observed in association 

with shorter OS in breast cancer patients. Our results 

suggest that CDK7/8/13 could be prognostic biomarkers 

for breast cancer patients and may offer valuable 

insights for the development of therapies targeting TA-

CDKs in breast cancer. 

 

The present study has several potential limitations, 

including the use of online data sources, the absence of 

validation cohorts, and the lack of mechanistic studies. 

Nevertheless, to our knowledge our study is the first to 

examine multiple cancer-related databases to address 

the prognostic value of TA-CDKs in breast cancer. 

Actually, several transcription-associated CDK 

inhibitors, including CDK7i (CT7001, SY-1365, SY-

5609 and LY3405105), CDK8/19i (SEL120), and 

CDK9i (Alvocidib, TP-1287, BAY1251152 and 

AZD4573) have now progressed to Phase I/II clinical 

trials in various cancer types [8]. Still, further studies 

are needed to elucidate the specific mechanisms by 

which TA-CDKs impact breast cancer development and 

outcome. 

 

MATERIALS AND METHODS 
 

Oncomine database analysis 

 

Gene expression array datasets were retrieved from 

Oncomine (https://www.oncomine.org), an online 

cancer microarray database that facilitates discovery 

from genome-wide expression analyses. Oncomine was 

used to analyze the transcription levels of TA-CDKs in 

different cancer tissues and corresponding adjacent 

normal control samples. The thresholds were restricted 

as follows: P-value, 0.05; fold change, 1.5; gene rank, 

10%; data type, mRNA. 

 

GEPIA2 dataset analysis 

 

Gene Expression Profiling Interactive Analysis 

(GEPIA; http://gepia2.cancer-pku.cn) is an interactive 

web server for analyzing RNA sequencing expression 

data of 9,736 tumors and 8,587 normal samples from 

The Cancer Genome Atlas (TCGA) and the Genotype 

Tissue Expression (GTEx) projects, using a standard 

processing pipeline.  GEPIA2 provides customizable 

functions such as tumor/normal differential expression 

analysis, profiling according to cancer types or 

pathological stages, patient survival analysis, similar 

gene detection, correlation analysis, and dimensionality 

reduction analysis [36]. 

https://www.oncomine.org/
http://gepia2.cancer-pku.cn/
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The human protein atlas analysis 

 

The Human Protein Atlas (HPA, https://www. 

proteinatlas.org) is a website that aims to map all the 

human proteins in cells, tissues and organs using 

integration of various omics technologies, including 

antibody-based imaging, mass spectrometry-based 

proteomics, transcriptomics, and systems biology. The 

HPA contains immunohistochemistry-based expression 

data for 17 main cancer types and 44 different tissue 

types [37]. In this study, direct comparison of protein 

expression of different TA-CDKs between human 

normal breast and breast cancer tissues was performed 

by analysis of immunohistochemistry data. 

 

UALCAN analysis 

 

UALCAN (http://ualcan.path.uab.edu) is a com-

prehensive interactive web resource that provides access 

to publicly available cancer OMICS data (TCGA and 

MET500). It can be used to analyze gene expression 

and patient survival information based on gene 

expression [38]. UALCAN was used to analyze patient 

survival based on 10 TA-CDKs stratified by mRNA 

expression levels in primary breast invasive 

carcinoma. 

 

Kaplan-Meier plotter’s prognostic evaluation 

 

The Kaplan Meier plotter (http://kmplot.com/analysis/) 

contains information on the effect of 54,000 genes on 

survival outcomes for 21 cancer types, discriminated by 

number at risk cases, HRs, 95% Cis, and log-rank p-

values [39]. This database was used to assess the 

prognostic value of the mRNA expression of distinct 

TA-CDKs in breast cancer. To analyze relapse-free 

survival (RFS) and overall survival (OS) of patients 

with breast cancer, patients were divided into two 

groups by median expression (high versus low 

expression) and assessed by a Kaplan-Meier survival 

curve. 

 

TCGA portal analysis 

 

The TCGA portal (http://tcgaportal.org/) is a user-

friendly interactive web resource that provides access 

to the TCGA database. It provides key functions, 

including patient survival analysis by high and low 

gene expression, differential expression analysis  

by tumor subtypes, as well as expression and 

methylation, expression and mutation, and pan-cancer 

analyses [40]. The TCGA portal was accessed to 

perform analysis of survival stratified by mRNA 
expression, differential expression analysis by 

molecular subtypes, and expression and mutation 

analysis of 10 TA-CDKs. 

cBioPortal analysis 

 

The cBioPortal for cancer genomics (http://www. 

cbioportal.org/) is an online open-access website for 

exploring, visualizing, and analyzing multidimensional 

cancer genomics data in the TCGA database [41]. A 

total of 1084 breast invasive carcinoma samples 

(TCGA, PanCancer Atlas) were analyzed. The genomic 

profiles of 10 TA-CDKs were investigated based on 

mutations, putative copy-number alterations from the 

Genomic Identification of Significant Targets in Cancer 

(GISTIC) tool, and mRNA expression z-scores (RNA 

Seq V2 RSEM). Genetic mutations in TA-CDKs and 

their association with OS and DFS were displayed as 

Kaplan-Meier curves. 

 

DAVID 6.8 analysis 

 

The Database for Annotation, Visualization, and Integrated 

Discovery (DAVID) v6.8 (https://david.ncifcrf.gov) is a 

comprehensive, functional annotation web-accessible tool 

that allows investigating the biological function of 

submitted genes [42]. DAVID 6.8 was used to conduct 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway enrichment analyses of 

TA-CDKs and their closely related genes. 

 

Metascape analysis 

 

Metascape (http://metascape.org) is an online tool for 

gene annotation and interactome and enrichment 

analysis, facilitating also comparative analysis of 

datasets across multiple independent and orthogonal 

experiments [43]. Metascape was used to identify 

pathways and to perform enrichment analysis of 

transcription-associated CDKs and their closely related 

genes. Only terms with minimum overlap of 3, P-value 

< 0.05, and minimum enrichment of 3 were included. 

The identified enriched ontology clusters were 

converted into a network layout. Protein-protein 

interaction enrichment analysis was carried out on the 

BioGrid, InWeb_IM, and OmniPath databases. The 

MCODE algorithm was then applied to the protein–

protein interaction network to identify modules with 

densely connected proteins. 

 

Statistical analysis 

 

Survival was estimated by the Kaplan–Meier method, 

and differences were compared by the log-rank test. P < 

0.05 indicated a significant difference. 

 

Availability of data and materials 

 

The datasets analyzed on this study can be found in the 

Oncomine, GEPIA2, the Human Protein Atlas, 

https://www.proteinatlas.org/
https://www.proteinatlas.org/
http://ualcan.path.uab.edu/
http://kmplot.com/analysis/
http://tcgaportal.org/
http://www.cbioportal.org/
http://www.cbioportal.org/
https://david.ncifcrf.gov/
http://metascape.org/
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UALCAN, the Kaplan-Meier Plotter, TCGA portal, and 

cBioPortal web resources; requests for further access to 

datasets can be directed to yanglu@sysucc.org.cn. 

 

Ethics approval and consent to participate 

 

This study was approved by the Medical Ethics 

Committee of Sun Yat-Sen University Cancer Center 

and conducted according to the principles expressed in 

the Declaration of Helsinki. All the datasets were 

retrieved from published studies and online databases, 

therefore informed consent from participants in the 

original studies has been granted. 
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Supplementary Figure 1. Correlation between transcription-associated CDKs expression and tumor stage in breast cancer 
patients (GEPIA2). 

 

 
 

Supplementary Figure 2. Correlation between transcription-associated CDKs expression and molecular subtype in breast 
cancer patients (TCGA portal). 
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Supplementary Figure 3. Correlation between the expression of transcription-associated CDKs and the mutation of highly 
mutated genes in breast cancer patients (TCGA portal). The driver mutated (red) and not-mutated (gray) samples are shown. 
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Supplementary Figure 4. Prognostic value of mRNA expression of distinct transcription-associated CDKs in breast cancer 
patients by Kaplan-Meier Plotter tool. (A) Relapse-free survival; (B) Overall survival. 


