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INTRODUCTION 
 

Cognitive function is important to human life, but it is 

vulnerable across a person’s lifetime [1]. Many 

diseases, such as Alzheimer’s disease (AD), vascular 

dementia, and depression [2–4], can lead to cognitive 

impairment and finally destroy a person’s ability to 

function in daily life [5]. Aging is the most important 

factor in all causes of dementia [6]. With the 

increasingly aging worldwide population [7], the 

prevalence of dementia is set to approximately double 

every 20 years, and the number of people living with 

dementia is expected to reach 66 million in 2030 and 

115 million in 2050 [8]. The estimated annual 
worldwide cost of dementia is $604 billion, 

approximately 1% of the world’s gross domestic 

product, which represents a huge financial burden to 

human society [9]. Moreover, the caregivers of 

dementia patients can also suffer from physical and 

psychological problems [10]. Cholinesterase inhibitors 

and memantine are used to treat dementia [11]; 

however, it has been found that the benefit of these 

drugs might be minor overall [12, 13]. Thus, it is high 

time to seek a novel approach for prevention and/or 

treatment of cognitive impairment, especially that 

caused by AD. 

 

For thousands of years, traditional Chinese medicine 

has taken a holistic approach to illness [14]. Ginseng, 

the root and rhizome of Panax ginseng C.A. Mey, is 

known as an adaptogenic herb [15]. It has traditionally 

been used in East Asian countries for more than 2,000 

years for the treatment of aging and memory 

impairment [16]. More recently, use of ginseng has 
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ABSTRACT 
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protection, and up-regulation of nerve cells via multiple signaling pathways. 
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been increasing around the world [17]. Recent studies 

have also confirmed the effect of ginseng in 

neurological and neurodegenerative disorders [18]. 

Ginsenosides are important active components of 

ginseng and are responsible for its major effects [19]. 

Ginsenoside Rg1 (G-Rg1) is the most abundant and 

active ginsenoside, and it has a structure similar to that 

of steroid hormones [20] (see Figure 1). It is believed 

that G-Rg1 could cross the blood–brain barrier and 

exert potential neuroprotective effects [21, 22]. 

Numerous studies have suggested that G-Rg1 could 

improve cognitive function in different animal models, 

and most of these have been AD models. However, the 

underlying mechanisms of G-Rg1 on AD are poorly 

understood. 

 

A systematic review of animal-based studies can 

provide transitional value to the treatment of human 

diseases, as well as highlighting potential limitations 

and hidden innovative strategies in animal 

experiments [23, 24]. A previous review focused on 

different ginsenosides and their effects on AD, but this 

review included only 12 articles, and only five of these 

were G-Rg1 studies [25]. Therefore, it is important that 

a G-Rg1-specific study should be conducted. In the 

present study, we considered 32 studies examining the 

effects of G-Rg1 in AD. 

 

RESULTS 
 

Study inclusion 

 

A total of 2,549 hits were found in an electronic 

database search, of which 852 duplicates were removed. 

We then screened titles and abstracts, and 1,236 further 

studies were excluded because they were clinical trials, 

case reports, or review articles. Through full-text 

evaluation of the remaining 461 studies, 429 were 

excluded for at least one of the following reasons: (1) 

unavailability of data; (2) not predetermined outcome 

index; (3) no in vivo model; (4) no control group; or (5) 

the intervention group did not receive G-Rg1 as a 

monotherapy. Eventually, 32 studies were selected 

(Figure 2). 

 

Characteristics of included studies 

 

All included studies were published between 2001 and 

2018. Of these, 16 were published in Chinese and 16 

were published in English. These studies used ten 

 

 
 

Figure 1. Chemical structure of ginsenoside Rg1. 
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different animal species, of which nine studies used 

Sprague Dawley rats, five used Wistar rats, three used 

Kunming mice, three used C57BL/6J mice, three  

used APP/PS1 mice, two used nestin-GFP mice, two 

used ICR mice, two used SAMP8 mice, one used 

APP/PS1/tau mice, and one used mAPP mice. As for 

the animal model, these studies used AD animal models 

including transgenic mice (n = 8), aged mice (n = 1), 

ovariectomy plus intracranial injections of d-gal  

(n = 1), hippocampus injury (n = 3), chronic stress (n = 

2), ovariectomy (n = 1), and injection of okamoto acid 

(n = 1), quinolinic acid (n = 1), the amyloid β (Aβ) 1-42 

(n = 3) and Aβ25-35 (n = 2), dexamethasone (n = 1),  

d-gal (n = 6), and scopolamine (n = 2). Twenty-six 

studies used Morris water maze (MWM) as an index of 

cognitive function, of which 25 reported escape latency 

(EL) to represent the spatial test and 17 reported the 

number of platform crossings (NOPCs) to represent the 

probe test. Four studies used a Y maze, three used a 

step-down test, one used a dark-avoidance test, one used 

a fear conditioning test, one used a water maze, one used 

a novel-object-recognition test, and one used a radial-

arm water maze. The characteristics of the included 

studies are shown in Supplementary Tables 1, 2. 

 

 
 

Figure 2. Flow diagram of the study-search process. 
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Table 1. The methodological quality of included studies. 

Study A B C D E F G H I J Total 

Chen et al. 2005 √ × √ × × √ √ × × × 4 

Chen et al. 2011 √ × √ × × × √ × × × 3 

Chen et al. 2017 √ × √ × × √ × × √ √ 5 

Fang et al. 2012 √ × × × × √ × × √ √ 4 

Hu et al. 2004 √ × √ × × √ × × × × 3 

Li et al. 2007 √ × √ × × √ √ × × × 4 

Li et al. 2014 √ × √ × × √ × × × × 3 

Li et al. 2015 √ √ √ × × √ × × × √ 5 

Li et al. 2016a √ √ × × × √ × × × √ 4 

Li et al. 2016b √ √ × × × √ × × × √ 4 

Liu et al. 2015 × × √ × × √ × × × × 2 

Nie et al. 2017 √ × × × × √ √ × × √ 4 

Peng et al. 2011 √ √ √ × × √ × × × × 4 

Quan et al. 2013 √ √ √ × × √ × × × √ 5 

Shi et al. 2008 × √ √ × × √ √ × × × 4 

Shi et al. 2012 √ √ × × × ? √ × × √ 4 

Shi et al. 2018 √ √ √ × × √ √ × √ √ 6 

Song et al. 2013 √ √ √ × × √ × × √ √ 5 

Wang et al. 2001 √ × × × × × × × × × 1 

Wang et al. 2010 √ √ × × × √ × × √ √ 4 

Wang et al. 2014b √ × √ × × √ × × √ √ 5 

Wu et al. 2007 √ × √ × × √ × × × × 3 

Wu et al. 2011 √ × √ × × √ × × × × 3 

Xiang et al. 2017 √ √ √ × × √ × × × × 4 

Yang et al. 2013 × √ √ × × √ √ × × × 4 

Ye et al. 2017 √ × √ × × ? × × × × 2 

Yuan et al. 2016 √ × √ × × √ × × × × 3 

Zhang et al. 2012 √ √ √ × × √ √ × × √ 6 

Zhang et al. 2017a √ √ √ × × √ × × √ √ 7 

Zhang et al. 2017b √ × √ × × √ × × × √ 4 

Zhou et al. 2011 √ √ √ × × √ √ × × × 5 

Zhu et al. 2014 √ × √ × × √ × × √ √ 5 

Note: Studies fulfilling the criteria of: A: peer reviewed publication; B: control of temperature; C: random allocation to 
treatment or control; D: blinded induction of model; E : blinded assessment of outcome; F: use of anesthetic without 
significant intrinsic neuroprotective activity; G: animal model (aged or female involved); H: sample size calculation; I: 
compliance with animal welfare regulations; J: statement of potential conflict of interests. 

 

Study quality 

 

The study quality scores ranged from 1/10 to 7/10, with 
a mean score of 4.03/10. Twenty-nine studies were 

published in peer-reviewed publications, while three 

were master's or doctoral theses. Fifteen of the 32 

studies reported controlling the temperature. Twenty-

five studies reported random grouping of experimental 

animals. Twelve studies used an anesthetic, of which 
four were considered to have a slight influence on 

cognitive function. Compliance with animal welfare 

regulations was reported in eight studies. Sixteen of the 
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studies had a statement of potential conflicts of interest. 

The application of blind methods in the induction of the 

model or the assessment of the outcome was not 

reported in any studies, nor were calculations for 

sample sizes reported (see Table 1). 

 

Effectiveness 

 

The MWM was used in 26 studies, of which 23 reported 

the EL in the spatial test. Due to notable heterogeneity, 

we conducted a subgroup analysis based on the different 

animal modeling methods. Compared with normal 

saline or no treatment, G-Rg1 was found to decrease EL 

in a statistically significant way in a meta-analysis of 

six studies using a d-gal injection model [26–31] {P < 

0.00001; standardized mean difference (SMD) = −1.87, 

95% confidence interval (CI) [−2.58, −1.16]; 

heterogeneity: χ2 = 10.91, df = 5 (P = 0.05); I² = 54%, 

Figure 3A}; two studies [32, 33] using an Aβ25-35 

injection model {P < 0.00001; SMD = −2.02, 95%CI 

[−2.81, −1.23]; heterogeneity: χ2 = 0.03, df = 1 (P = 

0.86); I² = 0%, Figure 3B}; and three studies [34–36] 

using an Aβ1-42 injection model {P < 0.00001; SMD = 

−1.70, 95%CI [−2.31, −1.09]; heterogeneity: χ2 = 7.98, 

df = 2 (P = 0.02); I² = 75%}. Due high heterogeneity, 

we conducted a sensitivity analysis. After omitting one 

study, the results of two studies [35, 36] showed good 

homogeneity {P < 0.00001; SMD = −1.33, 95%CI 

[−1.99, −0.66]; heterogeneity: χ2 = 0.08, df = 1 (P = 

0.77); I² = 0%, Figure 3C}. Other methods of modeling, 

including hippocampal resection (n = 2), hippocampus 

electrical injury (n = 1), ovariectomy plus injection of d-

gal (n = 1), using aged mice (n = 1), APP/PS1/tau 

transgenic mice (n = 1), and injection of okamoto acid 

(n = 1) and scopolamine (n = 1), all showed G-Rg1 

could significantly decrease EL (P < 0.05). The effect 

that G-Rg1 has on EL in SAMP8 transgenic mice and 

chronic stress mice is controversial; that is, two studies 

[37, 38] showed significant differences comparing the 

treatment group with the control, while two other 

studies [39, 40] did not. 

 

Twenty-one studies reported the NOPC in the probe 

test. Subgroup analysis based on different methods of 

animal modeling showed significant improvement of 

platform crossings in the G-Rg1 group compared with 

the control group, of which five studies used a d-gal 

injection model [26, 27, 29–31] {P < 0.00001; SMD = 

1.38, 95%CI [0.91, 1.95]; heterogeneity: χ2 = 3.03, df = 

4 (P = 0.55); I² = 0%, Figure 4A}; two studies [41–43] 

used APP/PS1 transgenic mice {P < 0.00001; SMD = 

2.98, 95%CI [1.74, 4.22]; heterogeneity: χ2 = 4.31, df = 

2 (P = 0.12); I² = 54%, Figure 4B}; and two studies [35, 
36] used Aβ1-42 injection model {P < 0.00001; SMD = 

2.25, 95%CI [1.46, 3.04]; heterogeneity: χ2 = 0.35, df = 

1 (P = 0.56); I² = 0%, Figure 4C}. Other methods of 

modeling, such as using SAMP8 transgenic mice (n = 

2), Aβ25-35 injection (n = 1), scopolamine injection  

(n = 2), chronic stress (n = 1), okamoto acid injection  

(n = 1), and ovariectomy plus d-gal injection (n = 1), 

showed G-Rg1 could increase the NOPC (P < 0.05). 

 

In four studies, Y-maze tests were conducted. One study 

[44] showed that G-Rg1 could improve the correct 

response rates in learning and memory tests (P < 0.05). 

By comparison with the control group, one study [45] 

found that G-Rg1 increased spontaneous alternation (P 

< 0.05), one study [39] found that it decreased the 

number of trials reaching the criterion (P < 0.05), and 

one study [46] found that it decreased the error times (P 

< 0.05). 

 

Due to high statistical heterogeneity, we merely 

conducted a systematic review. Three studies [46–48] 

conducted step-down tests according to reported latency 

and/or the number of errors, and these showed positive 

results (P < 0.05) compared with a control. A radial-arm 

water-maze test, fear-conditioning experiment, dark-

avoidance test, and novel-object-recognition test were 

each carried out individually in four studies [32, 49–51], 

and all showed that G-Rg1 could significantly improve 

cognitive function compared with a control (P < 0.05). 

 

Stratified analyses of the EL and the NOPC were 

conducted based on the variables involved in the dosage 

and treatment course of G-Rg1, the animal species, and 

the animal sex, aiming to explore potential 

methodological differences that may have affected the 

treatment outcomes. For both the EL and the NOPC, a 

dosage greater than 10 mg/kg and less than 20 mg/kg 

was associated with more positive outcomes compared 

with a dosage less than 10 mg/kg or more than 20 

mg/kg (EL: SMD≤10 mg/kg = −2.31, SMD>10,≤20 mg/kg = 

−2.71, SMD>20 mg/kg = −1.33, P < 0.0001; NOPC: 

SMD≤10 mg/kg = 1.76, SMD>10,≤20 mg/kg = 2.56, SMD>20 

mg/kg = 1.88, P = 0.05. Figure 5). There was a significant 

difference in the effect of G-Rg1 on decreasing the 

NOPC for different treatment courses, but no significant 

difference on improving the EL (EL: SMD≤14 days = 

−1.89, SMD>14,≤30 days = −3.09, SMD>30 days = −3.07,  

P =0.13; NOPC: SMD≤14 days = 2.89, SMD>14,≤30 days = 

2.04, SMD>30 days = 5.56, P = 0.03. Figure 5). The effect 

of G-Rg1 was greater in rat species than mice species 

for both the EL and the NOPC (EL: SMDrat = −2.44, 

SMDmice = −1.86, P = 0.02; NOPC: SMDrat = 2.55, 

SMDmice = 1.83, P = 0.04, Figure 5). In the subgroup 

analysis of animal sex, the effect of G-Rg1 on the 

NOPC was significantly larger in female mice 

(SMDfemale = 3.43, SMDmale = 2.15, P = 0.002, Figure 
5), whereas there was no significant difference in the 

EL (SMDfemale = −2.14, SMDmale = −2.19, P = 0.097, 

Figure 5). 
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Figure 3. Forest plots of escape latency for the Morris water maze. This was seen to decrease in (A) the d-gal injection model; (B) the 

Aβ25-35 injection model; and (C) the Aβ1-42 injection model in the ginsenoside Rg1 group compared with a control group. 
 

 
 

Figure 4. Forest plots of the number of platform crossings in the Morris water maze. Improvements were seen in (A) the d-gal 

injection model; (B) APP/PS1 transgenic mice; (C) the Aβ1-42 injection model in the ginsenoside Rg1 group compared with a control group. 
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Mechanisms 

 

Anti-oxidation effects 

A remarkable effect of G-Rg1 in increasing the activity 

of superoxide dismutase (SOD) was seen in a meta-

analysis of nine studies [26–31, 39, 41, 45] {P < 

0.00001; SMD = 1.91, 95%CI [1.38, 2.44]; 

heterogeneity: χ2 = 12.45, df = 8 (P = 0.13); I² = 36%, 

Figure 6A}; six studies [26, 27, 29–31, 41] in 

decreasing malondialdehyde (MDA) {P < 0.00001; 

SMD = −1.83, 95%CI [−2.51, −1.14]; heterogeneity: χ2 

= 6.63, df = 5 (P = 0.25); I² = 25%, Figure 6B}; and 

three studies [26, 28, 41] in increasing glutathione 

(GSH) {P < 0.0001; SMD = 2.51, 95%CI [1.36, 3.65]; 

heterogeneity: χ2 = 7.19, df = 2 (P = 0.03); I² = 72%}; 

and a sensitivity analysis of two studies [28, 41] showed 

good heterogeneity {P = 0.0002; SMD = 2.20, 95%CI 

[1.03, 3.37]; heterogeneity: χ2 = 0.36, df = 1 (P = 0.55); 

I² = 0%, Figure 6C}. By comparison with the control 

group, meta-analysis of three studies [26, 31, 41] 

showed that G-Rg1 increases the level of glutathione 

peroxidase {P = 0.01; SMD = 1.17, 95%CI [0.26, 2.07]; 

heterogeneity: χ2 = 2.16, df = 2 (P = 0.34); I² = 7%, 

Figure 6D} and two studies [31, 39] showed a decrease 

in reactive oxygen species (ROS) {P = 0.006; SMD = 

−3.34, 95%CI [−5.72, −0.96]; heterogeneity: χ2 = 1.95, 

df = 1 (P = 0.16); I² = 49%, Figure 6E}. 

Anti-inflammatory effects 

Two studies [26, 30] showed a remarkable effect of G-

Rg1 in decreasing tumor necrosis factor α (TNF-α; P < 

0.05). Compared with the control group, one study [28] 

showed a decrease in interleukin (IL)-1 in the G-Rg1 

group (P < 0.05); three studies [26, 30, 51] showed a 

decrease in IL-1β {P < 0.00001; SMD = −3.37, 95%CI 

[−4.19, −2.54]; heterogeneity: χ2 = 15.19, df = 2 (P = 

0.0005); I² = 87%}; and sensitivity analysis of two 

studies [26, 51] showed good homogeneity {P < 

0.00001; SMD = −5.25, 95%CI [−6.50, −3.99]; 

heterogeneity: χ2 = 0.64, df = 1 (P = 0.42); I² = 0%, 

Figure 7A}. In three studies, IL-6 was seen to decrease 

[26, 28, 30] {P < 0.00001; SMD = −0.94, 95%CI 

[−1.56, −0.31]; heterogeneity: χ2 = 23.99, df = 2 (P < 

0.00001); I² = 92%}. Due to notable heterogeneity, 

sensitivity analyses were performed, and the results 

showed more homogeneity [26, 28] {P < 0.0001; SMD 

= −0.57, 95%CI [−1.21, −0.88]; heterogeneity: χ2 = 

0.97, df = 1 (P = 0.55); I² = 0%, Figure 7B}. IL-18 was 

seen to decrease in the G-Rg1 group in one study [51] 

when compared with a control group. 

 

Up-regulation of nerve cells 

Nestin is one of the widely used markers for neural stem 

cells (NSCs). Four included studies reported that G-Rg1 

could increase the expression of nestin, of which two 

 

 
 

Figure 5. Results of the stratified meta-analysis regarding escape latency and the number of platform crossings in the Morris 
water maze. 
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[29, 30] used real-time qRT-PCR and two [25, 29] used 

4′,6-diamidino-2-phenylindole nuclear staining. 

 

Senescence-associated beta-galactosidase (SA-β-gal) is 

one of the most commonly used biomarkers for 

determining the age of cells. Three studies [26, 28, 45] 

reported that G-Rg1 decreased the intensity of SA-β-gal 

stain in the brain or CA3 area (P < 0.05). 

 

One study [25] used immunofluorescence of 5-bromo-

2′-deoxyuridine to demonstrate that G-Rg1 could 

increase neurogenesis by increasing the number of new 

 

 
 

Figure 6. Forest plots of the effect of ginsenoside Rg1 for anti-oxidation. Ginsenoside Rg1 (A) improved the activity of SOD; (B) 

decreased the level of MDA; (C) improved the activity of GSH; (D) improved the activity of GSH-PX; (E) decreased the level of ROS compared 
with a control group. 
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cells (P < 0.05). Three studies using hematoxylin–eosin 

staining found that G-Rg1 could alleviate neuronal 

damage such as nuclear condensation and acidophilic 

degeneration [39, 51, 52]. One study showed that G-

Rg1 inhibited cell apoptosis according to TUNEL or 

nuclear concentrated cell numbers (P < 0.05) [36, 39]. 

 

Synapse protection 

Meta-analysis of two studies [40, 50] showed a 

remarkable effect of G-Rg1 on increasing brain-derived 

neurotrophic factor (BDNF) {P < 0.00001; SMD = 

7.05, 95%CI [5.64, 8.80]; heterogeneity: χ2 = 1.56, df = 

1 (P = 0.21); I² = 36%, Figure 8}. One study [42] 

reported that G-Rg1 treatment could increase the 

expression of multiple synaptic proteins such as 

synaptosomal-associated protein 25 (SNP25), synapsin 

2 (SYN2), and complexin 2. The results indicated that 

G-Rg1 may ameliorate synaptic plasticity. 

 

Three studies showed a significant effect of G-Rg1 on 

decreasing the activity of acetylcholinesterase (AChE) 

according to absolute AChE activity [32, 44] or relative 

AChE activity (% of controls) [48] (P < 0.05). 

Moreover, one study [48] showed G-Rg1 could increase 

the content of acetylcholine (ACh) (P < 0.05), one study 

[32] showed an increase in the activity of choline 

acetyltransferase, and one study [48] showed an 

increase in the content of 5-hydroxytryptamine (P < 

0.05) compared with the control group. 

 

Amelioration of AD-related pathology 

Using an ELISA, one study showed decreases in Aβ1-

40 in brain slices [49] and another study showed 

decreases in the hippocampus [46] compared with 

controls. One study [48] showed Aβ1-42 was decreased 

in brain slices, and three studies [50, 53, 54] showed 

decreases in the hippocampus after G-Rg1 treatment (all 

P < 0.05). In addition, one study [53] reported that G-

Rg1 had a significant effect on decreasing Aβ in the 

hippocampus (P < 0.05) but not in the cortex. Two 

studies [35, 36] showed Aβ was decreased in the G-Rg1 

group compared with the control group, according to 

the use of an optical microscope. 

 

Two studies [50, 55] reported that G-Rg1 could 

decrease tau and another showed [50] that it could 

decrease APP. A study [53] showed an increase in 

soluble APPα (all P < 0.05), compared with the control 

group. According to one study [54], G-Rg1 could 

increase disintegrin and metallopeptidase domain 10 

(ADAM10) expression and decrease β-secretase β-site 

APP-cleaving enzyme 1 (BACE1) expression, which 

are related to α-secretase and β-secretase. In addition, 
Fang et al. demonstrated G-Rg1 treatment could 

decrease γ-secretase activity from both in vitro and in 

vivo results [49]. 

DISCUSSION 
 

Summary of evidence 

 

This is the first preclinical systematic review that 

focused on evaluating the efficacy and potential 

mechanisms of G-Rg1 for AD. Thirty-two studies with 

1,643 animals were identified. The evidence showed 

that G-Rg1 could improve learning and memory 

function, and enhance animals’ performances in MWM, 

Y-maze, dark-avoidance, novel-object-recognition, 

radial-arm water-maze, and fear-conditioning tests. The 

mechanisms were related to anti-oxidation, anti-

inflammatory activities, amelioration of AD-related 

pathology, synapse protection, and up-regulation of 

nerve cells. 

 

Limitations 

 

First, only databases in English and Chinese were 

searched. Korea is one of the main ginseng 

distributers in the world [56]; therefore, some 

relevant publications may have been missed. 

 

Second, the probability of a study with positive 

results being published is about three times that of 

studies with neutral or negative results [57]. The 

factors contributing to publication bias are various 

and include researchers and editors preferring results 

with meaningful P values to those with inconclusive 

results [58]. In addition, some studies displayed the 

original data in the form of graphs, and data extracted 

using “digital ruler” software may be subject to slight 

errors. Some studies did not even show the original 

data. The efficacy of G-Rg1 might be overestimated 

because of this lack of related data. 

 

Third, animal studies with a less rigorous design may 

exaggerate the real effects. The quality of the 

included studies was moderate. Study quality is a 

multidimensional concept that is related to several 

different factors, including a trial’s design, conduction, 

analyses, clinical applicability, and reporting [59]. The 

assessment of the risk of bias could help to avoid over- 

or underestimating the parameters of interest, and this is 

vital when interpreting study results [60]. However, 

using different scales for quality appraisal can lead to 

inconsistent results if the scales are notably different in 

their complexity and dimensions [61]. Furthermore, the 

extent to which the quality of reports reflects the quality 

of randomized controlled trials (RCTs) is still a matter 

of debate [62]. 

 

Some methodological flaws still exist. All the studies 

considered here failed to report the calculations for 

sample sizes, and having a sufficient sample size is 
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vital for identifying the effects of a drug or therapy 

[63]; an insufficient sample size will result in 

inaccurate estimation of the treatment effect. The use 

of blind methods in the process of the research is not 

mentioned in any of the studies, and these can play 

an important role in the measurement and assessment 

of outcomes. The lack of blind methods could result 

in bias in performance and detection [64]. In 

addition, two studies used male/female models. It has 

been reported that male models perform well in 

working-memory tasks, while female models are 

good for visual-memory tasks and social cognition 

[65]. Failing to consider the sex of the animals may 

introduce a new uncontrolled variable that could 

affect outcomes. Moreover, two studies used 

pentobarbital sodium as an anesthetic. This anesthetic 

can result in some damage to cognitive function [66] 

and could therefore cause underestimation of the 

effect of G-Rg1. 

 

Fourth, two studies did not report the source of G-

Rg1, and many other studies did not report quality 

control or chemical analysis of the G-Rg1. By tracing 

the sources of G-Rg1 used in the included studies, we 

found that its purity reported by the suppliers ranged 

from >95% to>99%. A comprehensive review 

conducted by the European Medicines Agency in 

2013 [67] found that the concentrations of isolated 

compounds applied in animal models are significantly 

higher than expected, indicating the presence of other 

active compounds. This may be related to the methods 

used for the purification of ginsenosides, such as 

chromatographic column separation, which can lead 

to other ginsenosides being present in the final 

sample. According to a report, the water content was 

found to be 0.485% for G-Rg1, with a net mass 

balance of 99.515% [68]. Thus, high concentrations of 

G-Rg1 should be obtained from the marketing 

authorization holder. 

 

Finally, none of the included studies reported the 

number of animals that died or were removed from 

the study for other reasons. This information is 

essential for accurately assessing the usage of G-Rg1. 

 

Implications for research 

 

Approximately 70% of the prevalence of dementia can 

be ascribed to AD [69], and this correlates with the 

trend of an aging population [70]. The pathogenesis of 

AD is not clear, and the methods for modeling the 

disease are diverse. The included studies used models 

involving intracranial injections of d-gal, Aβ1-45, 

Aβ25-35, dexamethasone, okamoto acid, scopolamine,

 

 
 

Figure 7. Forest plots showing that ginsenoside Rg1 decreased the content of (A) IL-1β and (B) IL-6 compared with a control. 

 

 
 

Figure 8. Forest plot of the expression of BDNF for the ginsenosdie-Rg1 group versus a control group. 
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and quinolinic acid, ovariectomy plus intracranial 

injections of d-gal, aged mice, and transgenic mice, 

such as APP/PS1 mice, APP/PS1/tau mice, and SAMP8 

mice. 

 

These models have both advantages and disadvantages 

in mimicking AD. Intracranial injections have a low 

cost and studies are quicker to conduct than when using 

transgenic animals. Moreover, injection of substances 

such as Aβ can localize the intended effect and exclude 

other confounding effects. However, intracranial 

injection results in an acute model, but AD is a 

gradually developing disease in humans [71, 72]. 

Transgenic models integrate genes that encode proteins 

associated with part of the pathology of AD. Such 

models could help in the understanding of regional 

vulnerability and pathogenesis of AD because 

specificity of brain areas and cells is achieved by 

introducing the target gene under the control of 

promoters and regulatory elements [73]. Since cases of 

AD are sporadic and have unclear etiology, the 

mutations that are carried most frequently by transgenic 

animals only account for <5% of all AD cases [74]. Due 

to the complex mechanisms of human AD, it is of great 

importance to accept that all currently available models 

fail to replicate the full-scale features of AD [75]. 

However, some essential questions about the 

pathophysiology of AD have been resolved using the 

animal models available today [76]. 

 

After mastering enough knowledge of animal models 

and their intrinsic limitations, it is possible to select a 

suitable animal model according to the purpose and 

conditions of an experiment. Several animal studies 

have shown that G-Rg1 could increase neuron 

proliferation and survival, alleviating neuronal damage 

[51, 52]. The apparent neuroprotective effect of G-Rg1 

could involve several mechanisms. The accumulation of 

Aβ, oxidative free radicals, and harmful inflammatory 

cytokines, as well as excessive apoptosis, could all 

result in neurological impairment, and G-Rg1 could 

alleviate these reactions [77]. In addition, G-Rg1 can 

promote the proliferation of NSCs and attenuate their 

senescence [30]. Zhu et al. found that G-Rg1 could 

protect NSCs in the hippocampus of aged rats by 

reducing the activation of astrocytes and increasing the 

number of new cells [26]. Some studies have reported 

that BDNF, a neurotrophin, increased in AD animals 

after G-Rg1 treatment [49], and this could have a great 

effect on neuron structure and function [78]. It may also 

contribute to the effect of reversing long-term 

potentiation deficits in AD animals [49]. Furthermore, 

G-Rg1 could increase the expression of synaptic 
proteins, such as SYN2 and SNP25, in the hippocampus 

of AD animals [42], which helps to improve 

neuroplasticity. 

To assess different types of memory deterioration 

during AD, a great number of cognitive behavioral tests 

could be used. For example, the MWM, Y maze, and 

radial-arm water maze were mainly created to test 

spatial memory, object recognition in episodic memory, 

and fear conditioning in emotional memory. From the 

results of meta-analysis, we found that G-Rg1 could 

ameliorate memory deteriorations of different types, 

including various aspects of learning and memory. 

Among those memory types, spatial memory is widely 

assessed in rodent research. However, we must take 

other forms of memory into account. For instance, 

episodic and semantic memory are the first types of 

memory to deteriorate in AD patients and are therefore 

important to study [79]. Associative memory has been 

suggested to be paired with working memory, whose 

deterioration will result in progressive decline of 

executive function [80]. 

 

Nearly all developments in conventional medical 

treatments cannot be separated from animal research 

[81]. However, translation from animal tests to the 

prediction of effects in clinical trials is still a huge 

challenge [82]. Poor experimental design and a lack of 

transparent reporting are considered to be the main 

factors leading to the failure of this translation [83]. The 

calculation of sample size and the use of blind methods 

in the induction of the model or the assessment of its 

outcome are essential for the design of effective studies 

[84]. In addition, the Animal Research: Reporting of In 

Vivo Experiments (ARRIVE) guidelines could improve 

the quality of research designs of in vivo animal studies, 

and these have been endorsed by over 300 research 

journals throughout the world by 2014 [85]. Due to the 

methodological weaknesses in the included studies, we 

recommend that future studies on the use of G-Rg1 for 

cognitive function should refer to these well-established 

guidelines. Using animals of different sexes can lead to 

different performances in cognitive behavior [65]. Thus, 

we suggest choosing a single-sex animal model in 

future studies. In addition, anesthesia should be selected 

carefully since some anesthetic compounds such as 

pentobarbital sodium may result in certain damage to 

cognitive function [66]. 

 

To date, about 40 kinds of ginsenoside compounds have 

been identified [86]. At least eight ginsenosides; i.e., 

Rg1, Rb1, Rg2, Rd, Re, Rh1, Rh2, and Rg3, have been 

reported to improve cognitive function in different 

animal models. Ginsenosides are generally divided into 

two groups. The protopanaxatriol group contains Rg1, 

Rg2, Re, and Rh1, while the protopanaxadiol group 

contains Rb1, Rd, Rg3, and Rh2 [19]. Individual 
ginsenosides, which have different chemical structures, 

have differences in their pharmacology and mechanisms 

[87]. The most widely studied ginsenoside is Rg1, and 
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this possibly has the greatest protective effects on both 

memory acquisition and retention in AD animals [25]. 

The other ginsenosides have been studied much less 

regarding cognitive impairments than Rg1. These 

ginsenosides have antioxidant, anti-apoptosis, and anti-

inflammatory effects in common, but study of other 

aspects of their pharmacology has been limited. For 

example, Rb1 is the second-most comprehensively 

studied ginsenoside. Pharmacological studies have 

indicated that Rb1 can increase hippocampal 

glutamatergic transmission and improve long-term 

potentiation and synaptic plasticity, suggesting that Rb1 

may represent a potential treatment strategy for 

cognitive impairment [88]. In a few studies, Rd 

enhanced cognitive performance through estrogen-like 

activity [89]. Re ameliorates brain insulin resistance and 

decreases the levels of triglycerides, total cholesterol, 

and low-density lipoprotein cholesterol, resulting in a 

protective effect on diabetes-associated cognitive 

deficits [90, 91]. 

 

In future studies, to clarify the different efficacies of 

different ginsenosides, a new network meta-analysis is 

needed. In addition, the combined use of two or more 

kinds of ginsenoside is a novel direction for anti-

dementia treatment studies. The composition of isolated 

ginsenosides is clearer than that of ginseng extract. The 

use of isolated ginsenosides can help to facilitate an in-

depth exploration of related mechanisms. Synergism 

refers to the combined use of two or more drugs that 

may have additive pharmacological effects and greater 

efficacy than individual use of each compound. Shi  

et al. [40] reported that the synergistic use of G-Rg1 and 

Acori graminei rhizoma attenuates neuron cell apoptosis 

by promoting the expression of miR-873-5p, and the 

synergistic use of geniposide and G-Rg1 has been 

shown to balance microglial TNF-α and transforming 

growth factor β1 following oxygen–glucose deprivation 

in vitro [92]. Complex pathologic processes are 

involved in AD, and thus interventions involving 

multiple targets are necessary. 

 

Possible mechanisms 

 

Based on the findings of the included studies, the 

multitarget mechanisms of G-Rg1 improving cognitive 

function are as follows. (1) Amelioration of AD-related 

pathology. Rg1 treatment could increase the expression 

of ADAM10, an a-secretase that plays a key role in 

preventing Aβ deposition. In addition, G-Rg1 decreases 

the expression of BACE1, a b-secretase that exhibits 

opposing functions to a-secretases [54]. G-Rg1 inhibits 

the hyperphosphorylation of tau by preventing the 

activation of the GSK3β pathway [55] and promotes 

cleavage of APP via its effects on PKC-, ERK/MAPK-, 

ERS, and PI3K/Akt- dependent signals [53]. (2)  

 

 
 

Figure 9. Possible mechanisms of ginsenoside Rg1 (G-Rg1) in improving cognitive function. Possible mechanisms for Rg1 

improving cognitive function are the following. (1) Rg1 could inhibit the pathogenesis of Alzheimer’s disease (AD). G-Rg1 could promote 
cleavage of amyloid precursor protein (APP), inhibit the hyperphosphorylation of tau and prevent amyloid - β (Aβ) deposition. This would 
occur by increasing a disintegrin and metallopeptidase domain 10 (ADAM10) expression and decreasing β-secretase β-site APP-cleaving 
enzyme 1 (BACE1) expression. (2) Rg1 could offer synapse protection. G-Rg1 could increase the levels of ACh, BDNF, and multiple synaptic 
proteins, such as synapsin 2 (SYN2), complexin 2 (COM2), and synaptosomal-associated protein 25 (SNP25). (3) Rg1 could increase 
antioxidant activity. G-Rg1 could increase the activity of SOD and GSH-PX, and could decrease the levels of ROS and MDA. (4) Rg1 could 
increase anti-inflammatory activity. G-Rg1 could inhibit the expression of TNF-α, decrease the levels of IL-1β, IL-6, and IL-18, and decrease the 
expression of caspase 1 and caspase 5. (5) Rg1 could up-regulate nerve cells. G-Rg1 treatment delays neural stem cell (NSC) senescence and 
decreases cell apoptosis, and G-Rg1 treatment increases the number of NSCs and new nerve cells; however, the mechanism for this is not yet 
clear. 
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Synapse protection. G-Rg1 could inhibit AChE activity 

and increase choline acetyltransferase activity, 

maintaining the levels of ACh in cholinergic neurons 

[31, 47]. G-Rg1 increases the expression of BDNF and 

multiple synaptic proteins, such as synaptosomal-

associated protein 25, synapsin 2, and complexin 2, 

which help to improve neuron structure and function 

[42, 49]. (3) Antioxidant activity. G-Rg1 increases the 

levels of antioxidant enzymes SOD and GSH 

peroxidase (GSH-PX), inhibits the formation of ROS, 

and reduces the production of MDA [51, 25]. (4) Anti-

inflammatory activities. G-Rg1 could inhibit the 

expression of TNF-α, decrease the levels of IL-1β, IL-6, 

and IL-18, and decrease the expression of NLRP1, 

caspase 1, and caspase 5 in the hippocampus and frontal 

cortex [25, 37]. (5) Up-regulation of nerve cells. G-Rg1 

treatment delays NSC senescence via inhibiting the 

AKT/mTOR signaling pathway [30]. Through 

attenuating caspase 3 activity [53] and increasing the 

expression of Bcl 2, G-Rg1 decreases cell apoptosis. In 

addition, G-Rg1 treatment could maintain the number of 

NSCs and increase neurogenesis by increasing the 

number of new cells [25]; however, the mechanism for 

this is not yet clear (see Figure 9). 

 

Preclinical systematic review is a common tool in basic 

life-sciences research, particularly for translating work 

from the laboratory to human healthcare [93]. The 

assessment of accumulated animal experiments is helping 

to rationalize clinical trials, reducing their costs, and 

reducing the potential risks involved in human tests [94]. 

Randomized controlled trials have long been regarded as 

the gold standard when assessing the efficacy and safety 

of interventions [95]. There have already been several 

clinical studies assessing the effects of ginseng on 

cognition [96, 97], and their results have shown that 

ginseng could improve cognitive function. However, there 

have been no clinical studies assessing G-Rg1 and 

cognition. In fact, the effects of G-Rg1 in improving 

cognitive function have been shown to manifest not only 

in AD animals, but also in normal animals [98, 99]. Given 

the obvious neurobehavioral and neurobiochemical effects 

of G-Rg1, it may prove to have great value in further 

clinical trials. However, because of the huge gap between 

animal studies and clinical trials, rigorous RCTs are 

needed. 

 

CONCLUSIONS 
 

The present study showed that G-Rg1 could improve 

learning and memory function in most animal models of 

AD. The potential mechanisms involved included 

antioxidant and anti-inflammatory effects, amelioration 

of AD-related pathology, synapse protection, and up-

regulation of nerve cells via multiple signaling 

pathways. 

MATERIALS AND METHODS 
 

Search strategy 

 

A total of six English and Chinese electronic databases 

were searched from their inceptions to January 2019, 

including PubMed, EMBASE, the Cochrane Library, 

China National Knowledge Infrastructure, the Wanfang 

Database, and the VIP Journals Database. The 

following search terms were used: (Ginseng OR 

Ginsenoside OR Rg1) AND (memory OR learning OR 

cognitive OR Alzheimer’s disease OR dementia). 

 

Eligibility criteria 

 

Types of studies 

Animal studies that assess the effectiveness of G-Rg1 

for cognitive function were included, regardless of their 

language, blinding, or publication status. Case reports, 

reviews, and protocols were excluded. 

 

Types of experimental animals 

All animal models of Alzheimer’s disease were 

included, regardless of the animal species, sex, or 

modeling methods. 

 

Types of intervention and comparators 

The analyzed interventions all included G-Rg1 being 

received as a monotherapy at any dose. Comparator 

interventions were isosteric non-functional liquids, such 

as normal saline or phosphate-buffered saline, or no 

treatment. 

 

Types of outcome measures 

The primary outcomes were indexes of learning and/or 

memory-function tests, such as the Morris water maze, 

Y maze, step-down test, dark-avoidance test, active-

avoidance reaction, and fear-conditioning test. The 

secondary outcome measures were the mechanisms of 

G-Rg1 for AD. 

 

Data extraction 

 

The following data were extracted from the included 

articles by two independent authors: (1) first author’s 

name and the date of publication; (2) information 

related to the experimental animals, such as their 

species, sex, and weight; (3) modeling methods and use 

of anesthetic; (4) information relating to the treatment 

group, including therapeutic drug dosage, method of 

administration, and duration of treatment, with the same 

information being recorded for the control group; and 

(5) outcomes and intergroup differences for each 

outcome measure. The data relating to the highest dose 

were included when the treatment groups included 

various doses of the drug. The result of the last time 
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point was included when the data were expressed for 

different times. When published outcome data were 

displayed graphically, we attempted to contact the 

author for specific information. Digital ruler software 

was applied when failing to receive a response. Where 

several articles were published from a single study, we 

chose the article with the largest sample or the earliest 

publication. 

 

Quality assessment 

 

Two authors independently assessed the methodological 

quality of the included articles, referring to the 

Collaborative Approach to Meta-Analysis and Review 

of Animal Data from Experimental Studies [100]. One 

point was given for each criterion based on written 

evidence. Each study was then given an aggregate 

quality score after completing the evaluation of ten 

criteria. The divergences in the process were finally 

settled after discussion among the authors of the present 

study or by consultation with the corresponding authors. 

 

Statistical analysis 

 

A meta-analysis was carried out using the RevMan 5.3 

software package. The outcome of each indicator was 

considered as continuous data, and a fixed effects model 

and the SMD were used to estimate the combined 

overall effect sizes. The efficacy of G-Rg1 in improving 

learning and memory function was assessed utilizing 

the SMD with a 95% confidence interval. Funnel plots 

were used to evaluate publication bias. To clarify the 

effect that mixed factors played on the outcome 

measure, sensitivity analysis and subgroup analysis 

were performed according to several variables, 

including animal species and sex and modeling 

methods. We used the I2 statistic to assess the 

heterogeneity among individual studies. Probability 

values P < 0.05 were considered significant. 
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Supplementary Table 1. Characteristics of the included studies. 

 

Supplementary Table 2. Statement of the quality control of G-Rg1. 

 


