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INTRODUCTION 
 

Ischemic stroke, the most common type of stroke, 

represents the second main cause of death worldwide 

leading to 5.7 million of deaths per year in adulthood  

[1, 2]. Between all types of stroke, brain ischemic stroke 

represent 87% of all cases that cause neurological 

deficits such as motor impairment and inability to read 

or even aphasia [3]. 

During the last decades, ischemic stroke experimental 

models have been performed in young animals, but 

aging itself plays a critical role in the response of the 

brain to stroke [4]. Indeed, brain aging is accompanied 

by many structural and physiological alterations that 

usually involve cognitive decline [5]. Although most 

of the molecular mechanisms of brain injury are 

similar in neonatal and aged animal models [6, 7], 

certain characteristics are different, e.g., cell apoptosis 
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ABSTRACT 
 

Proper astroglial functioning is essential for the development and survival of neurons and oligodendroglia 
under physiologic and pathological circumstances. Indeed, malfunctioning of astrocytes represents an 
important factor contributing to brain injury. However, the molecular pathways of this astroglial dysfunction 
are poorly defined. In this work we show that aging itself can drastically perturb astrocyte viability with an 
increase of inflammation, cell death and astrogliosis. Moreover, we demonstrate that oxygen glucose 
deprivation (OGD) has a higher impact on nutritive loss in aged astrocytes compared to young ones, whereas 
aged astrocytes have a higher activity of the anti-oxidant systems. P38MAPK signaling has been identified to be 
upregulated in neurons, astrocytes and microglia after ischemic stroke. By using a pharmacological p38α 
specific inhibitor (PH-797804), we show that p38MAPK pathway has an important role in aged astrocytes for 
inflammatory and oxidative stress responses with the subsequent cell death that occurs after OGD. 
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occurs a week after the injury in the immature brain 

while this period takes place only for s few hours after 

the damage in the mature brain [8]. For in vitro 

studies, the commonly used model to mimic cerebral 

ischemia is the oxygen glucose deprivation model 

(OGD) [9, 10]. 

 

Although neurons are primarily susceptible to  

injury, impairment of supporting glial cells such as 

astrocytes may contribute to secondary injury in 

neurons [11]. Proper astroglial functioning is essential 

for the development and survival of neurons and 

oligodendroglia under pathological circumstances [12]. 

Supportive properties of astrocytes are reflected in 

production of growth factors such as PDGF and IGF 

[13, 14], clearance of radicals via superoxide dismutase 

activity [15], anti-oxidant defense with glutathione 

synthesis [16], removal of glutamate from the synaptic 

cleft [17], among others. Hence, malfunctioning of 

astrocytes represents an important factor for recovery 

and repair of the brain after injury [18, 19]. The 

importance of age for differences in glial cellular 

responses after brain injury were also documented in 

microglia [20]. 

 

p38 mitogen-activated protein kinase (p38MAPK) 

pathway is a signaling pathway that can be activated in 

neurodegenerative diseases [21, 22]. p38MAPK controls 

key processes of mammalian cell homeostasis such as 

self-renewal, differentiation, proliferation and death 

[23]. Activation of p38MAPK signaling has been 

identified in neurons, astrocytes and microglia after 

ischemic stroke [24]. Moreover, p38MAPK inhibitors 

seem to be effective reducing infarct volume after stroke 

[21, 25, 26], but the cell type being involved in 

p38MAPK dependent injury in the brain after stroke 

remains to be elucidated, as well as the effect of 

p38MAPK in aged cells after stroke. 

 

Therefore, our aim was to investigate the effect of OGD 

in young and aged primary rat astrocyte cultures and to 

analyze the expression and effect of p38MAPK in these 

cultures. For this, we cultured young and aged 

astrocytes with PH-797804, MAPK14 (p38α) inhibitor, 

the most abundant isoform of p38MAPK in the brain, to 

define changes in supporting and protective properties 

of astrocytes that can be critical for survival of brain 

cells. 

 

MATERIALS AND METHODS 
 

Animals 

 
All animal experiments were performed in accordance to 

German and Spanish animal welfare law with the 

permission of the Animal Welfare Committee of Berlin 

(LAGeSo T-0124/08) and the permission of Biodonostia 

Institute Animal Care Committee. Wistar rats (FEM, 

Charité) were housed in specific pathogen-free barrier 

areas of the Hospital Charité Institute in Berlin while the 

C57B/6 (Jackson Laboratory) mice were housed in the 

Biodonostia Institute. Mice were maintained under a 12-

hour light/12 hour dark cycle at 22° C with controlled 

humidity and with food and water provided ad libitum 

and handled in compliance with the animal research 

regulations specified in the European Communities 

Directive [2010/63/EU]. 

 

Astrocyte primary cultures 

 

Primary astrocytes cell culture was prepared from 

neonatal Wistar rats during the first postnatal day of life. 

After dissection and careful removal of the meninges, 

both hemispheres were dissociated mechanically [13]. 

Cells were resuspended in Dulbecco’s Modified Eagle 

Medium (DMEM, Invitrogen, USA) supplemented with 

20% fetal calf serum, 1% penicillin/streptavidin and 

subsequently seeded in T75 flasks coated with poly-L-

lysine (200 μg/ml, Sigma-Aldrich) and grown in a 

humidified incubator maintained at 37° C under >90% 

humidity and 5% CO2. Medium was changed every 2-3 

days. After 7-10 days, the cultures were shaken 

overnight to minimize oligodendroglia and microglia 

contamination. For purification, the remaining astrocyte 

monolayers were trypsinized and replated. Cells were 

seeded in 12-well plates containing approximately 

15,000 cells for immunocytochemistry and ATP analysis; 

in 6-well plates containing approximately 500,000 cells 

for quantitative RT-PCR and 106 cells/well for western 

blot analysis. 

 

Oxygen-glucose deprivation (OGD) 

 

The culture medium was replaced with deoxygenated 

and glucose-free DMEM. Then cells were transferred to 

a humidified anaerobic chamber filled with a gas 

mixture of 5% CO2 and 95% N2 at 37° C. Throughout 

the OGD period of 4 hours, an atmosphere of <0.5% 

oxygen was maintained. After the OGD period, the 

media was quickly replaced with glucose-containing 

(1g/L) DMEM. Some samples were collected and others 

were reintroduced into normoxic conditions for 20 

hours of reperfusion/recovery. Control cells in DMEM 

containing 4.5g/L glucose were always kept in a 

normoxic incubator. 

 

OGD was performed 24h after cells were seeded (1DIV) 

or 4 weeks after (30DIV) to simulate an in vitro model 

of aging astrocytes [20]. The medium of the aged cells 
was changed every 2-3 days. For assays with 

P38MAPK inhibitor, astrocytes were treated with 2 µM 

PH-797804 (Selleckchem) added to the medium when 
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seeded and included in every medium change. Control 

group were astrocytes with and without treatment in the 

different stages but without OGD. 

 

ATP detection 

 

ATP concentration was detected with the use of the 

Luminescent ATP Detection Assay Kit (Abcam, 

Cambridge, UK) according to the manufactures guide 

lines. Briefly, cultured astrocytes were incubated with a 

detergent on a shaker for 5 minutes. After total cell 

lyses, substrate for luminescence detection was added 

and incubated for 5 minutes. Luminescence was 

analyzed by IVIS Lumina in vivo Imaging System 

(PerkinElmer). 

 

Tissue immunofluorescence 

 

After mice perfusion, coronal serial sections of 50 μm 

were collected via SM2010 R Sliding Microtome 

(Leica) from young (2 months-old) and aged (2 years 

old) C57BL/6 mice and selected brain sections were 

blocked with 10% donkey serum and 0.1% Triton  

X-100 in phosphate-buffered saline and incubated with 

anti-P-p38MAPK (1:200; rabbit, Cell Signalling) and 

anti-GFAP conjugated with Alexa Fluor 488 (1:500; 

mouse, Sigma) overnight at 4° C. Nuclei were stained 

with DAPI staining (Sigma). Images were acquired 

using a Leica confocal microscope. 

 

Cell immunofluorescence 

 

After removal of the medium, cells seeded on 

coverslips were fixed with 4% paraformaldehyde for 

15 min for immunocytochemical procedure. The 

samples were pre-incubated with a blocking solution 

(10% goat serum and 0.1% Triton X-100 in phosphate-

buffered saline) for 30 min and then incubated with a 

mouse monoclonal anti-GFAP (1:400, Sigma, USA) 

for 2 hrs at room temperature, followed by incubation 

with rabbit anti cleaved caspase-3 (Asp175) (1:400, 

cell signaling) at 4° C overnight. After washes, cells 

were incubated with the respective secondary 

antibodies. Finally, after three washings, the sections 

were mounted with Vectashield HardSet Mounting 

Medium with DAPI (Sigma). Images were acquired 

using a Leica confocal microscope. 

 

Quantitative RT-PCR 

 

RNA extraction was performed with acidic 

phenol/chloroform (peq-GOLDRNApure, PEQLAB 

Biotechnologie, Erlangen, Germany) following the 
manufacturer protocol, and 2 µg of RNA were reverse 

transcribed. Primers were used for insulin-like growth 

factors (Igf), neuronal growth factor (Ngf), glial 

fibrillary acidic protein (Gfap), superoxide dismutase 2 

(Sod2), glutamine synthetase (Gs), glutamate aspartate 

transporter (Slc1a3), catalytic subunit of glutamate 

cysteine ligase (Gclc), to analyse the cDNA and Hprt 

was used as housekeeping gene (see Table 1). The 

expressions of target genes were analyzed with the 

StepOnePlusTM qPCR System (Applied Biosystems, 

Life Technologies, Carlsbad, CA) according to the 

2−ΔΔCT method [27]. 

 

Western blot analysis 

 

Immunoblots were performed following standard 

procedures. Equal amounts of protein (20 µg) were 

separated on 15% SDS polyacrylamide gels and 

blotted onto nitrocellulose membranes (BioRad). 

Primary antibodies were P-p38MAPK (1:200; Cell 

Signalling), total GFAP (1:100, Santa Cruz), TNFα 

(1:200, PromoCell), cleaved caspase 3 (1:1000, Cell 

Signaling) and α-ACTININ (1:2000, Sigma), followed 

by appropriate secondary antibodies conjugated  

with horseradish peroxidase (DAKO). Detection  

was performed by chemiluminescence using ECL 

(Amersham). 

 

Statistical analysis 

 

All data are presented as mean ± standard error of the 

mean (SEM). After the assessment of normality with 

Kolmogorov Smirnov test (KS), t student test was 

performed to compare the differences between the 

control and the OGD group. Group differences were 

studied by one-way ANOVA with Bonferroni-Dunn 

correction. Two-sided P<0.05 was considered 

statistically significant. The statistical analysis of data 

was performed using GraphPad prism 5 software 

version 5.01 (GraphPad Software, Inc. CA, USA). 

 

RESULTS 
 

Aged astrocytes show increased GFAP reactivity, 

inflammation, and cell death as well as lower 

nutritive and anti-oxidative capacity 

 

We determined the GFAP reactivity in the cortex and 

dentate gyrus (DG) of the hippocampus in young (2 

month-old) and aged (≥ 2 year-old) C57BL/6 mice. 

Immunofluorescence showed an increased expression of 

GFAP with aging (Figure 1A). To verify the age 

dependent increase of GFAP in astrocytes, we cultured 

rat neonatal astrocytes and simulated an in vitro model 

of aging (30DIV). Increased GFAP expression in vivo 

was confirmed in primary astrocytes in vitro. Aged 
astrocytes showed increased GFAP expression (0.6 ± 

0.13 vs 1.3 ± 0.15 ratio vs DAPI) compared to younger 

cells (1DIV) (Figure 1B). 
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Table 1. Primer used in qPCR. 

Gene Forward primer Reverse primer GenBank ID 

Cntf AACCTTGACTCAGTGGATGGTGTA AAGCCTGGAGGTTCTCTTGGA NM_013166.1 

Gclc GGAGGACAACATGAGGAAACG GCTCTGGCAGTGTGAATCCA NM_012815.2 

Gfap TCTGGACCAGCTTACTACCAACAG TGGTTTCATCTTGGAGCTTCTG NM_017009.2 

Igf-1 CGGACCAGAGACCCTTTGC GCCTGTGGGCTTGTTGAAGT NM_001082479.1 

Ngf ACCCAAGCTCACCTCAGTGTCT GACATTACGCTATGCACCTCAGAGT NM_001277055.1  

Slc1a3 CCCTGCCCATCACTTTCAAG GCGGTCCCATCCATGTTAAT NM_001289942.1 

Sod2 GACCTACGTGAACAATCTGAACGT AGGCTGAAGAGCAACCTGAGTT NM_017051.2 

Hprt GGAAAGAACGTCTTGATTGTTGAA CCAACACTTCGAGAGGTCCTTTT NM_012583.2 

 

Mitochondria generate the majority most of cellular 

ATP supply, which is essential for energy consuming 

cell processes [28]. To investigate the impact of aging 

on cellular energy supply we measured the ATP 

concentration in 30DIV (old) astrocytes and 1DIV 

(young). As a result, ATP luminescence was reduced in 

aged astrocytes to almost half of the level found in 

young cells (P<0.01) (Figure 1C). 

 

Regulation of glutamate homeostasis is one of the major 

functions of astrocytes in the brain. The enzyme 

glutamine synthetase (GS) is needed to transform 

glutamate intracellularly into glutamine, which is stored 

in vesicles [29]. In order to determine the impact of 

aging on glutamate homeostasis, we analyzed gene 

expression of Gs and of Slc1a3 (EAAT1 or GLAST) 

representing a glutamate transporter molecule highly 

abundant in these cells [30]. qPCR analysis revealed 

that expression of Gs and Slc1a3 is drastically reduced 

in aged astrocytes (Figure 1D, 1E). These results 

demonstrate that aging alters the expression of genes 

relevant for glutamate homeostasis in astrocytes. 

 

The astrocytes anti-oxidant defense system is regulated 

via the Nrf2-pathway [31], which orchestrates the 

expression of its target genes including glutathione 

synthetase [32]. To define the impact of aging on anti-

oxidant gene expression in astrocytes, we determined 

levels of Sod2 and of catalytic subunit of glutamate 

cysteine ligase (Gclc) gene expression. The expression 

levels of Sod2 and Gclc were significantly decreased in 

aged cultures indicating impairment of the anti-oxidant 

system in old astrocytes (Figure 1F, 1G). 

 

To further characterize the mechanism of cell alterations 

caused by aging, we determined the expression  

of various growth factors, inflammatory response 

related genes, and performed caspase-3a (CASP3A) 

immunofluorescence staining for apoptosis. Aged 

astrocytes displayed a reduction of igf and an increase 

of il6 (Figure 1H, 1I) gene expression. The numbers of 

CASP3A positive astrocytes in aged cultures were 

increased as compared to young cultures (2.9 ± 0.5 % 

vs. 3.9 ± 0.3 %, number of CASP3A+ cells expressed as 

a percentage of all DAPI cells (p<0.05) (Figure 1J). 

Western blot analysis corroborated the results of 

elevated GFAP and CASP3A expression in old cells 

(Figure 1K). 

 

Loss of function in response to OGD is more 

pronounced in aged than in young astrocytes: role of 

cellular ATP levels, nutritive properties, and anti-

oxidative capacity 

 

To investigate the impact of OGD in young and aged 

astrocytes in vitro, we performed 4h of OGD (Figure 

2A), and determined GFAP immunoreactivity in young 

and aged astrocytes. Immunofluorescence showed a 

significant OGD-induced increase of GFAP expression 

in both groups after OGD, which was even more 

pronounced in aged astrocytes (Figure 2B). The staining 

of GFAP was elevated exclusively in aged astrocytes 

after reperfusion/recovery. 

 

We also determined the effect of OGD on cellular 

energy supply in young and aged astrocytes by ATP 

assay (Figure 2C). Reduction of ATP dependent energy 

after OGD in young astrocytes was restored back to 

control levels after 20 hours of reperfusion/recovery. 

Notably, in aged astrocytes, the OGD-induced decline 

of energy supply was still largely reduced after the 

phase of recovery (Figure 2C). This highlights that 

OGD hits aged astrocytic energy supply in a persistent 

way, and that the capacity of recovery and cellular 

repair is strongly impaired in old as compared to young 

astrocytes. 

 

We also characterized the effect of OGD on glutamate 

uptake, anti-oxidative capacity, growth factor regulation, 

inflammatory response and cell death in young and  

aged astrocytes. Aging caused a significant upregulation 

of Gs, Slc1a3, Sod2, Gclc immediately after OGD 

indicating astroglial activation and induction of the anti-

oxidant defense system compared to young astrocytes 

(Figure 2D–2G). OGD increased Igf-1 expression  

only in aged astrocytes but its expression was
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Figure 1. Aged astrocytes have increased reactivity, inflammation and cell death as well as loss of nutritive and anti-
oxidative capacity. (A) Representative immunofluorescence for GFAP (red) in cortex and DG of young (2 month-old) and aged (over 24 

month-old) C57BL/6J mice (n=2). (B) Representative immunofluorescence and the quantification for GFAP positive cells in 1DIV (young) and 
30DIV (old) primary astrocytes cell culture derived from neonatal Wistar (n=6). (C) ATP luminescence levels of young and old primary 
astrocytes cultures (ratio compared to the young group) (n=4). (D–I) Expression of gs, slc1a3, sod2, gclc, igf-1 and il-6 in young and old 
primary astrocytes cultures (n=6). (J) Representative immunofluorescence of CASPASE 3A and co-staining of CASPASE 3A (red) with GFAP 
(green) together with DAPI (blue). Quantification for CASPASE 3A positive cells and in 1DIV (young) and 30DIV (old) primary astrocytes cell 
culture derived from P1 Wistar rat pups (n=6). (K) Protein expression of CASPASE 3A and GFAP in 1DIV (young) and 30DIV (old) primary 
astrocytes cell culture. Results are expressed as the mean ± SEM. Asterisks denote the significance levels when compared to the control 
group (***p<0.001, **p<0.01 and *p<0.05 versus controls, t-test). 
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Figure 2. OGD has a higher impact in nutritive loss in aged compared to young astrocytes, whereas aged astrocytes have 
better anti-oxidant systems. (A) Representative optical microphotograph of young and old primary astrocytes derived from neonatal 

Wistar rats after 4h of OGD and after 20h of recovery compared to the control group. (B) Representative immunofluorescence and 
quantification of GFAP positive cells (green) in 1DIV (young) and 30DIV (old) primary astrocyte cell cultures after 4h of OGD and after 20h of 
recovery compared to the age matched control groups without OGD (n=6). (C) ATP luminescence levels in young and old primary astrocyte 
cultures after 4h of OGD and after 20h of recovery compared to control groups (n=4). (D–H) Expression of gs, slc1a3, sod2, gclc and igf-1 in 
young and old astrocytes after 4h of OGD and after 20h of recovery compared to controls (n=6). (I) Protein expression of TNFα in young and 
old cultured astrocytes after 4h of OGD compared to controls. (J) Representative immunofluorescence and the quantification for CASPASE 3A 
positive cells in 1DIV (young) and 30DIV (old) astrocytes cell culture derived from neonatal Wistar after 4h of OGD and after 20h of recovery 
compared to the control group (n=6). Results are expressed as the mean ± SEM. Asterisks denote the significance levels when compared to 
the control group (***p<0.001, **p<0.01 and *p<0.05 versus controls, t-test). 
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downregulated after reperfusion/recovery in both groups 

(Figure 2H). Finally, there was a significant upregulation 

of TNFα and CASPASE3A after OGD in young and 

aged astrocytes (Figure 2I, 2J). 

 

p38MAPK activity increases in aged astrocytes and 

its expression is reduced with PH-797804 

 

p38MAPK activity (P-p38MAPK) and its isoforms are 

increased in different cell types in aged mouse brain 

[33]. Indeed, p38MAPK is one of the most important 

kinases in inflammatory signaling and its activation  

has been identified in many neurodegenerative diseases 

[21]. We first studied the expression of p38MAPK  

in the cortex and DG of hippocampus in young  

(2 month-old) and aged (≥ 2 year-old) C57BL/6J  

mice. Immunofluorescence showed that P-p38MAPK 

expression was increased in over 2 year-old animals 

(Figure 3A), supporting previous studies in the DG [33]. 

Next, we measured P-p38MAPK in cultured young and 

aged astrocytes and found that P-p38MAPK expression 

was strongly increased in aged compared to young 

astrocytes (Figure 3B). Finally, the addition of PH-

797804 to aged astrocyte cultures lowered levels of P-

P38MAPK and Mapk14 (p38alpha) gene expression by 

50% after OGD and after reperfusion in comparison to 

control cells (Figure 3C, 3D). 

 

Pharmacological inhibition of p38α in aged 

astrocytes prevents astroglial reactivity, 

inflammatory response and anti-oxidant defense 

system activation after OGD 

 

Finally, we aimed to clarify whether p38α inhibition 

could have beneficial effects in aged astrocytes after 4h 

of OGD (Figure 4A). We first detected that Mapk14 

 

 
 

Figure 3. p38MAPK activity increases in aged astrocytes and its expression is reduced with PH-797804. (A) Representative 

immunofluorescence and quantification for phosphorylated p38MAPK (P-p38MAPK) (green) together with DAPI (blue) and GFAP (red) in the 
cortex and in the DG of young (2 month-old) and aged (over 24 month-old) C57BL/6J mice (n=2). (B) Immunoblot of P-p38MAPK in 1DIV 
(young) and 30DIV (old) primary astrocyte cultures derived from Wistar rat brains. (C) Immunoblot of P-p38MAPK in old astrocyte cultures 
with and without PH-797804 treatment. (D) MAPK14 gene expression in old astrocyte cultures treated with PH-797804 at different time 
points in comparison to the control groups (without treatment) (n=6). Results are expressed as the mean ± SEM. Asterisks denote the 
significance levels when compared to the control group (***p<0.001, **p<0.01 and *p<0.05 versus controls, t-test). 



 

www.aging-us.com 6353 AGING 

 
 

Figure 4. Pharmacological inhibition of p38α in aged astrocytes prevents from astrocytes reactivity, inflammatory response 
and anti-oxidant defense system activation after OGD. (A) Representative optical microphotograph of old primary astrocytes derived 

from neonatal Wistar after 4h of OGD and treated with PH-797804. (B) MAPK14 gene expression in old astrocyte cultures after 4h of OGD 
(white), after 4h of OGD with PH-797804 treatment (blue column) in comparison to controls treated with PH-797804 (black) (n=6).  
(C) Immunoblot of GFAP, TNFα and P-p38MAPK in old primary astrocytes cell culture derived from neonatal Wistar in normoxia and after 4h 
of OGD and with or without the treatment, PH-797804. (D) Representative quantification of GFAP positive cells in old astrocyte cultures 
derived after 4h of OGD, after 4h of OGD with PH-797804 treatment, and in control cultures treated with PH-797804 (n=6). (E–K) Expression 
of gs, slc1a3, sod2, gclc, ngf, igf-1 and il-6 in old astrocyte after 4h of OGD, after 4h of OGD with PH-797804 treatment, in controls treated 
with PH-797804 (n=6). Results are expressed as the mean ± SEM. Asterisks denote the significance levels when compared to the control 
group (***p<0.001, **p<0.01 and *p<0.05 versus controls, t-test). 
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(p38MAPK alpha) expression was increased after  

OGD in aged astrocyte compared to the control group 

(Figure 4B). Analysis of TNFα, GFAP and P-p38MAPK 

protein expression after OGD revealed that there was a 

reduction of all these proteins in aged astrocytes treated 

with PH-797804 after OGD (Figure 4C). 

 

We corroborated astroglial inhibition with GFAP 

immunofluorescence in which astrocytes treated with 

the p38α inhibitor expressed lower levels of astrogliosis 

compared to the untreated OGD group directly after the 

injury and also after recovery (Figure 4D). 

 

To further characterize the effect of pharmacological 

inhibition of p38α in aged astrocytes after OGD and 

after recovery, we characterize the effects on glutamate 

uptake, anti-oxidative capacity and growth factor 

response. Gene expression of selected genes of those 

processes, Gs, Slc1a3, Gclc, Sod, Ngf and Igf-1 was 

reduced in p38α inhibited astrocytes treated with PH-

797804 immediately after OGD and also after recovery 

(Figure 4E–4J). Hence, pharmacological inhibition of 

p38α attenuates the oxidative challenge in aged 

astrocytes caused by OGD. 

 

Finally, we analyzed the inflammatory response of 

astrocytes with PH-797804 treatment after OGD. The 

increase in aged astrocytes after 20h of recovery was 

fully abolished after pharmacological p38α inhibition 

(Figure 4K). 

 

DISCUSSION 
 

In the central nervous system (CNS), astrocytes are the 

central cell type to support neuronal survival under 

pathological circumstances [34]. Indeed, as astrocytes, 

but not neurons, shift in gene expression patterns with 

aging, it has been proposed that they may be a better 

indicator of age in the brain than neurons [35]. Our in 
vitro results showed that aging increases the reactivity 

and inflammatory response of primary rat astrocytes. 

Previous reports show that astrocytes show age-

dependent inflammatory responses [36] and increased 

GFAP expression [37, 38], which has been characterized 

as a hallmark of brain aging [5]. Moreover, our results 

indicate that the anti-oxidant and cellular energy system 

of in vitro aged astrocytes is decreased compared to the 

young ones, hence facilitating increased cell death. A 

proper cellular anti-oxidative capacity is necessary for 

oxidative stress protection, and a decline in ATP levels 

may contribute to neurodegeneration as it is related to 

regulating neuronal activity through synaptic inhibition 

[39]. The challenge through sublethal energy failure in 

our in vitro experiments may therefore lead or contribute 

to exhaustion of the anti-oxidant system. Furthermore, 

we found decreased Gs and Scl1a3 expression in aged 

astrocytes, hence pointing towards perturbed glutamate 

homeostasis as a potential trigger of cellular toxicity [29]. 

As a consequence, it can be assumed that protection of 

neurons via the anti-oxidant system of astrocytes is 

impaired by aging [40]. As a nutritive factor, IGF1 is 

considered to be essential for neuronal survival and 

development [41]. Moreover, previous studies have 

found that a lack of IGF1 reduces brain size with a 

cellular loss in the neuronal population and myelination 

deficits [42], but little attention has been paid to 

astrocytes as a source of IGF1, specifically. 

Consequently, the Igf1 reduction found in our aged 

astrocytes may represent an injurious event to brain cells 

that were previously hit by energy failure. Altogether, 

the complex changes including inflammatory response, 

astrogliosis, energy failure, decreased anti-oxidative 

capacity and elevated caspase-3 activity may contribute 

to an increased “in vitro” aged astrocyte cell death. 

 

As mentioned, aging alone increases astroglial reactivity 

[43], which is an observation also supported by our 

results, but this glial response is exaggerated following 

ischemia-stroke in the brain, hence accelerating glial scar 

formation [4]. We found that responses of energy failure 

and inflammation were exaggerated following 4 hours of 

OGD in our in vitro aged astrocytes compared to the 

young astrocytes, and that these alterations were 

maintained during the phase of recovery. However, 

although aged astrocytes present decreased anti-oxidative 

capacity, after OGD we observed an upregulation of anti-

oxidant system defense, growth factor release and 

glutamate uptake. Cellular defense in the brain involve 

endogenous protective enzymes such as SOD and 

glutathione (GSH), which are produced by astrocytes to 

protect neurons against oxidative stress. In previous 

studies it has been demonstrated that the cellular anti-

oxidant system and GSH release is upregulated in 

astrocytes as a response to pathological circumstances, 

possibly as a defense mechanism to prevent cell 

apoptosis [44]. Hence, the increase of cellular anti-

oxidant defense system, Gs and Slc1a3 expression and 

growth factor expression may represent a cellular attempt 

of compensation in aged astrocytes in response to 

astrogliosis, inflammation and CASPASE 3 activation 

induced by OGD. 

 

Our results show enhanced p38MAPK activity with 

aging in astrocytes, both in astrocyte cultures in vitro 

and in the cortex and dentate gyrus (hippocampus) in 

vivo, which complement previous results obtained in 

neurogenic niches (SVZ) in vivo and in neurospheres 

derived from aged mice [45]. Elevated p38MAPK 

activity has also been identified in neurodegenerative 
disease and in response to brain injury such as  

brain stroke [46], and its pharmacological inhibition 

ameliorated symptoms of neurodegenerative diseases 
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and was protective against ischemia [21, 25]. We show 

that Mapk14 expression was increased in aged 

astrocytes directly after OGD and that pharmacological 

p38α inhibition in aged astrocytes after OGD restored 

Mapk14 expression back to control levels. Moreover, 

the P38MAPK pathway has been described as 

inflammatory mediator in the CNS [33]. In our results, 

the inactivation of p38α in aged astrocyte cultures 

treated by PH-797804 attenuated astroglial activation 

and inflammation that occur after OGD. We also found 

that PH-797804 treatment in aged astrocytes can 

prevent OGD-induced changes of growth factors igf and 

ngf, of the free radical clearance factors sod2 and gclc, 

and of the glutamate metabolism system gs that were 

increased after OGD. The impaired production of these 

factors has previously been reported to alter the 

supportive properties of astrocyte [13, 47]. 

 

In summary, our experiments with OGD highlight an 

impairment of various astroglial functions that are 

important for the support of neuronal development and 

for protection of the brain both in young and aged 

astrocytes cell culture. Inhibition of p38α in aged in 

vitro astrocytes may provide effective protection 

reducing astrogliosis and inflammation that occurs in 

aged astrocyte after OGD event. 
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