
 

www.aging-us.com 8944 AGING 

INTRODUCTION 
 

Myocardial infarction (MI) is an acute cardiovascular 

disease with high mortality and disability [1]. On the 

basis of atherosclerotic stenosis of coronary arteries, MI 

is an acute myocardial necrosis caused by plaque rupture 
and sudden obstruction of the coronary artery lumen by 

some stimuli, resulting in continuous and severe 

hypoxia-ischemia of myocardial tissues (the innervation 

of the infarcted vessel). After the occurrence of MI, 

apoptotic cascade will be activated and cardiomyocytes 

will become necrotic, due to persistent hypoxia and ATP 

deficiency in cardiomyocytes. Necrotic cardiomyocytes 

activate the immune system, subsequently leading to the 

excessive production of inflammatory response [2]. 

Therefore, it is important to explore the molecular 

mechanisms of MI pathogenesis and identify diagnostic 

and prognostic biomarkers and therapeutic targets. 
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ABSTRACT 
 

Currently, the role of lncRNA in myocardial infarction (MI) is poorly understood. 17 co-expression modules 
were determined, specifically, the greenyellow, saddlebrown, grey60, royalblue, lightgreen, white, and pink 
modules were specifically expressed in the acute phase of MI, and brown, darkred, and royalblue, while 
greenyellow modules were specifically expressed in MI compared with CAD. 12 time-dependent of 
lncRNA/mRNA clusters with consistent expression trends were also identified. MI-associated modules were 
mainly enriched to immune, cell cycle, and metabolic pathways. We further obtained a network of 1816 
lncRNA-mRNAs with higher expression correlations among these lncRNAs by analyzing the topological 
properties of the network. Herein, lncRNA RP11-847H18.2 and KLHL28, SPRTN, and EPM2AIP1 were determined 
as gene markers specifically expressed in MI, and they demonstrated a high predictive performance for MI 
diagnosis and prognosis. Three drugs, namely, Calcium citrate, Calcium Phosphate, and Calcium phosphate 
dihydrate, were identified as potential precursors of MI. Finally, gene and lncRNA diagnostic models were 
developed based on these genes and lncRNAs, with their AUCs averaged above 0.89 in both training and 
validation datasets. The findings of this study improve the diagnosis and prognosis of MI and personalized 
treatment of MI. 
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Long noncoding RNAs (lncRNAs) are a class of RNA 

molecules with a transcript length of ≥200nt. LncRNAs 

do not encode proteins, but regulate gene expression at 

epigenetic, transcriptional and post-transcriptional 

levels through gene imprinting, chromatin 

reconstruction, regulation of cell cycle, variable shear, 

and mRNA regulation, participating in various 

functional processes such as cell metabolism, growth, 

differentiation, apoptosis and death [3, 4]. LncRNAs 

play important regulatory roles in the pathological 

processes of AMI, including in cardiomyocyte apop-

tosis, inflammatory response, angiogenesis, fibrosis 

repair and cardiac remodeling. Studies proved that some 

differentially expressed lncRNAs, for instance, aHIF 

[5], ANRIL [5], KCNQ10T1 [6], MIAT [7], ZFAS1 [8] 

and CDR1AS [9], have critical functions in acute 

myocardial infarction (AMI) and demonstrated 

potentials of serving as myocardial infarction-specific 

biomarkers or key lncRNAs in the development 

regulation of AMI. Moreover, Liu Cuiyun et al [10] 

found that lncRNA CAIF inhibits myocardial autophagy 

and myocardial infarction by blocking the expression of 

p53-regulated myocardin. These previous findings 

indicated that lncRNAs have key functions in AMI, but 

the mechanism of lncRNA regulation in myocardial 

infarction is far from clear. Therefore, to investigate the 

specific role of lncRNAs in myocardial infarction and 

the related regulatory mechanisms are of high 

significance. 

 

In this study, 12 time-dependent lncRNA/mRNA 

clusters with consistent expression trends and 1816 

lncRNA-mRNA networks were obtained from a co-

expression network of mRNA and lncRNA established. 

We also determined specific expressions of 

lncrNARp11-847H18.2 and three genes (KLHL28, 

SPRTN, EPM2AIP1), which showed strong potential  

in MI diagnosis. Finally, a lncRNA/mRNAs-based 

diagnosis model was constructed with the correspond-

ing lncRNA and mRNAs. 

 

RESULTS 
 

Identification of modules for different stages of 

specific expression 

 

The flow chart of our execution is shown in Figure 1. 

The "WGCNA" package in R was used to group 

Gene/lncRNA with similar expression patterns into 

modules by average-linkage hierarchical clustering. In 

this study, with β = 16 (scale-free R^2= 0.87) power 

serving as the soft threshold to ensure a scale-free 

network (Figure 2A, 2B). A total of 17 modules were 

identified (Figure 2C). The correlation between each 

module and feature was calculated respectively. We 

found that the acute phase (MI_S1) at four time points 

was highly correlated with multiple modules expressed 

in MI_S1 (p <1e-4), which were Greenyellow, 

SaddleBrown, Grey60, RoyalBlue, Lightgreen, White, 

and Pink (Figure 2D). However, the correlation between 

the other three time points and each module was weak, 

indicating that the greatest transcriptome changes in MI 

occurred at the acute phase. Compared with the four 

time points, CAD also showed a high correlation with 

several modules (p <1e-4), such as Brown, Darkred, 

Royalblue, Greenyellow, etc., In addition, we obtained 

data sets GSE57338 for Failing Hearts and controls 

from the GEO database, and calculated the relationship 

between eigenvectors of each module and healthy 

controls using the same method (Figure 2C), The results 

showed that the healthy control samples were highly 

correlated with multiple modules, similar to MI_S1, but 

opposite to CAD, suggesting that multiple transcrip-

tome changes take place in the process of MI compared 

with the normal control group. 

 

Functional dimensions of MI related modules and 

expressed timing analysis 

 

KEGG functional enrichment analysis was performed 

for a better understanding of the functional implications 

of the nine MI-related modules. When FDR<0.01, genes 

were enriched to a total of 56 modules (Figure 3A), but 

the pathways these modules enriched to showed less 

intersection, suggesting that genes in different co-

expressed modules may be involved in different 

biological processes in time or space. We also observed 

that the genes in these modules were not only related to 

multiple viral infection pathways such as Human T-cell 

virus 1 infection, Pathogenic Escherichia coli infection, 

Yersinia infection, and Human Syractomiae infection, 

but also to Th1 and Th2 cell differentiation, Th17 cell 

differentiation, T cell receptor signaling pathway, IL-17 

signaling pathway and some other immune pathways. In 

addition, these genes were enriched into cell cycle, 

basal transcription factors, RNA transport, cellular 

senescence, apoptosis and other cell proliferation and 

apoptosis pathways. These results suggested that MI is a 

complex and systematic process involving cell 

proliferation, apoptosis, and immunity. Considering that 

MI_S2\S3\S4 did not show specific relation to co-

expression module, we analyzed the patterns of gene 

and lncRNA expressions at different time points based 

on time series, and determined 12 expression patterns 

(Figure 3B). For example, Cluster 1 showed increased 

expression at MI_S2 and remained at a high level since 

then, while Cluster 11 demonstrated an opposite pattern 

to that of Cluster 1. Moreover, the expression of Cluster 

3 increased continuously with time, while that of 
Cluster10 was the opposite. The distribution statistics of 

genes and lncRNAs in each Cluster (Supplementary 

Figure 1A) showed that the proportion of lncRNAs in 
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Figure 1. Workflow diagram. 

 

 
 

Figure 2. Construction of weighted gene co-expression network and identification of disease-related modules. (A, B) 

Determination of soft-thresholding power in the weighted gene co-expression network analysis (WGCNA). (A) Analysis of the scale-free fit 
index for various soft-thresholding powers (β). (B) Analysis of the mean connectivity for various soft-thresholding powers. (C) Dendrogram of 
all differentially expressed genes/lncRNAs clustered based on a dissimilarity measure (1-TOM). (D) Correlation distribution of feature vectors 
of each module with four time points and CAD. 
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Figure 3. Functional enrichment analysis of MI related modules and timing analysis of MI gene expression. (A) Heatmap of 9 

modules enriched to KEGG Pathway, color indicates log10 (FDR), NA indicates unenriched. (B) Time series analysis of 12 expression patterns 
of gene expression at different time points. (C) Sustained expression of elevated gene sets enriched to the KEGG pathway at different time 
points. (D) The KEGG pathway was enriched for a set of genes with decreased expression at different time points. The different colors 
indicate enrichment significance and the dot size indicates the number of enriched genes. 



 

www.aging-us.com 8948 AGING 

all the expression patterns were low, which was 

consistent with the background distribution 

characteristics dominated by PCG. These expression 

patterns indicated that the transcriptome was changing 

continuously at different time points in MI, and these 

changes may lead to different disease progression. For 

KEGG pathway enrichment analysis, we selected the 

gene set showing continuously increased expression 

(Cluster 4) and the one with continuously decreased 

expression (Cluster 10). We observed that Cluster 4 was 

mainly enriched to the Wnt Signaling pathway, FoxO 

signaling pathway, T cell signaling pathway, and other 

signaling pathways (Figure 3C), and Cluster10 was 

mainly enriched in Sphingolipid metabolism, 

glutathione metabolism, cholesterol metabolism, carbon 

metabolism and other metabolic pathways (Figure 3D). 

This suggested that the immune-related pathways of MI 

patients are gradually enhanced, by contrast, the carbon 

metabolism-related pathways are weakened over time. 

 

Identification of MI-associated lncRNA-mRNA 

regulatory networks 

 

We examined the distribution of genes and lncRNAs in 

MI-associated modules and two continuously changing 

expression patterns, and observed a significantly low 

proportion of lncRNAs in seven of these modules (FDR 

< 0.05), suggesting that lncRNAs may be indirectly 

involved in MI development through multiple regulatory 

pathways. Based on this, a new computational method 

was developed to identify the lncRNA-mRNA 

interaction network in MI. This was achieved by 

integrating paired expression profiles of genes/lncRNAs 

from disease-related co-expression modules into gene 

expression datasets according to the regulatory inter-

actions among mRNAs, lncRNAs and miRNAs. Here 

we determined a network of 5320 lncRNA-mRNA 

interactions incorporating a total of 510 mRNAs and 154 

lncRNAs (Table 1). The mRNAs and lncRNAs in the 

network showed significantly different degrees of 

distributions, with the average degree of lncRNAs 

greater than that of mRNA, suggesting that lncRNAs are 

more likely to be the hub nodes in the network (Figure 

4A). The distribution of mRNA-lncRNA correlations 

was further analyzed, and the results demonstrated that 

there was a significant correlation between the 

distribution of between lncRNAs and mRNAs (Figure 

4B). This suggested that the association between 

lncRNAs and mRNAs may have stronger interactions in 

MI than other gene correlations. Therefore, the 

intersection of different mRNA-lncRNA correlations 

were acted as the threshold, we further identified 

lncRNAs/mRNAs with correlations higher than 0.3 in 
the interaction network as MI-associated lncRNA-

mRNAs, resulting in a network of 1816 lncRNA-mRNA 

interactions incorporating 417 genes and 112 lncRNAs 

(Figure 4C). Further analysis detected several nodes with 

the highest and lowest degrees of distribution consistent 

with the biological network characteristics (Figure 4D). 

In addition, the network showed a median distribution 

(Figure 4E), the same near-centrality distribution (Figure 

4F), and eigenvector centrality distribution (Figure 4G). 

All these results indicated that MI-associated lncRNA-

mRNA is a canonical biological regulatory network 

centered on lncRNAs. 

 

Functional enrichment analysis of MI-associated 

lncRNAs-mRNAs network 

 

To observe the function of the MI-associated lncRNA-

mRNA network, the genes in the network were 

subjected to functional enrichment analysis of GO and 

KEGG pathway. The analytical data demonstrated that 

these genes were mainly enriched to autophagy, insulin 

resistance and some other pathways (Figure 5A). 

Previous studies found that autophagy in blood 

cardiomyocytes can provide the energy necessary for 

cell survival by removing disordered organelles or 

senescent proteins [11]. For example, NR4A2 knock-

down exacerbates cardiomyocyte apoptosis, and 

upregulation of NR4A2 is regarded as an adaptive 

response to ischemia-induced cardiomyocyte apoptosis 

[12]. Insulin resistance is considered as a key risk factor 

for adverse metabolic and cardiovascular diseases [13]. 

In the heart, insulin receptor substrates (IRS) are key 

regulators of the insulin signaling pathway. Under the 

activation of insulin receptor (INSR), IRS promotes 

glucose transporter protein 4 (SLC2A4, also known as 

GLUT4) translocation and initiates cell survival 

pathways in cardiomyocytes [14], in addition, reduced 

insulin sensitivity in ischemic myocardium contributes 

to defective IRS1 function [15, 16]. These findings 

demonstrated that the lncRNA-mRNA network may be 

involved in the development of MI through regulating 

autophagy and insulin resistance. Moreover, these genes 

were also found to be enriched in a variety of metabolic 

and decomposition processes (Figure 5B). The 

metabolic process of degrading damaged proteins or 

organelles is the main mechanism of autophagy. The 

enrichment results of cell components showed that these 

genes were enriched into a variety of complexes related 

to transcriptional regulation and histone modification 

(Figure 5C). In addition, molecular functions were 

mainly enriched in multiple RNA binding, nucleosome 

binding and modification−dependent protein binding 

(Figure 5D), suggesting that these genes are also 

involved in chromatin modification and regulation. 

Epigenetic mechanism plays a key role in the regulation 

of mammalian gene expression. Differential histone 
modification represents a typical epigenetic mechanism, 

meaning that epigenetic modification also participates 

in the occurrence and development of MI. 
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Table 1. Genes and lncRNAs in MI-related modules or expression patterns. 

Tag LNC PCG p.value FDR 

brown 31 1211 7.40E-16 6.66E-15 

darkred 57 1974 2.69E-22 2.69E-21 

greenyellow 5 248 2.31E-05 0.000162 

grey60 7 104 0.268219 0.536437 

lightgreen 4 145 0.003388 0.016941 

pink 4 154 0.00197 0.011819 

royalblue 0 76 NA NA 

saddlebrown 4 41 0.563794 0.563794 

white 1 56 0.011879 0.047516 

Cluster4 86 1264 0.04585 0.13755 

Cluster10 46 1170 1.02E-08 8.14E-08 

 

MI diagnostic and prognostic biomarkers were 

identified by lncRNA-mRNA network mining 

 

In order to examine the diagnostic performance of  

the lncRNAs and mRNAs in the network, linear 

discriminant analysis was applied to classify and predict 

each lncRNA, mRNA, and lncRNA-mRNA pair in the 

network, respectively, and their prediction accuracy 

distribution was calculated accordingly (Figure 6A). We 

observed that lncRNA, mRNA and lncRNA-mRNA 

presented similar classification accuracy, with an 

average accuracy of more than 0.6, which verified the 

diagnostic performance of the nodes in the lncRNA-

mRNA network. In addition, we also investigated 

whether early changes in gene expression can also 

predict disease prognosis and distinguish patients with 

HF after MI from those without HF. Here, the 

classification/prediction accuracy distribution of each 

lncRNA and mRNA as well as lncRNA-mRNA pair in 

the network were evaluated in the same way (Figure 

6B), and their average prediction accuracy was found to 

be greater than 0.55. Noticeably, the prediction 

accuracy of lncRNA-mRNA was significantly higher 

than that of lncRNA and mRNA alone. We also 

observed that the classification accuracy distribution of 

lncRNA-mRNA presented four peaks, indicating the 

existence of a variety of different lncRNA-mRNA 

combinations. Therefore, lncRNA-mRNA combinations 

in the peak with the highest accuracy were selected as 

the final candidate markers. Based on this, lncRNA-

mRNA pairs with a diagnostic and prognostic accuracy 

greater than 0.7 were selected as candidate markers. In 

addition, we also found that nodes with higher network 

degree, intermediate number centrality, near centrality 

and feature vector centrality in biological networks 

were more likely to be the core nodes in the network 

regulation process. Thus, the nodes with the top 10% of 

network degree, medium centrality, near centrality, and 

eigenvector centrality were determined as the hub nodes 

of the network. The intersection of them and candidate 

markers contained a total of one lncRNA (RP11-

847H18.2) and three genes (KLHL28, SPRTN, and 

EPM2AIP1) (Figure 6C). These four molecules 

combined showed a high classification performance 

with high network importance, and can therefore be 

used as diagnostic and prognostic markers of MI. In 

addition, we also analyzed the relationship between the 

three genes and drugs, obtained the protein interaction 

network composed of drug target genes and our three 

genes through STRING database, constructed the drug-

target gene-disease-specific gene interaction network, 

and determined the shortest distribution path of drugs to 

these three disease-specific genes in the network 

(Figure 6D). We observed that the average shortest path 

of most drugs was 10, while that of three drugs was 

only 4, suggesting that these three drugs may be 

effective for MI treatment (Figure 6E). 

 

Construction of the MI diagnostic model and testing 

of the model 

 

GSE59867 was considered as a Train dataset, to balance 

the proportion of control and disease groups, we 

randomly selected 46 samples from 73 patients in 

MI_S1 from the control group to form a cohort with 46 

samples as a training set (TrainSet), and another 46 

samples were selected from MI_S2, MI_S3, and MI_S4 

to form a cohort with the control group, respectively. 

The three datasets used as internal validation sets were 

TestSet1, TestSet2, and TestSet3. Similarly, GSE62646 

served as an external validation set, and equal 

proportions of MI samples corresponding to the three 

follow-up time points in the GSE62646 dataset and 14 

control samples were gathered together to form three 

validation datasets, namely, ValidationSet1, 

ValidationSet2, and ValidationSet3. In the training set, 

one lncRNA and three genes served as features, and 

their expression profiles were obtained to construct a 
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support vector machine (SVM) classification model, 

which was tested by a tenfold cross-validation method. 

The AUC of the training set was 0.97 with 90% 

classification accuracy, 0.89 with 83% classification 

accuracy in TestSet1, 0.85 with 77% classification 

accuracy in TestSet2, and 0.85 with 74% classification 

accuracy in TestSet3 (Figure 7A, 7B). We further 

applied the model to the external validation set 

GSE62646, and obtained an AUC of 0.91 and 

classification accuracy of 79% in ValidationSet1, an 

AUC of 0.94 and classification accuracy of 79% in 

ValidationSet2, and an AUC of 0.86 and classification 

accuracy of 75% in ValidationSet3 (Figure 7C, 7D). 

These results indicated that the diagnostic and 

 

 
 

Figure 4. MI-associated LncRNA-mRNA regulatory networks. (A) Distribution degree of lncRNA and mRNA nodes in lncRNA-mRNA 

interaction networks; (B) Distribution of lncRNA and mRNA correlations in LncRNA-mRNA regulatory networks and lncRNA-mRNA 
correlations in non-lncRNA-mRNA networks; (C) MI-associated lncRNA-mRNA regulatory networks. (D) Distribution degree of the network. (E) 
Median centrality distribution of the network. (F) The near-central distribution of the network. (G) The eigenvector centrality distribution of 
the network. 
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predictive model constructed in this study can 

effectively distinguish MI patients from CAD controls, 

and that the one lncRNA and three genes can be used as 

reliable biomarkers for MI diagnosis. 

 

DISCUSSION 
 

The aim of this study was to identify potential 

diagnostic and prognostic biomarkers from the GEO 

database for myocardial infarction (MI). In this study, a 

candidate lncRNA and three mRNAs as potential 

biomarkers of MI after performing an exhaustive 

literature review. Our linear discriminant analysis 

showed that the lncRNA-mRNA pair exhibited a better 

performance in predicting prognosis than using 

individual an lncRNA or mRNA. Our target prediction 

and pathway analysis found that the lncRNA-mRNA 

network typically regulated autophagy and insulin 

resistance pathways. The results of drug-target gene 

interaction data proved that three drugs (Calcium 

phosphate, Calcium citrate and Calcium phosphate 

dihydrate) had strong potentials in protecting patients 

against MI. Furthermore, we selected the largest 

molecular weight drug (DB11093: Calcium citrate) and 

evaluated the relationship with the three core genes in 

the network (KLHL28, SPRTN, EPM2AIP1) by 

molecular docking (Supplementary Figure 1B), the 

docking results with SPRTN, KLHL28 and 

EPM2AIP1L showed that the docking scores of the 

ligand with three receptor proteins were -5.4 kcal/mol, -

5.8 kcal/mol and -5.0 kcal/mol, respectively. The 

docking scores of this ligand with the receptor all 

reached 5.0 kcal/mol at a small molecular weight 

loudness, indicating that the molecule has some binding 

affinity to the three proteins. In addition, DB11093 

binds tightly to the zinc ion in the SPRTN protein in the 

form of a three-foot chelate. The compound can also be 

found to interact with VAL381, ALA427 and PHE324 

in the protein by hydrogen bonding when DB11093 

binds to KLHL28 protein. And when DB11093 binds to 

EPM2AIP1L protein, it can also form hydrogen 

bonding interactions with ARG343, ASN334 and 

 

 
 

Figure 5. Functional enrichment analysis of MI-related lncRNA-mRNA networks. (A) The 20 most significant KEGG pathways 
enriched by MI-related lncRNA-mRNA network. (B) The 20 most significant GO biological processes enriched by MI related lncRNA-mRNA 
network. (C) The 20 most significant GO biological processes enriched by the MI-related lncRNA-mRNA network. (D) The 20 most significant 
GO molecular functions enriched by the MI-related lncRNA-mRNA network. Node size in the figure represents the number of genes enriched 
in the pathway, and color represents the significance enriched. 
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LYS309 with supporting effects. The above results 

suggested that DB11093 has some affinity with SPRTN, 

KLHL28 and EPM2AIP1L and may become an 

inhibitor of the three targets. To the best of our 

knowledge, this is the first study that discovers a unique 

lncRNA-mRNA signature for MI detection and its 

pathogenic mechanism. 

 

Our lncRNA-mRNA displayed excellent performance 

in MI diagnosis and prognosis. SPRTN gene has 

recently been found to be functional in translating DNA 

synthesis and preventing mutations [17, 18]. In vivo and 

in vitro characterization of identified mutations revealed 

that SPRTN plays an important role in the prevention of 

DNA replication stress during general DNA replication 

and in the regulation of replication-associated G2/M-

checkpoints [19]. Mutations of SPRTN could lead to the 

early onset of hepatocellular carcinoma and genomic 

instability [19]. Moreover, the absence of EPM2AIP1 in 

mice impairs the allosteric activation of GS by glucose 

6-phosphate, reduces liver glycogen synthesis, increases 

liver fat, and promotes liver insulin resistance [20]. 

LncRNA RP11-847H18.2 and mRNA KLHL28 has not 

been previously reported. Compared with using 

lncRNA and mRNA alone in diagnosing and predicting 

MI prognosis, the lncRNA-mRNA pair developed in 

this study showed a higher discriminatory power, 

demonstrating a highly effectiveness of serving as a 

diagnostic and prognostic tool during MI detection. 

 

Our functional enrichment analysis study revealed that 

the lncRNA-mRNA network is associated with auto-

phagy and insulin resistance. Previous reports detected a 

sharp increase in autophagy during the reperfusion 

phase of cardiac ischemia [21, 22]. Kanamori et al. also 

confirmed that autophagy activity increases in the 

subacute and chronic phases of heart ischemia in MI 

mouse models [23, 24]. Noticeably, autophagy activity 

plays an even more critical role in the margin of 

infarction than in remote areas of the myocardium [25]. 

Insulin resistance is considered to be an adverse 

metabolic and a key risk factor for developing 

cardiovascular diseases [13], and insulin receptor 

substrates (IRS) are key modulators of insulin signal 

transduction pathways in the heart. After the activation 

of insulin receptor (INSR), IRS will promote the 

translocation of glucose transporter 4 (SLC2A4, also 

known as GLUT4) and initiates the cell survival 

 

 
 

Figure 6. LncRNA-mRNA network mining was used to identify MI diagnostic and prognostic biomarkers. (A) The distribution of 
diagnostic accuracy of each lncRNA, mRNA, lncRNA-mRNA pair in the network for MI; (B) The distribution of prognostic of each lncRNA, 
mRNA, lncRNA-mRNA pair in the network for MI; (C) The intersection of candidate RNA molecules and nodes with network degree, medium 
centrality, near centrality and eigenvector centrality of top 10% in the network; (D) Mean shortest path distribution of drugs to MI gene 
markers. (E) 2D structures of three potential MI drug molecules. 
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pathway of cardiomyocytes [14]. The reduced insulin 

sensitivity in ischemic myocardium contributes to 

defective IRS1 function [15, 16]. These results indicate 

that the lncRNA and mRNAs in the network developed 

by this study may be involved in the development  

of MI through regulating autophagy and insulin 

resistance. 

There are still some limitations in this study. For 

example, our sample size was relatively small for the 

evaluation of the correlation between the lncRNA-

mRNA pair and the severity of MI or long-term clinical 

results. Thus, further basic research is required to verify 

the accuracy and clinical applicability of the lncRNA-

mRNA pair in MI detection. 

 

 
 

Figure 7. Construction of the MI diagnostic model and testing of the model. (A) ROC curve of the diagnostic model for classification 
of samples in the training dataset and internal validation dataset; (B) Classification accuracy of the diagnostic model on samples in the 
training set and in the internal validation set; (C) ROC curve of the diagnostic model for classification of samples in the validation dataset; (D) 
Classification accuracy of the diagnostic model on samples in the training set and in the validation dataset. 
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CONCLUSIONS 
 

In conclusion, this study was the first to identify a 

unique gene signature (lncRNA RP11-847H18.2, 

mRNA KLHL28, SPRTN and EPM2AIP1), which 

allows an early detection of human MI. The gene 

signature specifically targets autophagy and insulin 

resistance, and may be involved in pathologies of MI. 

 

MATERIALS AND METHODS 
 

The experiment was conducted briefly as follows: data 

collection, co-expression module identification, time 

series analysis, enrichment analysis, feature selection, 

followed by classifier construction and validation. 
 

RNA expression spectrum 
 

GSE59867 expression profile data set of MI patients 

was acquired from the Gene Expression Omnibus 

(GEO) database (http://www.ncbi.nlm.nih.gov/geo/) 

[26] on the platform of Affymetrix Human Gene 1.0 ST 

Array. The dataset consisted of 456 samples, including 

111 PATIENTS with ST-segment elevation MI and 46 

patients with stable CAD without previous history of 

MI. The corresponding mRNA expressions were 

obtained from peripheral blood mononuclear cells at 

four time points, specifically on the day of admission 

(day 1, MI MI_S1), at discharge (4 to 6 days after MI, 

MI_S2), 1 months after MI (MI_S3) and 6 months after 

MI (MI_S4). The expression profiles of 73 out of 111 

patients were detected at the four time points, so their 

expression profiles and 46 CAD samples served as 

controls in this study. In addition, we also downloaded 

the expression spectrum from the same platform dataset 

GSE62646 [27]. In this dataset, a total of 98 samples 

contained 28 patients with ST-segment elevation MI 

and 14 patients with stable CAD without MI history. 

Corresponding expression profiles were obtained from 

peripheral blood mononuclear cells at the day of 

admission (day 1 of MI, MI_S1), at discharge (4-6 days 

after MI, MI_S2) and 6 months after MI (MI_S4). 
 

Probe sequences of GSE59867 and GSE62646 datasets 

were first aligned to the genome (GRCH38.p13) by chip 

reannotation to obtain probe mapping transcript IDs, 

and each transcript cluster was assigned to the Ensembl 

gene ID. Then, for transcription clusters with Ensembl 

gene ID, "LincRNA", "sense_intronic", "sense_ 

overlapping", "antisense", "processed_transcript", "3 

prime_overlapping_ncrna", "antisense_RNA", "TEC", 

and "bidirectional_promoter_lncRNA" were retained, 

but only "non_coding" cluster was considered as a 

lncRNA [28]. Finally, 1138 lncRNAs were collected 

after the removal of redundant transcripts. In addition, 

the cluster with annotation type "protein_coding" was 

retained, and was considered as coding genes, here, we 

obtained a total of 14,099 coding genes. 

 

The original data of GSE59867 and GSE62646 were 

processed by R Software package AFFy [29], and the 

expression matrix of probe was obtained by using RMA 

standardization. The probe was mapped to the gene, and 

the median value was taken as the expression value of 

the gene when multiple probes were mapped to the 

same gene. In this way, the expression matrixes of 

genes and lncRNAs were finally set up. 

 

Expression analysis of lncRNAs and mRNAs, and 

the construction of weighted co-expression network 

 

To better identify disease-related genes and lncRNAs, 

the expression profiles of lncRNAs and genes were 

combined for establishing a weighted co-expression 

module. Specifically, RNA expression data profiles of 

genes and lncRNAs were first tested to verify whether 

the samples, genes, and lncRNAs were qualified. Then, 

weighted gene co-expression network analysis 

(WGCNA) [30] package in R was applied to construct a 

scale-free co-expression network for the genes and 

lncRNAs, and the Pearson's correlation matrices and 

average linkage method were both performed for  

pair-wise testing. Then, a weighted adjacency matrix 

was constructed using a power function Amn = |Cmn|
β 

(Cmn = Pearson's correlation between gene/lncRNA m 

and gene/lncRNA n; Amn = adjacency between 

gene/lncRNA m and gene/lncRNA). β served as a soft-

thresholding parameter that emphasizes strong 

correlations between gene, lncRNAs and removes weak 

correlations. Topological overlap matrix (TOM), which 

measures the connectivity of a gene/lncRNA to the 

network, is defined by the sum of a gene adjacency with 

all other gene/lncRNAs for network gene/lncRNA 

ration. After deciding the power of β, the adjacency was 

converted into a TOM, and the corresponding 

dissimilarity (1-TOM) was calculated. Gene and 

lncRNAs with similar expression profiles were 

accordingly classified into corresponding modules, and 

average-linkage hierarchical clustering was conducted 

according to the TOM-based dissimilarity measure with 

a minimum size (gene/lncRNA group) of 30 for the 

genes/lncRNAs dendrograms. To further analyze the 

module, we calculated the dissimilarity of module Eigen 

of genes/lncRNAs, decided a cut line for module 

dendrogram and some modules were merged. 

 

Identification of disease-related co-expression 

modules and lncRNA/miRNA clusters with 

consistent expression trends during MI progression 

 

Co-expression modules eigengenes (MEs) were 

considered as the main components in the principal 

http://www.ncbi.nlm.nih.gov/geo/
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component analysis of each module, and the expression 

patterns of all the genes and lncRNAs can be 

generalized into an expression profile with a single 

characteristic RNA in a given module. Therefore, 

correlations between ME and MI features at different 

time points were computed to identify MI-related co-

expression modules. The R package "Mfuzz [31] was 

used to detect lncRNA and miRNA clusters with 

consistent expression trends during MI progression. 

 

Functional enrichment analyses 

 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway enrichment analysis 

was performed using the R package clusterProfiler [32] 

for genes to identify over-represented GO terms in three 

categories (biological processes, molecular function and 

cellular component) and KEGG pathway. For both 

analyses, p < 0 .05 was considered to denote a statistical 

significance. 

 

Regulatory interactions between miRNA-mRNAs 

and miRNA-lncRNAs 

 

A total of 416312 non-redundant miRNA-mRNA 

interactions were obtained by acquiring all the 

regulatory relationships of miRNA-mRNA from the 

miRanda [33], miRTarBase [34], TargetScan [35], and 

starBase [36] databases. By predicting the miRNA-

lncRNA interactions on the starBase [36] and miRcode 

[37] databases, 295,601 non-redundant miRNA-

lncRNA relationships were retained. 

 

Identification of MI-associated lncRNA-mRNA 

regulatory networks 

 

Based on the ceRNA hypothesis [38, 39], a candidate 

lncRNA or mRNA is determined if it satisfies all of the 

following conditions: (1) the miRNA shared by mRNA 

and lncRNA is significantly enriched (FDR<0.01 as 

determined by hypergeometric test); (2) the mRNA-

lncRNA is significantly enriched in the same disease-

associated co-expression module or in the same 

expression pattern (Cytoscope for visualization) [40]. 

Next, the topological properties of the network and the 

distribution of lncRNA-mRNA correlations in the 

network were analyzed to select lncRNA-mRNA pairs 

with correlations greater than 0.3 as candidates for MI 

correlation examination. 

 

Network construction of gene markers and drug 

targets 

 
To investigate the potential drug effects of these RNA 

markers, we identified a total of 16,196 drug-gene 

interactions from the DrugBank V5.1.7 database [41]. 

These drug target genes and RNA marker genes were 

co-mapped to the String V11.0 database (https://string-

db.org/) [3] to obtain gene interaction information for 

the construction of a drug-gene-MI marker network. 

The shortest path from each drug to MI marker gene in 

the network was calculated, and the average shortest 

path of drug to MI marker was determined as the 

treatment candidate. 

 

Construction of MI diagnostic prediction model and 

evaluation of model prediction performance 

 

As a supervised learning model of machine learning 

algorithms, support vector machine (SVM) analyzes 

data and identifies patterns. A support vector 

mechanism creates a hyperplane for classification and 

regression in high or infinite dimensional space. MI 

gene markers and lncRNA markers were used to 

construct a diagnostic prediction model based on SVM 

[42] classification for the prediction on the MI and 

CAD samples. Given a set of training samples and each 

tag belongs to two categories, a SVM training algorithm 

establishes a model and assigns new instances to one 

category or another to allow a non-probabilistic binary 

linear classification. GSE59867 was taken as Train 

dataset, in order to balance the proportion between the 

control group and the disease group, we randomly 

selected 46 samples from 73 patients in the MI_S1 and 

46 samples from the control group to form a queue as 

training set TrainSet. 46 samples were extracted from 

MI_S2, MI_S3 and MI_S4 and formed three data sets 

(TestSet1, TestSet2 and TestSet3, respectively) as the 

internal validation sets for the control group. Similarly, 

GSE62646 was regarded as the external validation set, 

and the three validation datasets (ValidationSet1, 

ValidationSet2 and ValidationSet3, respectively) were 

composed of the samples with the same proportion as 

the control group. Specifically, there were 14 control 

samples from the MI samples corresponding to the three 

follow-up time points in the GSE62646 dataset. The 

model was constructed in the training dataset, and its 

classification performance was examined by using the 

ten-fold cross-validation method. The established model 

was then used to predict the samples in the validated 

dataset. The predictive capability, predictive sensitivity 

and specificity of the model to MI were analyzed and 

evaluated by the area under the ROC curve (AUC). 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. (A) Distribution statistics of genes and lncRNAs under various co-expression patterns. (B) Diagram of interaction 
between KLHL28, SPRTN and EPM2AIP1 and the drug DB11093, Coordination bonds are shown as the black dotted line and hydrogen bonds 
as the green solid line. DB11093 is shown as a yellow stick and the color of the heteroatoms on it is shown as an element. In addition, 
hydrophobic surfaces were added in images (A, B) to better observe the binding sites of the ligand proteins. 


