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INTRODUCTION 
 
Inequalities in aging-related health and mortality  

by aspects of the neighborhood environment are 

consistently demonstrated in the literature, independent 

of individual-level socioeconomic position [1–8]. This 

has significant implications for Black individuals in  

the United States who are overrepresented in 

socioeconomically disadvantaged and resource-limited 

neighborhoods due to historical racialized segregation 

policies and limited upward residential mobility [9–11]. 

Despite the robust evidence linking neighborhoods to 
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ABSTRACT 
 
Living in adverse neighborhood environments has been linked to risk of aging-related diseases and mortality; 
however, the biological mechanisms explaining this observation remain poorly understood. DNA methylation 
(DNAm), a proposed mechanism and biomarker of biological aging responsive to environmental stressors, 
offers promising insight into potential molecular pathways. We examined associations between three 
neighborhood social environment measures (poverty, quality, and social cohesion) and three epigenetic clocks 
(Horvath, Hannum, and PhenoAge) using data from the Detroit Neighborhood Health Study (n=158). Using 
linear regression models, we evaluated associations in the total sample and stratified by sex and social 
cohesion. Neighborhood quality was associated with accelerated DNAm aging for Horvath age acceleration (β = 
1.8; 95% CI: 0.4, 3.1), Hannum age acceleration (β = 1.7; 95% CI: 0.4, 3.0), and PhenoAge acceleration (β = 2.1; 
95% CI: 0.4, 3.8). In models stratified on social cohesion, associations of neighborhood poverty and quality with 
accelerated DNAm aging remained elevated for residents living in neighborhoods with lower social cohesion, 
but were null for those living in neighborhoods with higher social cohesion. Our study suggests that living in 
adverse neighborhood environments can speed up epigenetic aging, while positive neighborhood attributes 
may buffer effects. 
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health and mortality, less is known about the underlying 

biological mechanisms that may explain how the 

neighborhood environment becomes physiologically 

embodied to influence longevity. 

 

Individuals living in disadvantaged neighborhoods are 

more likely exposed to chronic stressors, including 

discrimination, crime, and despair, and elevated  

levels of stress [12, 13]. Chronic elevated stress can 

detrimentally affect on multiple body systems, including 

inflammatory, cardiovascular, and neuroendocrine.  

This cumulative biological wear and tear, or aging, is 

widely known as allostatic load [14]. Allostatic load  

is a measure of the biological aging process and  

several studies have reported associations with adverse 

neighborhood environments [15, 16]. Emerging 

evidence also suggests that living in adverse 

neighborhood environments may be linked to biological 

aging at the cellular- and molecular-levels [17–24]. 

Epigenetic mechanisms, specifically DNA methylation 

(DNAm), offer insights into possible molecular 

pathways. DNAm regulates gene expression without 

altering the underlying DNA sequence, is associated 

with health outcomes and mortality, and responsive to 

exogenous factors, including area-level environmental 

exposures [20, 21, 25–27]. Several measures of DNAm 

aging, also known as “epigenetic clocks,” have been 

developed using DNA microarray technology and 

statistical algorithms to identify alterations in DNAm 

that are highly correlated with chronological age [28–

30]. Recently, Levine et al., developed a DNAm aging 

biomarker to better estimate aging as related to clinical 

phenotypes of chronic disease [30]. Accelerated DNAm 

aging, defined as instances where DNAm age is greater 

than chronological age, has been associated with 

adverse physical and mental health outcomes and all-

cause mortality [31]. Taken together, it is possible that 

molecular biomarkers, such as DNAm, are useful early 

indicators of neighborhood quality-related health and 

aging effects. 

 

Living in areas characterized by exposure to 

disadvantage [23, 27, 32], violence and crime [33], and 

air pollution [34] have been shown to accelerate 

DNAm aging. In studies of neighborhood environment 

and DNAm aging, neighborhood environment is  

most often assessed using administrative data sources 

(i.e. U.S. Census Bureau’s American Community 

Survey) and boundaries (i.e. census tract). However,  

an individual’s perception of their neighborhood 

environment may also capture salient experiences of 

the neighborhood that impact molecular mechanisms 

[21]. Positive aspects of the neighborhood, such as 
perception of neighborhood social cohesion, may act to 

buffer the effects of an adverse neighborhood 

environment on DNAm aging, as found in studies 

relating neighborhoods to health [35–38]. Accordingly, 

our study sought to investigate both the independent 

and joint impacts of neighborhood social environment 

and cohesion on three measures of DNAm aging—

Horvath’s epigenetic clock, Hannum’s epigenetic 

clock, and Levine’s PhenoAge— among a sample of 

predominately Black adults living in Detroit, MI [28–

30]. Given previous work suggesting aging biomarkers 

differ by sex and with respect to area-level 

environmental characteristics [17, 34, 39], we 

investigated associations stratified by sex, as well as in 

the full sample. 

 

RESULTS 
 

Description of study sample 

 

Chronological age was highly correlated with Horvath’s 

clock (Pearson r = 0.81), Hannum’s clock (Pearson r = 

0.84), and PhenoAge (Pearson r = 0.80; Supplementary 

Figure 1). Selected baseline characteristics for the 158 

study participants included in this analysis are shown in 

Table 1. Overall, the study sample comprised primarily 

of Black (87%) and women (61%) participants. 

Participants were long-term residents of their 

neighborhoods (mean = 18.2 ± 16.5 years). The mean 

proportion of residents living below the federal poverty 

level was 38.1% ± 9.3%, while the mean social 

cohesion score was 8.1 (SD = 2.1). On average, men 

were 4.5 years younger than women (men: 50.2 ± 14.5 

years; women: 54.7 ± 12.8 years). For both men and 

women, DNAm age was higher for Horvath’s clock 

(men: 58.6 ± 11.2 years; women: 62.1 ± 11.2 years) and 

Hannum’s clock (men: 56.8 ± 12.2; women: 59.8 ± 10.6 

years) and lower for PhenoAge clock (men: 47.2 ± 13.9; 

women: 53.3 ± 13.2 years) than chronological age. 

 

Neighborhood poverty and DNAm age 

 

We observed evidence to suggest neighborhood poverty 

accelerated DNAm aging that was primarily driven by 

the association among women (Figure 1A). After 

adjusting for factors included in the full model, the 

pattern of association among women signaled that 

living in neighborhoods with higher poverty was 

associated with PhenoAge acceleration (β = 1.4; 95% 

CI: -0.4, 3.3), which was not seen among men (β = -0.3; 

95% CI: -2.2, 1.5). However, the confidence intervals 

for both women and men included the null. 

(Supplementary Table 3). 

 

Objective neighborhood observations (PCs) and 

DNAm age 

 

To reduce the number of tests conducted on our limited 

sample size, we summarized the 19 observed indicators 
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Table 1. Selected sociodemographic and lifestyle characteristics of the 158 participants included in the 
study (Detroit Neighborhood Health Study; DNHS). 

 
Overall 

(n=158) 

Women 

(n=96) 

Men 

(n=62) 

Chronological age in years, mean ± SD 54.0 ± 13.6 54.7 ± 12.8 50.2 ± 14.5 

Race, N (%)    

  Black 138 (87) 82 (85) 56 (90) 

  Non-Black 20 (12.7) 14 (14.6) 6 (9.7) 

Education, N (%)    

  ≤High school 81 (51) 40 (42) 41 (66) 

  >High school 77 (48.7) 56 (58.3) 21 (33.9) 

Employment status, N (%)    

  Unemployed 109 (69.4) 65 (67.7) 44 (72.1) 

  Employed 48 (31) 31 (32) 17 (27) 

Lifetime smoking status    

  Never smoker 40 (25.3) 28 (29.2) 12 (19.4) 

  Ever smoker 118 (75) 68 (71) 50 (81) 

Lifetime alcohol intake, N (%)    

  Never drinker 31 (19.6) 23 (24.0) 8 (12.9) 

  Ever drinker 127 (80) 73 (76) 54 (87) 

Years lived in current neighborhood, mean ± SD  18.2 ± 16.5 18.2 ± 16.4 18.2 ± 16.9 

Neighborhood poverty, mean ± SD  38.1 ± 9.3 37.8 ± 9.9 37.1 ± 8.6 

Neighborhood social cohesion score, mean ± SD  8.1 ± 2.1 8.2 ± 2.2 8.1 ± 2.1 

Horvath DNA methylation age, mean ± SD  60.7 ± 11.5 62.1 ± 11.2 58.6 ± 11.2 

Hannum DNA methylation age, mean ± SD 58.6 ± 11.3 59.8 ± 10.6 56.8 ± 12.2 

Levine’s PhenoAge, mean ± SD  50.9 ± 13.8 53.3 ± 13.2 47.2 ± 13.9 

 

of neighborhood quality using principal components 

analysis (PCA). Of the eight principal components 

(PCs) retained, only PC7 was associated with 

accelerated DNAm aging across each of the three 

measures of epigenetic aging (Supplementary Table 4). 

Among the total sample, PC7 was associated with 

accelerated DNAm aging for Horvath age acceleration 

(β = 1.8; 95% CI: 0.4, 3.1), Hannum age acceleration  

(β = 1.7; 95% CI: 0.4, 3.0), and PhenoAge acceleration 

(β = 2.1; 95% CI: 0.4, 3.8) (Figure 1B). The top positive 

loadings for PC7 were factors characterized by the 

presence of abandoned cars and people on the street 

(Supplementary Table 2). Among women, we observed 

PhenoAge acceleration in response to living in a 

 

 
 

Figure 1. (A–C) Association between (A) neighborhood poverty, (B) neighborhood PC7, (C) neighborhood social cohesion, and DNAm age 

acceleration measures for total sample (square), women (triangle), and men (circle). Models adjusted for race/ethnicity, education level, 
employment, smoking status, alcohol intake, and years residing in current neighborhood. Black symbols represent associations with Horvath 
age acceleration, dark gray represent Hannum age acceleration, and light gray represent PhenoAge acceleration. 
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neighborhood characterized by PC7 (β = 2.4; 95% CI: -

0.0, 4.9), and, among men, suggestion of Horvath age 

acceleration (β = 1.9; 95% CI: -0.1, 4.0; Supplementary 

Table 4). 

 

Neighborhood social cohesion and DNAm age 

 

The associations in the full sample between 

neighborhood social cohesion and DNAm aging 

biomarkers were largely null (Figure 1C). However, 

potential differences by sex were observed. For 

instance, among men, the effect estimate for 

neighborhood social cohesion and Hannum age 

acceleration (β = -0.6; 95% CI: -1.2, 0.1) and PhenoAge 

acceleration (β = -0.7; 95% CI: -1.6, 0.1) were negative; 

whereas, the effect estimates for Hannum age 

acceleration and PhenoAge acceleration among women 

were relatively null (Supplementary Table 3). For both 

Hannum age and PhenoAge acceleration, the effect 

estimates for men were outside of the confidence 

intervals for women, which suggests potential 

differences by sex. 

 

To assess whether objective neighborhood quality-

DNAm aging associations differed by perception of 

neighborhood social cohesion in the total sample, we 

conducted stratified analyses in the full models 

comparing associations among residents living in 

neighborhoods with higher vs. lower social cohesion 

scores (based on the median value of 8.1). Our results  

 

 
 

Figure 2. Association of PC7 and DNAm age acceleration 
measures stratified by neighborhood social cohesion for 
total sample (square), high social cohesion (triangle), and 
low social cohesion (circle). Models adjusted for 
race/ethnicity, education level, employment, smoking status, 
alcohol intake, and years residing in current neighborhood. Black 
symbols represent associations with Horvath age acceleration, 
dark gray represent Hannum age acceleration, and light gray 
represent PhenoAge acceleration. 

were suggestive of a difference in the neighborhood 

PC7-DNAm age acceleration association by 

neighborhood social cohesion (Figure 2). We found that 

associations between PC7 and DNAm age acceleration 

remained elevated for participants living in 

neighborhoods with lower social cohesion (Horvath: β = 

2.1; 95%. CI: 0.6, 3.6; Hannum: β = 2.2; 95%. CI: 0.6, 

3.8; PhenoAge: β = 2.3; 95%. CI: 0.3, 4.7); however, 

there appeared to be no association among participants 

living in neighborhoods with higher neighborhood 

social cohesion (Figure 2 and Supplementary Table 5). 

Similarly, for neighborhood poverty and DNAm age 

acceleration, we observed evidence of associations 

among participants living in neighborhoods with lower 

social cohesion, while null associations were observed 

among residents living in neighborhoods with higher 

social cohesion (Supplementary Figure 2). 

 

Because inflammation is one mechanism through  

which the neighborhood environment may influence 

DNAm aging, we further examined the impact of blood 

immune cell counts on our associations. For each 

exposure-outcome association, adjusting for cell type 

proportions attenuated our associations, suggesting  

that inflammation may partially explain associations 

between neighborhood attributes and DNAm aging 

(Supplementary Tables 3–5). 

 

DISCUSSION 
 

In this study of predominately Black adults living in 

Detroit, we observed evidence of potential links between 

aspects of the neighborhood social environment and 

accelerated DNAm aging that were primarily driven by 

associations in women. PhenoAge outpaced 

chronological age by nearly 2 years for women living in 

neighborhoods characterized by increased presence of 

abandoned cars and people on the street, as well as with 

higher levels of poverty. On the other hand, 

neighborhood social cohesion appeared to be associated 

with negative DNAm age acceleration (or DNAm age 

deceleration) for men, but not women. When examined 

together in models stratified on perceptions of 

neighborhood social cohesion, associations between 

measures of neighborhood environment (poverty and 

PC7) and DNAm age acceleration remained elevated for 

participants living in neighborhoods with lower social 

cohesion, while associations were relatively null for 

those residing in neighborhoods with high social 

cohesion. Taken together, it is possible that despite 

living in neighborhoods with higher poverty and lower 

quality, social cohesion may act to protect against 

accelerating DNAm aging. 

 

Our findings are consistent with previous research 

linking neighborhood disadvantage to accelerated 
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DNAm aging in children and adults [27, 32]. In our 

study, we found that women’s DNAm aging was more 

sensitive to neighborhood poverty and PC7 than men. 

Similarly, a prior study among 100 African American 

women found that a standard deviation increase in 

neighborhood disadvantage was associated with a 9-

month increase (β = 0.75; 95% CI: 0.27, 1.23) in 

Hannum’s age acceleration [27], which is comparable to 

the 12-month increase in Hannum’s age acceleration we 

observed in relation to a standard deviation increase in 

neighborhood poverty among women in our study. 

Additionally, we explored the impact of neighborhood 

poverty on a more recent measure of epigenetic aging, 

PhenoAge acceleration, which estimates aging based on 

epigenetic loci associated with 10 age-related clinical 

measures [30]. Neighborhood poverty appears to have a 

greater effect on PhenoAge acceleration than Hannum’s 

age acceleration in our study. Many of the clinical 

measures included in the PhenoAge estimator, such as 

glucose levels [40] and C-reactive protein [41–43], have 

demonstrated associations with neighborhood-level 

social characteristics. This might possibly explain the 

stronger associations observed for PhenoAge than the 

other epigenetic aging biomarkers in this and previous 

studies of the neighborhood social environment. 

 

Unlike previous studies, our study used direct 

observations of neighborhood characteristics conducted 

by trained evaluators, which provide an objective 

assessment of the neighborhood’s natural social 

environment [44]. We found that PC7, defined by the 

presence of people on the street and abandoned cars, 

was associated with accelerated DNAm aging across 

each of the three measures of epigenetic aging 

examined in this study. This finding is consistent with 

our previous work showing neighborhood quality 

measures, namely abandoned cars, people on the street, 

and non-art graffiti, were associated with an epigenetic 

biomarker of mortality [23]. 

 

Neighborhood social cohesion has also been shown to 

impact physical and mental health outcomes and may 

have effects at the molecular-level [21, 35–38]. In a 

study of 1,226 adults in the Multi-Ethnic Study of 

Atherosclerosis (MESA), the neighborhood social 

environment, measured as a summary score that 

included social cohesion, was associated with DNAm in 

stress- and inflammation-related genes [21]. In our 

study, men living in neighborhoods with higher 

neighborhood social cohesion appeared to experience 

negative Hannum and Pheno age acceleration. 

Furthermore, in our full models stratified by higher vs. 

lower neighborhood social cohesion, the impact of PC7 
and poverty on DNAm aging remained detrimental 

among participants living in neighborhoods with lower 

social cohesion, but not among those living in 

neighborhoods with higher social cohesion. Additional 

studies in larger prospective cohorts are needed to 

corroborate our findings; yet, if replicated our results 

have important implications for mortality and longevity. 

Evidence exists demonstrating that neighborhood social 

cohesion is associated with lower risk of mortality [1]. 

Given the link between accelerated DNAm aging  

and mortality, it is possible residing in a neighborhood 

with greater social cohesion may serve as a buffer  

to the negative effects of neighborhood deprivation  

on mortality through decelerated DNAm aging as 

demonstrated in our study. 

 

Our study examines the impact of neighborhood-level 

social processes on individual-level molecular 

mechanisms. Several potential mechanisms exist that 

may explain molecular response to the neighborhood 

environment. First, participants residing in 

neighborhoods with high levels of disadvantage and 

disorder may experience chronic activation and 

dysregulation of stress-response and inflammatory 

pathways and altered DNAm patterns, as suggested in 

previous studies demonstrating associations between 

neighborhood disadvantage and DNAm of genes 

involved in stress-response and inflammation [20, 21]. 

We observed attenuated results in our models when 

blood immune cell proportions were included further 

implicating inflammatory pathways as a mechanistic 

link. Additional pathways, such as smoking status and 

dietary behaviors, may affect these associations. 

Unfortunately, we did not have information on dietary 

habits, but did adjust for smoking and alcohol 

consumption in our models, which did not impact our 

results. There may be additional factors correlated with 

neighborhood disadvantage like environmental air 

quality that may explain our associations and should be 

explored in future investigations. We also observed 

suggestive differences in patterns of associations for 

men and women. While these findings warrant follow-

up in larger samples, the null associations observed 

between neighborhood poverty and PC7 with DNAm 

aging acceleration among men may be explained by the 

overall health of men in our small study sample. For 

instance, PhenoAge (a marker of the aging process for 

key clinical measures of chronic disease) was lower 

among men in our study than women, which may be a 

signal that men were in better overall health, and 

DNAm aging was not responsive to the adverse effects 

of living in neighborhoods with poor economic and 

social conditions. Future studies should examine this 

further. 

 

Our study is not without limitations. Due to our 
relatively small sample size these analyses should be 

considered somewhat exploratory in nature. We did not 

impose a multiple testing correction as the sample size 



 

www.aging-us.com 7888 AGING 

was limited and the outcomes were correlated, as well 

as biologically-related. In addition, due to the limited 

sample size, we were unable to perform formal tests of 

significant differences or explore potentially salient 

higher-order interactions, such as three-way interactions 

among sex, neighborhood disadvantage, and social 

cohesion, which are likely relevant, but cannot be 

addressed using small sample sizes. Despite our sample 

size, we were able to pick up signals of associations in 

the entire cohort and when stratifying on sex and 

neighborhood social cohesion based on descriptive 

interpretations, such as confidence interval non-overlap. 

We focused on summary measures of objective 

neighborhood quality as these summary measures 

combine correlated features of the underlying inputs, 

which can increase power to detect associations. The 

Detroit Neighborhood Health Study (DNHS) is a 

population-based study of individuals residing in the 

Detroit metropolitan area, which may limit the 

generalizability of our study results to other parts of the 

United States. However, our findings are in line with 

previous studies of neighborhood disadvantage and 

DNAm aging. Detroit was one of the harder hit areas 

during the U.S. Great Recession from 2007 to 2009, 

which coincided with the DNHS. While participants in 

the neighborhoods were long-term residents, we do not 

have repeated measures of neighborhood quality and are 

unable to examine the effects of neighborhood changes 

on DNAm. Lastly, aging is a life course process. The 

biological aging process is likely a response to the 

accumulation of environmental insults over one’s life 

span rather than short-term exposures. Because our 

analysis was cross-sectional with neighborhood 

measures and DNAm assessed at similar points in time, 

we were unable to make inferences on the temporal 

mechanisms. However, it is unlikely that individuals 

were selected into their neighborhoods based on their 

underlying epigenetic age, particularly given that most 

individuals resided in their homes for over a decade. 

When combined with the average age of individuals 

(54.0 years), this would indicate that most individuals 

began residing in their homes at an age prior to when 

age (or epigenetic age) driven functional deficits would 

appear, which would have been the most likely causal 

mechanism for epigenetic age acceleration to drive 

neighborhood choice. 

 

In summary, our study explored multiple measures of 

neighborhood environment, including U.S. Census data 

for neighborhood poverty, direct observations of 

neighborhood quality, and survey responses of 

neighborhood social cohesion, in relation to DNAm 

aging. We found that individuals living in 
neighborhoods characterized by higher levels of poverty 

and the presence of abandoned cars and people on the 

street experience accelerated aging, where their DNAm 

age is higher than their chronological age. However, 

effects of neighborhood poverty and quality on DNAm 

aging may be buffered by increased neighborhood 

social cohesion. Given that racial/ethnic minorities are 

more likely to reside in deprived and disadvantaged 

neighborhoods, our findings offer a molecular insight 

into potential mechanisms of health disparities. We 

suggest that future studies fruitfully interrogate these 

associations to build upon our understanding of the 

biosocial mechanisms that contribute to racial/ethnic 

disparities in health. 

 

MATERIALS AND METHODS 
 

Study population 

 

Baseline data from adults participating in the DNHS 

were used for the present study. The DNHS is a 

population-based prospective cohort study of primarily 

Black adult residents (18 years of age or older) living in 

Detroit, MI. Study participants completed annual 

structured telephone interviews from 2008 through 2012 

to assess perceptions of neighborhoods, mental and 

physical health status, social support, and alcohol and 

tobacco use. Biospecimens were also collected annually 

through 2013. A total of 2,081 adults participated in the 

DNHS, of which 612 agreed to provide either a 

venipuncture or blood spot at baseline. DNA 

methylation was measured from whole blood in 179 

participants as part of a pilot study, of which 158 with 

both DNA methylation and neighborhood quality data 

at baseline examination were included this analysis. 

Compared to the total DNHS population (n=2,081), 

participants in our study sample (n=158) were slightly 

older (52.9 years vs. 50.5 years, p=0.04) and a higher 

proportion were unemployed (69.4% vs. 58%, p<0.01), 

but differences in length of residence in the 

neighborhood were not found (18.2 years vs. 18.2 years, 

p=0.98). Informed consent was received from all 

participants in the study prior to participation and the 

DNHS was approved by the institutional review boards 

at the University of Michigan (HUM00014138) and the 

University of North Carolina at Chapel Hill (13-3999). 

 

Neighborhood environment assessment 

 

Neighborhood environment was assessed using 

information from the U.S. American Community Survey 

(ACS) participant responses, objective neighborhood 

evaluations, and participant’s questionnaire responses. 

To estimate neighborhood poverty, we used data from 

the 2008-2013 ACS. Neighborhood poverty was defined 

by the percent of individuals below the federal poverty 

level. Neighborhood estimates at the census block-group 

level were aggregated to derive measures within the 54 

historically defined neighborhoods in Detroit [45]. 
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Neighborhood poverty was converted to z-scores for this 

analysis. 

 

Objective neighborhood measures, conducted by 

trained personnel, were captured from structured 

assessments of Detroit’s 54 neighborhoods. Within 

the 54 neighborhoods, 135 block groups were 

assessed between June and July 2008. During this 

time, 19 neighborhood characteristics (Supplementary 

Table 1) were evaluated using a standardized 

instrument adapted from the New York Social 

Environment Study to be relevant to Detroit [46]. 

Evaluators responded with “yes” or “no” and the 

frequency of “yes” responses were calculated for each 

variable by block group, which were then averaged by 

neighborhood. Because our sample size is limited and 

we know neighborhood characteristics are correlated, 

we conducted a principal components (PCs) analysis 

to minimize the number of statistical tests performed. 

As previously described in a recent study of 

neighborhood quality and epigenetic mortality risk 

score, we made the a priori decision to retain the first 

eight PC that explained 90% of the variance 

(Supplementary Table 2) [23]. 

 

During the first telephone interview, participants were 

asked to report perceptions of their neighborhood 

community. Participants were asked about the following 

characteristics: 1) a close-knit or unified neighborhood; 

2) people around here are willing to help their neighbors; 

3) people in this neighborhood generally don’t get along 

with each other (reverse scored); 4) people in this 

neighborhood do not share the same values (reverse 

scored); 5) people in this neighborhood can be trusted. 

Each response was coded from strongly disagree (0) to 

strongly agree (3). If a participant responded neither 

disagree nor agree, it was coded as missing. This only 

impacted three of the 158 participant responses in the 

total sample. All responses were summed to create a 

score of individual perception of neighborhood social 

cohesion, which ranged from 0 to 15 with higher scores 

indicating greater perception of neighborhood social 

cohesion. To generate a measure of neighborhood-level 

perception of social cohesion, individual scores were 

aggregated and mean neighborhood social cohesion was 

assigned for each participant living within the same 

neighborhood [47, 48]. 

 

DNAm age variables 

 

Peripheral blood DNA was extracted using 

venipuncture and genome-wide DNA methylation was 

measured in whole blood leukocytes using the 
Illumina Infinium HumanMethylation 450k array 

using published methods [49]. Samples were bisulfite 

converted using the EZ-96 DNA methylation kit 

(Zymo Research). Sample quality control protocol 

excluded samples with probe detection call rates < 

90% and those with an average intensity value of 

either < 50% or sample mean < 2,000 arbitrary units 

(AU). Quality control was performed using the R 

package CpGassoc [50]. Probes with detection p-

values > 0.001 and samples with missing data for > 

10% of probes were also removed, along with known 

SNPs and cross-hybridizing probes [51]. Probe 

normalization was performed using the beta-mixture 

quantile normalization method using the R package 

wateRmelon [52, 53]. Following normalization, 

ComBat was used to account for batch effects using M 

values converted from the beta values [54]. M values 

were converted back to beta values for calculation of 

DNAm age variables. 

 

Horvath’s epigenetic clock, Hannum’s epigenetic clock, 

and Levine’s PhenoAge were calculated using their 

published algorithms [28–30]. Horvath’s epigenetic 

clock consists of 353 CpG sites and is applicable across 

multiple sources of cells, tissues, and organs across the 

entire lifespan, including whole blood in adults [29]. 

Hannum’s epigenetic clock is a single tissue estimator 

derived from 71 CpG sites from DNA of adult whole 

blood samples [28]. Horvath’s and Hannum’s clocks are 

both highly correlated with chronological age; however, 

weaker associations are observed with clinical 

characteristics of physiological dysfunction [31]. 

Levine’s PhenoAge measure was developed using 513 

epigenetic loci associated with 10 clinical phenotypes, – 

albumin, creatinine, glucose, C-reactive protein, 

lymphocyte percent, red blood cell volume, red cell 

distribution, alkaline phosphatase, white blood cell 

count, and chronological age – which were further 

validated for associations with mortality, co-morbid 

disease burden, and physical function [30]. The 513 

epigenetic loci were converted into an epigenetic clock 

using regression modeling as done for previous clocks. 

Levine’s PhenoAge estimator (and PhenoAge 

acceleration) strongly predicts several aging-related 

outcomes including all-cause mortality, cancer, coronary 

heart disease, and Alzheimer’s disease. Each measure of 

DNAm age was strongly correlated with chronological 

age in our study population (Supplementary Figure 1A–

1C). For the purpose of this analysis, DNAm age 

residuals were calculated by regressing each DNAm age 

variable on chronological age resulting in positive and 

negative deviations from chronological years of age. 

Positive scores (residuals from the regression model) 

reflected accelerated DNAm aging. 

 

Additional covariates 

 

Baseline demographic, social, and behavioral factors 

associated with neighborhood quality and DNAm 
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aging were collected, including chronological age, 

race/ethnicity, educational attainment, employment 

status, and number of years lived in current 

neighborhood. Chronological age was self-reported 

and included in models as a continuous variable. 

Race/ethnicity, educational attainment, and 

employment status were also self-reported and were 

categorized as shown in Table 1. Participants reported 

the number of years lived in current neighborhood, 

which was treated as a continuous variable. Current 

smoking status (never, ever, current) and lifetime 

alcohol intake (ever vs. never) were also included in 

the models. 

 

Statistical analysis 

 

Distributions of selected baseline covariates were 

examined. Three sex-specific age acceleration variables 

– Horvath age acceleration (from Horvath’s clock), 

Hannum age acceleration (from Hannum’s clock), and 

PhenoAge acceleration (from Levine’s PhenoAge 

measure) – were derived from regression residuals for 

the full sample and separately for men and women. We 

examined whether each neighborhood environment 

measure – neighborhood poverty, objective 

neighborhood evaluation (PCs), and neighborhood 

social cohesion — were independently associated with 

accelerated DNAm aging. Two separate models were 

used to estimate our associations of interest: (1) the 

unadjusted model of neighborhood quality and DNAm 

age acceleration; and (2) the full model adjusted for 

race/ethnicity, educational attainment, employment 

status, lifetime smoking, lifetime alcohol intake, and 

number of years residing in current neighborhood. We 

also examined these associations stratified by sex. In a 

second set of analyses, we assessed whether perception 

of neighborhood social cohesion provided a buffering 

effect of the neighborhood poverty and quality 

measures on DNAm aging. To estimate this, full sample 

models were stratified by a binary indicator of 

neighborhood social cohesion, categorized as higher vs. 

lower social cohesion using the median value. We did 

not examine this association in the sex-specific models 

due to our limited sample sizes. Also, because of our 

limited sample size, nesting within neighborhoods was 

low (median: 3, IQR: 2-5) with eight neighborhoods 

only having one participant; therefore, clustering of 

DNA methylation outcomes by neighborhood is 

unlikely. Therefore, we modeled our neighborhood 

variables as individual-level exposures. Given the small 

sample size and correlations, as well as biological 

relations, among the epigenetic aging outcome 

measures we did not impose a multiple testing 
correction. Blood immune cell counts can serve as 

markers of inflammation to act as mediators partially 

explaining associations between neighborhood quality 

and DNAm aging. To account for this, we estimated 

blood immune cell proportions using the Houseman 

method [55] and assessed their influence on our 

associations in sensitivity analyses. All analyses were 

performed in R version 3.6 [56]. Results are reported 

using regression coefficient (β) and associated 95% 

confidence interval (CI). 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Correlations between chronological age and (A) Horvath’s DNAm age, (B) Hannum’s DNAm age, and (C) Levine’s 

PhenoAge. 
 

 
 

Supplementary Figure 2. Association between neighborhood poverty and DNAm aging acceleration measures stratified by 
neighborhood social cohesion for total sample (square), high social cohesion (triangle), and low social cohesion (circle). 
Models adjusted for race/ethnicity, education level, employment, smoking status, alcohol intake, and years residing in current neighborhood. 
Black symbols represent associations with Horvath age acceleration, dark gray represent Hannum age acceleration, and light gray represent 
PhenoAge acceleration. 
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Supplementary Tables 
 

Supplementary Table 1. Definitions and distributions (mean and standard deviation (SD)) for the 19 
neighborhood quality indicators assessed by two trained assessors for a select number of census block 
groups in the Detroit Neighborhood Health Study. 

Neighborhood  

quality indicator 
Metric as evaluated by trained assessor Mean SD 

HQ1 

Are there any buildings with broken windows, boarded up windows, or boarded up 

doors? Percent of sampled block group segments within Neighborhood that have 

"Yes" for this question. 

34.2 14.1 

HQ2 

Are there any buildings with outside damage that can only be corrected by major 

repairs such as siding, shingles, boards, brick, concrete, and stucco? Percent of 

sampled block group segments within Neighborhood that have "Yes" for this 

question. 

29.7 14 

HQ3 
Are there any entirely vacant buildings? Percent of sampled block group segments 

within Neighborhood that have "Yes" for this question. 
34 11.8 

HQ4 
Are there any empty, vacant lots? Percent of sampled block group segments within 

Neighborhood that have "Yes" for this question. 
32.6 21.4 

HQ5 
Are there any construction sites? Percent of sampled block group segments within 

Neighborhood that have "Yes" for this question. 
2.4 2.5 

HQ6 
Is there a community garden? Percent of sampled block group segments within 

Neighborhood that have "Yes" for this question. 
0.566 0.873 

HQ7 
Is there graffiti (non-art)? Percent of sampled block group segments within 

Neighborhood that have "Yes" for this question. 
17.2 10.3 

HQ8 
Are the street and sidewalk clean? Percent of sampled block group segments within 

Neighborhood that have "Yes" for this question. 
73.3 14.1 

HQ9 
Are there any big, mature trees? Percent of sampled block group segments within 

Neighborhood that have "Yes" for this question. 
83.1 9.64 

HQ10 
Is there heavy traffic volume? Percent of sampled block group segments within 

Neighborhood that have "Yes" for this question. 
30.2 10.8 

HQ11 
Is the street in poor condition? Percent of sampled block group segments within 

Neighborhood that have "Yes" for this question. 
33 11.4 

HQ12 
Is the sidewalk in poor condition? Percent of sampled block group segments within 

Neighborhood that have "Yes" for this question. 
58.7 15.2 

HQ13 
Is the street noisy? Percent of sampled block group segments within Neighborhood 

that have "Yes" for this question. 
26.9 10.3 

HQ14 
Are there people visible on the street? Percent of sampled block group segments 

within Neighborhood that have "Yes" for this question. 
13.7 8.68 

HQ15 
Are there any abandoned cars? Percent of sampled block group segments within 

Neighborhood that have "Yes" for this question. 
6.57 4.04 

HQ16 

Are any of the following signs visible? A. Neighborhood or Crime Watch. B. 

Security warning signs.  Percent of sampled block group segments within 

Neighborhood that have "Yes" for this question. 

51.8 14.4 

HQ17 
Are there any tobacco product advertising signs visible? Percent of sampled block 

group segments within Neighborhood that have "Yes" for this question. 
1.65 1.88 

HQ18 
Are there any alcohol advertising signs visible? Percent of sampled block group 

segments within Neighborhood that have "Yes" for this question. 
2.49 2.01 

HQ19 
Are there any For Sale OR For Lease OR For Rent signs visible? Percent of sampled 

block group segments within Neighborhood that have "Yes" for this question. 
18.6 6.72 
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Supplementary Table 2. Loadings for each of the top eight principal components. 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

HQ1 -0.35 0.10 -0.08 0.06 -0.12 0.07 -0.02 0.00 

HQ2 -0.36 0.10 0.00 -0.03 -0.11 0.05 0.04 0.21 

HQ3 -0.29 0.19 -0.18 0.08 -0.15 0.20 0.00 -0.14 

HQ4 -0.35 -0.04 0.08 -0.14 0.17 0.07 -0.26 0.15 

HQ5 -0.02 -0.16 -0.39 0.16 0.43 0.48 0.10 -0.08 

HQ6 -0.08 -0.01 0.14 0.73 0.18 -0.25 0.12 -0.30 

HQ7 -0.23 -0.21 0.19 0.34 -0.23 0.15 0.08 0.35 

HQ8 0.33 0.06 0.01 0.21 -0.18 -0.06 0.22 -0.04 

HQ9 0.12 0.28 0.02 0.16 0.57 -0.25 -0.16 0.59 

HQ10 0.01 -0.45 0.11 -0.10 0.27 0.07 0.11 -0.02 

HQ11 -0.30 0.07 0.11 0.20 0.16 -0.16 -0.06 -0.28 

HQ12 -0.32 0.20 0.03 -0.06 0.15 0.08 0.02 -0.05 

HQ13 0.03 -0.47 0.02 -0.02 0.20 0.14 -0.11 -0.20 

HQ14 -0.06 -0.42 -0.03 0.10 -0.16 -0.12 0.34 0.43 

HQ15 -0.22 0.12 -0.21 -0.23 0.19 -0.20 0.75 -0.03 

HQ16 0.28 0.24 -0.22 0.01 0.03 0.05 0.14 -0.03 

HQ17 -0.05 -0.17 -0.52 -0.07 0.08 -0.30 -0.20 -0.02 

HQ18 -0.13 -0.20 -0.40 0.05 -0.20 -0.50 -0.22 -0.05 

HQ19 0.08 0.09 -0.45 0.33 -0.16 0.35 -0.08 0.20 

Eigenvalue 6.6 3.7 2.5 1.3 1.0 0.8 0.6 0.6 

% of variation  

explained 
35.0% 19.3% 12.7% 7.0% 5.0% 4.3% 3.0% 2.8% 

 

Supplementary Table 3. Association between neighborhod characteristics aand epigenetic aging. 

 

All  Women  Men 

Model AA Model BB  Model A Model B  Model A Model B 

β (95% CI) β (95% CI)  β (95% CI) β (95% CI)  β (95% CI) β (95% CI) 

Neighborhood poverty 

Horvath age 

acceleration 
0.7 (-0.3, 1.8) 0.8 (-0.2, 1.8)  0.7 (-0.7, 2.1) 0.7 (-0.7, 2.0)  0.1 (-1.5, 1.7) 0.2 (-1.4, 1.9) 

Hannaum age 

acceleration 
0.7 (-0.3, 1.7) 0.8 (-0.1, 1.7)  0.9 (-0.5, 2.3) 0.6 (-0.6, 1.9)  -0.3 (-1.7, 1.2) 0.3 (-1.2, 1.8) 

PhenoAge 

acceleration 
1.0 (-0.3, 2.4) 1.1 (-0.2, 2.3)  1.4 (-0.4, 3.3) 1.0 (-0.8, 2.7)  -0.3 (-2.2, 1.5) 0.6 (-1.3, 2.5) 

Neighborhood social cohesion 

Horvath age 

acceleration 
0.0 (-0.5, 0.5) 0.0 (-0.4, 0.5)  0.3 (-0.4, 0.9) 0.1 (-0.4, 0.7)  -0.3 (-1.0, 0.5) -0.1 (-0.9, 0.6) 

Hannaum age 

acceleration 
-0.1 (-0.6, 0.4) -0.1 (-0.5, 0.3)  0.2 (-0.5, 0.8) 0.1 (-0.5, 0.6)  -0.6 (-1.2, 0.1) -0.5 (-1.2, 0.1) 

PhenoAge 

acceleration 
-0.3 (0.9, 0.3) -0.2 (-0.8, 0.4)  0.1 (-0.7, 1.0) 0.2 (-0.6, 0.9)  -0.7 (-1.6, 0.1) -0.7 (-1.5, 0.1) 

AModels are adjusted for race/ethnicity, education level, employment, smoking status, alcohol intake, years residing in 
current neighborhood. 
BModels are adjusted for race/ethnicity, education level, employment, smoking status, alcohol intake, years residing in 
current neighborhood, and cell proportion estimates. 
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Supplementary Table 4. Association between principal components and epigenetic aging. 

 

All  Women  Men 

Model AA Model BB  Model A Model B  Model A Model B 

β (95% CI) β (95% CI)  β (95% CI) β (95% CI)  β (95% CI) β (95% CI) 

Horvath age acceleration 

PC1 -0.1 (-0.6, 0.3) -0.3 (-0.6, 0.1)  -0.1 (-0.6, 0.4) -0.3 (-0.8, 0.2)  0.2 (-0.5, 0.9) 0.1 (-0.6, 0.7) 

PC2 0.0 (-0.5, 0.6) 0.1 (-0.3, 0.6)  -0.1 (-0.8, 0.6) -0.3 (-0.9, 0.4)  0.1 (-0.7, 0.9) 0.5 (-0.3, 1.2) 

PC3 0.7 (-0.1, 1.3) 0.4 (-0.3, 1.0)  0.7 (-0.2, 1.6) 0.5 (-0.3, 1.4)  -0.1 (-1.1, 1.0) -0.4 (-1.4, 0.6) 

PC4 -0.3 (-1.2, 0.7) -0.1 (-0.9, 0.8)  0.0 (-1.3, 1.3) 0.1 (-1.1, 1.3)  -0.4 (-1.8, 1.0) -0.4 (-1.7, 1.0) 

PC5 0.0 (-1.1, 1.1) -0.4 (-1.4, 0.6)  0.2 (-1.2, 1.6) -0.4 (-1.7, 0.9)  0.2 (-1.2, 1.6) -0.4 (-2.1, 1.4) 

PC6 1.0 (-0.2, 2.1) 0.9 (-0.1, 2.0)  1.6 (0.0, 3.1) 1.5 (0.0, 2.9)  0.0 (-1.7, 1.8) 0.1 (-1.7, 1.9) 

PC7 1.8 (0.4, 3.1) 0.8 (-0.5, 2.1)  0.9 (-0.9, 2.8) -0.4 (-2.3, 1.6)  1.9 (-0.1, 4.0) 1.6 (-0.4, 3.6) 

PC8 0.1 (-1.4, 1.7) -0.1 (-1.5, 1.3)  -0.1 (-2.1, 1.8) 0.0 (-1.8, 1.9)  -0.6 (-3.0, 1.9) -0.5 (-3.0, 2.0) 

Hannum age acceleration 

PC1 -0.2 (-0.6, 0.2) -0.2 (-0.6, 0.1)  -0.2 (-0.7, 0.3) -0.3 (-0.8, 0.1)  0.3 (-0.3, 0.8) 0.2 (-0.4, 0.7) 

PC2 0.1 (-0.4, 0.6) 0.1 (-0.3, 0.6)  -0.1 (-0.8, 0.6) -0.3 (-0.9, 0.4)  0.3 (-0.5, 1.0) 0.4 (-0.3, 1.1) 

PC3 0.3 (-0.3, 1.0) -0.1 (-0.6, 0.6)  0.2 (-0.7, 1.1) -0.0 (-0.8, 0.7)  -0.0 (-1.0, 0.9) -0.5 (-1.4, 0.5) 

PC4 -0.1 (-1.0, 0.7) 0.1 (-0.6, 0.9)  0.0 (-1.2, 1.3) 0.3 (-0.8, 1.4)  -0.1 (-1.4, 1.2) -0.1 (-1.3, 1.1) 

PC5 -0.0 (-1.1, 1.0) -0.3 (-1.2, 0.6)  0.1 (-1.2, 1.5) -0.5 (-1.7, 0.7)  0.8 (-0.8, 2.4) 0.6 (-0.9, 2.2) 

PC6 0.4 (-0.8, 1.5) 0.4 (-0.7, 1.4)  1.1 (-0.5, 2.6) 0.6 (-0.8, 2.0)  -0.7 (-2.3, 0.9) 0.1 (-1.6, 1.7) 

PC7 1.7 (0.4, 3.0) 0.6 (-0.6, 1.8)  1.5 (-0.3, 3.3) -0.2 (-2.0, 1.6)  1.1 (-0.8, 2.9) 1.5 (-0.3, 3.3) 

PC8 0.3 (-1.2, 1.8) -0.1 (-1.5, 1.2)  0.9 (-1.0, 2.8) 0.9 (-0.8, 2.6)  -1.9 (-4.1, 0.2) -2.3 (-4.4, -0.1) 

PhenoAge acceleration 

PC1 -0.3 (-0.8, 0.2) -0.4 (-0.8, 0.1)  -0.3 (-1.0, 0.4) -0.5 (-1.1, 0.2)  0.3 (-0.5, 1.0) 0.2 (-0.6, 0.9) 

PC2 -0.1 (-0.8, 0.6) -0.1 (-0.7, 0.5)  -0.4 (-1.3, 0.5) -0.6 (-1.5, 0.2)  0.1 (-0.8, 1.0) 0.2 (-0.7, 1.1) 

PC3 0.4 (-0.4, 1.3) 0.0 (-0.8, 0.8)  0.3 (-0.9, 1.5) -0.1 (-1.2, 1.0)  -0.1 (-1.8, 0.5) -0.6 (-1.7, 0.6) 

PC4 -0.6 (-1.8, 0.5) -0.4 (-1.4, 0.7)  -0.2 (-1.8, 1.5) -0.1 (-1.6, 1.5)  -0.9 (-2.5, 0.7) -1.1 (-2.6, 0.4) 

PC5 -0.6 (-1.9, 0.7) -0.8 (-2.0, 0.5)  -0.6 (-2.4, 1.2) -1.0 (-2.7, 0.6)  -0.2 (-2.3, 1.9) -0.5 (-2.5, 1.5) 

PC6 0.4 (-1.1, 1.9) 0.5 (-0.9, 1.9)  1.5 (-0.6, 3.6) 0.9 (-1.0, 2.8)  -1.0 (-3.0, 1.0) -0.3 (-2.3, 1.8) 

PC7 2.1 (0.4, 3.8) 0.8 (-0.8, 2.5)  2.4 (-0.0, 4.9) 0.3 (-2.3, 2.7)  0.2 (-2.2, 2.6) 0.4 (-2.0, 2.7) 

PC8 -0.0 (-1.9, 1.9) -0.7 (-2.5, 1.1)  -0.2 (-2.8, 2.4) -0.6 (-3.0, 1.8)  -0.8 (-3.7, 2.0) -0.4 (-3.3, 2.4) 

AModels are adjusted for race/ethnicity, education level, employment, smoking status, alcohol intake, and years residing in 
current neighborhood. 
BModels are adjusted for race/ethnicity, education level, employment, smoking status, alcohol intake, years residing in 
current neighborhood, and cell proportion estimates. 
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Supplementary Table 5. Association between neighborhod characteristics and epigenetic aging by 
neighborhood social cohesion. 

 

All  Higher social cohesion  Lower social cohesion 

Model AA Model BB  Model A Model B  Model A Model B 

β (95% CI) β (95% CI)  β (95% CI) β (95% CI)  β (95% CI) β (95% CI) 

Neighborhood poverty 

Horvath age acceleration 0.7 (-0.3, 1.8) 0.8 (-0.2, 1.8)  0.3 (-1.5, 2.1) 0.5 (-1.1, 2.2)  1.3 (-0.0, 2.8) 1.2 (-0.3, 2.7) 

Hannaum age acceleration 0.7 (-0.3, 1.7) 0.8 (-0.1, 1.7)  0.3 (-1.2, 1.9) 0.7 (-0.8, 2.2)  1.1 (-0.5, 2.6) 0.7 (-0.8, 2.2) 

PhenoAge acceleration 1.0 (-0.3, 2.4) 1.1 (-0.2, 2.3)  0.5 (-1.6, 2.5) 1.2 (-0.9, 3.3)  1.6 (-0.4, 3.7) 0.9 (-1.1, 2.9) 

Neighborhood PC7 

Horvath age acceleration 1.8 (0.4, 3.1) 0.8 (-0.5, 2.1)  1.3 (-1.4, 3.9) 0.3 (-2.1, 2.7)  2.1 (0.6, 3.6) 1.5 (-0.1, 3.1) 

Hannaum age acceleration 1.7 (0.4, 3.0) 0.6 (-0.6, 1.8)  0.9 (-1.4, 3.2) -0.0 (-2.2, 2.1)  2.2 (0.6, 3.8) 1.3 (-0.3, 3.0) 

PhenoAge acceleration 2.1 (0.4, 3.8) 0.8 (-0.8, 2.5)  0.8 (-2.2, 3.9) 0.1 (-3.0, 3.2)  2.3 (0.3, 4.7) 1.3 (-0.8, 3.5) 

AModels are adjusted for race/ethnicity, education level, employment, smoking status, alcohol intake, years residing in 
current neighborhood. 
BModels are adjusted for race/ethnicity, education level, employment, smoking status, alcohol intake, years residing in 
current neighborhood, and cell proportion estimates. 


