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INTRODUCTION 
 

Any advances in personalized and informed lifestyle 

interventions to promote longevity and health will 

require reliable and immediate feedback on health 

status changes in response to treatments. Such 

capabilities have just recently become available in the 

form of biological clocks and are increasingly used in 

the field of quantitative aging research. State-of-art 

implementations involve machine learning of the 

associations of the DNA methylation patterns [1] or 

blood variables [2–4] with either the chronological 

age or risks of death and diseases. The aging clocks 

have been used in clinical trials of anti-aging 

interventions [5].  
 

Large-scale biochemical or genomic profiling of 

Biological age acceleration (BAA) is, however, still 

logistically difficult and expensive. Mobile technology 

holds a great promise for the democratization of 

population health studies. It already provides 

engagement tools to help customers maintain physical 

activity levels, body weight, and adhere to lifestyles 

known to promote a healthy lifespan. In 2019, one-in-

five U.S. adults (21%) reported they regularly used a 

wearable fitness tracker or smartwatch [6]. The health 

and home fitness app downloads grew by 46% during 

COVID-19 lockdown [7].  

 

In fact, only mobile technology can support large-scale 

studies involving monitoring of early signs of a disease 

or measuring recovery rates, all requiring sampling 

more often than once per week. Recent examples 
include the analysis of the worldwide distribution of 

physical activity [8], changes in physical activity levels 

in response to COVID-19 lockdown [9], and the 
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associations of physical activity and the risks of 

COVID-19 mortality [10, 11]. There are, however, 

multiple unresolved issues, such as inaccuracies of 

sensor data, missing data, outliers, varying 

measurements between devices of different 

manufacturers, and seasonal variation of physical 

activity [12, 13] -all precluding from wider acceptance 

of the wearables signal in population studies. 

 

We applied deep learning technology to systematically 

address these challenges. We trained and characterized a 

simple model that learns physical activity patterns from 

wearable devices, which are directly associated with 

morbidity risks on the population level. Accordingly, the 

organism state representation output by this model is a 

single dynamic variable closely related to BAA. The 

neural network architecture included components 

specifically designed to resolve the missing data and solve 

transferability across platforms. We found that both 

blood-based and wristband step-counter-based models 

demonstrated surprisingly similar levels of sensitivity in 

applications involving BAA associations with diseases 

and lifestyles. Moreover, the activity-based models’ 

signal-to-noise ratio could be improved by averaging over 

longer motion tracks. After just a few months of 

averaging, the activity-based model applied to a wristband 

signal may detect the effects of chronic diseases and 

smoking at the same level of significance as blood-based 

PhenoAge from [2] and Dynamic Organism State 

Indicator (DOSI) from [4]. The same finding held for the 

association of BAA with the incidence and severity of 

seasonal infectious diseases (including COVID-19). 

 

Finally, we investigated the auto-correlation properties 

of the BAA fluctuations. The diverging autocorrelation 

times are typical for systems approaching tipping or 

disintegration point [14] and a hallmark of aging [15, 

4]. Accordingly, we observed vanishing recovery rate 

and the exponentially increasing fraction of individuals 

with long recovery times in subsequent age cohorts. The 

number of non-resilient individuals doubled every 8 

years, which is compatible with the mortality rate 

doubling time characteristic to the Gompertz mortality 

law [16]. We conclude that due to the inherent 

stochastic character of BAA fluctuations, the BAA 

mean and the BAA autocorrelation time (the resilience) 

are the two most basic and independent health 

indicators, closely related to aging and human mortality. 

 

RESULTS 
 

Biological age predicts morbidity and mortality 

 

We trained the GeroSense system, a deep artificial 

neural network (Figure 1) to extract health-associated 

features from the physical activity recordings. The 

system included the encoder part, which took the input 

in the form of a series of step count per minute 

measurements for at least as long as one week and 

compressed the signal into 4-dimensional 

representations (embeddings). During the training and 

test procedure, we used one week-long samples of steps 

per minute recordings for 97,320 UK Biobank and 

6,510 NHANES participants along with recordings 

samples from longitudinal data obtained for 1,876 

smartphone and 723 smartwatch users. The embedding 

vectors were further fed into the domain-adaptation 

network, trained to reduce the difference between the 

feature sets distribution in samples originating from 

different devices. In such a way, we were able to 

produce the most common features present in the 

motion data.  

 

At the top layer, log-linear proportional hazards models 

of all-cause mortality are natural tools to build the 

biological age acceleration models, see, e.g., the 

PhenoAge model [2, 17]. If, however, the number of 

observed events is small, a simple logistic regression 

model provides an excellent approximation to the 

solution of the corresponding proportional hazards [18, 

19]. Therefore, in the present study, we trained the 

neural network using cross-entropy loss to predict 

binary labels: the prevalence of at least one chronic 

disease. Overall, we labeled events for 23% and 29% 

samples in NHANES and UKB, respectively (see 

Materials and Methods section “Morbidity status” for 

the precise definition). 

 

The model’s output was the Biological Age 

Acceleration (BAA), estimated once per each seven 

days and calculated as the linear combination of the 

physical activity signal embeddings and biological sex 

label. During the training procedure, BAA was added to 

the chronological age of each participant to produce 

biological age followed by sigmoid activation layer and 

cross-entropy loss on the prediction of morbidity status. 

 

To control for over-fitting, we split all data into training 

and test subsets. The quality of GeroSense BAA for 

predicting the morbidity status was similar in training 

and test subsets in both NHANES (Figure 2A) and UK 

Biobank (Figure 2C) with ROC AUC 0.60−0.61 in test 

subsets.  

 

We also expected the high concordance between the 

mortality and morbidity predictors [20]. Accordingly, 

we tested the ability of the model to predict future 

mortality events (see Figure 2B, 2D for the summary of 

the GeroSense BAA model performance in NHANES 
and UKB datasets, respectively). The scoring 

performance was similar to that of morbidity status and 

yielded ROC AUC 0.60−0.62 in test subsets.
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BAA and the life expectancy in professional 

occupation groups 

 

 BAA from the network was superior to average daily 

physical activity-based BAA in scoring life expectancy 

in various professional occupations. The number of 

steps per day averaged over a sufficiently long period is 

an easy-to-understand and adjustable parameter that 

predicts mortality and morbidity [20]. This can be 

readily seen in Figure 2, where the negative logarithm 

of the number of daily steps (nloga) has all the 

properties required of BAA. However, the average

 

 
 

Figure 1. Architecture of the neural network predicting biological age acceleration (BAA). GeroSense model predicts BAA once 

per day based on step counts recorded by wearable or mobile device sensors using each individual’s week-long physical activity tracks. The 
network components responsible for the feature extraction and BAA output are shown in green. BAA can be predicted for any sample of 
arbitrary length exceeding one week. For example, BAA on day 10 is predicted using the step counts data coming from day 4 through day 10, 
and so forth. Shown in red are the network components used only during the training procedure. One is the discriminator responsible for 
domain adaptation between e.g. smartphones and smartwatches. The other is the class predictor based on the log-odds ratio trained to 
predict morbidity binary status for UK Biobank and NHANES. 

 

 
 

Figure 2. Biological age acceleration (BAA) ranks mortality and morbidity events. BAA estimated from patterns of intraday changes 

in physical activity level is associated with morbidity and mortality in NHANES (A, B) and UK Biobank (C, D) datasets. The performance was 
tested in participants aged 45−75 y.o. and was similar in training and test subsets. 
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physical activity obviously cannot be a good biological 

age measure. It is strongly affected by social factors 

and working schedule and therefore has a poor 

correlation with life expectancy across countries [8] 

and between groups of different professional 

occupations (Figure 3A). 

 

Notably, the GeroSense system produced BAA from 

wearable sensors data, which properly ranked 

professional occupation groups in NHANES according 

to both genders’ empirical life expectancy (Figure 3B). 

We did not have access to and hence could not test the 

association of physical activity and lifespan data across 

countries. Therefore, GeroSense BAA’s ability to score 

the life-expectancy of populations of different countries 

remains an open issue. 

 

Cross-platform transferability of BAA and seasonal 

variations 

 

The embeddings of physical activity tracks depend on 

the signal source, whether it is a smartphone or a 

smartwatch. Deep Neural networks are powerful 

feature-extraction tools and a proper choice to address 

this issue. We employed the domain adaptation network 

minimizing the feature-wise Kullback-Leibler 

divergence loss between samples originating from 

different devices during the training procedure. The 

problem is akin to batch removal. The proposed 

procedure helped the GeroSense network to learn the 

most common features between UKB, NHANES, and 

samples obtained from iPhone and Apple Watch.  

 

Seasonal changes affect blood parameters [21], and 

physical activity patterns recorded by wearables [12]. 

The seasonal variations of the activity patterns may be 

an additional source of unwarranted fluctuations of the 

biological age estimates. We applied another Kullback-

Leibler divergence minimization to penalize pair-wise 

differences in distributions of features for UK Biobank 

samples collected in the summer and winter. 

 

The domain adaptation worked well: BAA level 

distributions were almost indistinguishable between the 

samples originating from smartphones and 

smartwatches (p=2E−5). In contrast, the levels of 

negative logarithm of average physical activity were 

much more different (p=2.7E−80). The difference was 

expected but is still striking since we analyzed the 

smartphone and smartwatch data from the same users.  

 

The results of the statistical testing (p-values) strongly 

depend on the sample size. That is why, here and in all 

the following examples, we report p-values obtained for 

the same maximum size of 500 in each group. The p-

values themselves are calculated using Fisher’s

 

 
 

Figure 3. Biological age acceleration (BAA) correctly ranks life expectancy. (A) Assuming the negative logarithm of average daily 
steps is a proxy for bioage, the observed positive correlation (Pearson’s r = 0.81 for males) with life expectancy is an incorrect prediction. (B) 
The negative correlation (Pearson’s r=–0.27 fro males) of GeroSense BAA with life expectancy is correct. Similar results were observed for 
females with Pearson’s r=0.19 and r=–0.55, respectively (data not shown). The calculations were performed in NHANES 2005−2006 cohort 
aged 30−60 y.o. 
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combined probability test (see details in Materials and 

Methods section). 

 

Notably, there was a very significant drop in the 

physical activity levels during the COVID-19 pandemic 

lockdown in March through May 2020 as compared to 

the same period in 2019 (p<1E−30 for nloga). This was 

consistent with what was reported earlier [9]. In 

contrast, the increase in BAA was much less significant 

(p>1E−10). This may indicate that BAA responds 

weaker to the lockdown than the expected decrease in 

physical activity, see Figure 4F. Moreover, this was in 

contrast to the improved ability of BAA to predict 

future risks of COVID-19 incidence and mortality rates 

in UKB as compared to nloga. 

 

The decreased average level of physical activity (nloga) 

was associated with the increased COVID-19 risk in 

UKB [11], although it was not clear if this was not an 

effect of chronic disease burden (also known for its 

association with increased BAA). In Figure 4 we report 

that the excess BAA predicted the increased risk of 

COVID-19 incidence (for example, HR=2.4, p=4E−2 

for 16 of UKB subjects died from the disease) in the 

subset of randomly sampled 500 UK Biobank 

participants free of chronic diseases at the time of 

measurements (2013−2015).  

 

Side-by-side comparison of motion data- and blood-

based aging clocks 

 

We compared the performance of different BAA 

models for stratification of cohorts of NHANES 

participants of various lifestyles and health status. We 

have already seen in physical activity data [22] that the 

disease and smoking labels are associated with 

elevated BAA among individuals without chronic 

diseases. In our tests, the sensitivity of the BAA 

derived from blood markers was comparable to that of 

the self-reported questionnaire. GeroSense BAA 

performed consistently well in the same set of tests 

and conditions, see Figures 5, 6.  

 

Estimation of the BAA from wearable sensors has an 

advantage over blood-based models. It arises from its 

ability to further improve the signal-to-noise ratio by 

averaging over sufficiently long motion data streams. 

We demonstrated this with self-reported morbidity and

 

 
 

Figure 4. Effect of lockdown and the future risks of COVID-19 ranked by wearable BAA and blood-based bioage models. 
Association of BAA with the future incidence of COVID-19: (A) BAA in the form of the negative logarithm of daily step counts, (B) GeroSense 
BAA, (C) CBC-based DOSI [4], (D) CBC and Blood biochemistry hazards model, and (E) Blood-based PhenoAge [2] (all data are given for UK 
Biobank participants aged 45−75 y.o.). (F) Longitudinal data obtained by smartwatch show that while GeroSense is more sensitive to future 
risks it is also more selective and does not change immediately (green line) due to merely walking less during March to May 2020 lockdown 
while the average activity level does (red line). The values in panel (F) were scaled to zero mean and unit variance for comparison; shaded 
areas show one standard deviation range at each time point. 
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smoking status provided by a smartphone app and 

wristband tracker users. 

 

Averaging of GeroSense BAA predictions over a few 

weeks-long tracks led to a dramatic improvement of 

association between the BAA and morbidity/smoking 

status (Figure 7A). As expected, the sensitivity of the 

model was comparatively lower once we used 

smartphones instead of wristbands as the source of the 

data (Figure 7B) but also improved upon averaging over 

several weeks. 

 

Longitudinal analysis of BAA fluctuations reveals 

age-dependent loss of resilience 

 

BAA reversibly depends on lifestyles. Hence, BAA is a 

dynamic variable more characteristic of stress rather 

than aging and responding to random organism state 

perturbations in a stochastic manner. We used 

longitudinal tracks of step counts from Fitbit devices 

and calculated the autocorrelation function for every 

user. The autocorrelation function decayed 

exponentially. Accordingly, we carried out the 

exponential fit to infer the autocorrelation time as a 

measure of recovery rate or resilience. This quantity is a 

natural quantitative measure of an organism’s ability to 

recover its equilibrium state after stress.  

 

The characteristic decay time was typically in the range 

of a few weeks and increased with age. Figure 8A 

shows the dependence of the recovery rate (the inverse 

auto-correlation time) on chronological age. The graph 

was produced by averaging over age-stratified cohorts 

and resembles much what we have previously reported 

for blood-based marker DOSI [4]. The recovery rate 

decreased approximately linearly with age, indicating

 

 
 

Figure 5. Morbidity status scored by wearable BAA and blood-based bioage models. BAA and chronic diseases: (A) the negative 
logarithm of daily step counts, (B) GeroSense BAA (C) questionnaire [22], (D) CBC-based DOSI [4], (E) log-mortality risk trained using combined 
CBC and Blood biochemistry variables, and (F) Blood-based PhenoAge [2]. The plots are produced for NAHNES participants aged 45−75 y.o. 

 

 
 

Figure 6. Smoking status representing an unhealthy lifestyle ranked by wearable BAA and blood-based bioage models. BAA 
and smoking: (A) BAA in the form of the negative logarithm of daily step counts, (B) GeroSense BAA, (C) questionnaire [22], (D) CBC-based 
DOSI [4], (E) log-mortality risk trained using combined CBC and Blood biochemistry variables (F) PhenoAge [2]. The plots are produced for 
NAHNES participants aged 45−75 y.o. 
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the effective loss of resilience at some age exceeding 

100 y.o. The same extrapolation would suggest that the 

recovery time increases approximately hyperbolically 

and would diverge at the same age, indicating the 

complete loss of resilience and the dynamic stability of 

the organism state. 

To further investigate the relationship between 

resilience and aging, we identified individuals, which 

failed to recover quickly under stress. We established a 

somewhat arbitrary resilience cutoff corresponding to 

the recovery time exceeding 3 weeks. The fraction of 

such “non-resilient” individuals increased exponentially

 

 
 

Figure 7. Accuracy of BAA grows with longer data collection intervals. Significance of association of GeroSense BAA with morbidity 
and current smoking status is improved when BAA is averaged over several weeks of data obtained from sensors of smartwatch (A) and 
smartphone (B). 

 

 
 

Figure 8. Resilience and its age-related degradation can be measured using longitudinal motion sensor data. (A) The relaxation 
rate (or the inverse characteristic recovery time) computed for sequential age-matched cohorts of Fitbit users decreased approximately 
linearly with age. The recovery rate could be extrapolated to zero in the age exceeding ~110 y.o. (at this point, we may expect the complete 
loss of resilience and, hence, loss of stability of the organism state). The shaded area shows the 95% confidence interval of fit using 
GeroSense BAA. (B) The fraction of individuals suffering from the lack of resilience (defined as BAA’s autocorrelation time exceeding 3 weeks; 
the vertical axis) as the function of chronological age (the horizontal axis). The autocorrelation time was computed from longitudinal tracks of 
GeroSense BAA predicted for Fitbit wristband users. 
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as a function of age (see Figure 8B). Moreover, this 

growth demonstrated the characteristic doubling rate 

of 0.087 per year, which was close to the mortality 

rate doubling rate according to the Gompertz 

mortality law. 

 

DISCUSSION 
 

We report the development and characterization of a 

deep neural network model trained to quantify the state 

of human health from the analysis of intraday physical 

activity tracks collected by consumer wearable devices 

(including mobile phones). The quantity has properties 

of biological age acceleration (BAA): it is associated 

with chronic diseases and life-shortening lifestyles, 

predicts the risks of death and future incidence of 

chronic diseases in cohorts of individuals free of 

chronic diseases [4].  

 

Deep neural networks are natural tools for learning non-

trivial and highly non-linear representations of the input 

data. Convolutional and recurrent networks have been 

used for the analysis of intraday physical activity data 

streams from wearable devices and predictive modeling 

of health outcomes [23] including biological age [17, 

24]. Often such models demonstrate a moderate 

improvement in accuracy at a price of a decreased 

transferability across datasets with different baseline 

feature levels. This is, of course, is well-known batch 

effect problem in large-scale studies in biology [25], 

which is often aggravated by feature-rich deep learning 

architectures [26, 13].  

 

GeroSense BAA model employs additional neural 

network components to address this domain shift 

problem to ensure learning device-independent 

representations of the input signal. To achieve this 

goal, we imposed an additional loss in the course of 

training to penalize model parameters if distributions 

of learned representations were too far apart for data 

from different domains (devices). Without such a 

domain adaptation, the properties of the signal may 

indeed be very different even in the same biological 

context. For example, the (log-scaled) average 

number of daily steps recorded by phone was 

significantly lower (p=2.7E−80) than that by the 

smartwatch in the data from the same users. 

GeroSense BAA network successfully resolved this 

batch effect and yielded essentially indistinguishable 

BAA distributions for the same population (p=2E−5). 

 

The average activity level recorded by the same device 

in a group of people of the same gender, professional 

occupation, and country of residence is already an 

excellent and popular proxy to biological age. The 

association between the mean activity and health is 

robust and hence is the basis for the popular 

recommendation to take a minimum of 10,000 steps a 

day [27]. However, the average activity level is highly 

context-dependent, which is why it is poorly associated 

with life expectancy across countries [8]. In our study, 

we demonstrate that the average activity is incorrectly 

(negatively) associated with the life expectancy across 

professional occupation groups (Figure 3A).  

 

The device-independent features from intraday physical 

activity patterns from the GeroSense network are still 

associated with health but decoupled from the mean 

activity. The procedure did not undermine the predictive 

power of GeroSense model, as we could see from the 

BAA association with mortality events (Figure 2). 

GeroSense BAA was superior in scoring life expectancy 

in professional occupation subgroups (Figure 3B). This 

feature of the model should be useful in applications 

involving health risk assessment and life insurance 

applications. 

 

Biological clocks based on mortality risk, including 

GeroSense BAA, are associated with the prevalence 

 of chronic diseases (Figure 5) and life-shortening 

lifestyles, such as smoking, in a reversible way (Figure 

6). This is totally consistent with earlier observations of 

the effect of smoking on physical activity [20], blood 

markers [4, 22], and DNAm PhenoAge [2]. 

 

In NHANES cohorts, the GeroSense model produced 

the association between the BAA and the morbidity and 

smoking labels at the significance level matching that of 

the BAA calculated based on self-reported health 

questionnaire [22], blood test-based bioage including 

CBC only [4], and blood biochemistry [22], and 

Phenotypic Age [2].  

 

The longitudinal character of motion data provides a 

natural way to improve the signal-to-noise ratio by 

averaging over sufficiently long tracks (see Figure 7A, 

7B). This may be critical for mobile phone applications 

since the step counts recorded by phones suffer from 

missing data whenever a device is idle and is not 

recording the user’s walks. Our analysis suggests that 

GeroSense BAA from smartphones can be averaged to a 

useful level once at least a few months of data are 

available for an individual. The inferior performance of 

the biological age model in smartphone data can be 

compensated by smartphone population coverage 

compared to that of wristband wearable devices. The 

smartphone motion data can be used for truly large-

scale epidemiological studies involving cohort 

comparisons. The latter factor might turn important to 
mitigate the issues of non-representative datasets due to 

possible income/health status [13, 28] and already 

observed enrollment biases [29]. 
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We observed, that GeroSense BAA is also associated 

with the incidence of non-chronic diseases. This is 

consistent with earlier observations of the association of 

lower physical activity levels and risks of COVID-19 

infection [10, 11], although it was not clear whether this 

is an effect of chronic diseases, also negatively affecting 

mobility. GeroSense BAA was better associated with 

the incidence of COVID-19 than the average physical 

activity level in UKB among a sub-population of 

individuals free of chronic health conditions (Figure 4).  

 

The average physical activity dropped worldwide in 

2020 in the course of COVID-19 lockdown [9]. We also 

observed a significant change in (log-scaled) number of 

daily step counts in our data, but not in GeroSense BAA 

during March–May 2020 as compared to the same 

period in 2019. We provided evidence suggesting that 

GeroSense BAA more efficiently sores those at risk of 

getting an infection than the physical activity level. The 

effects of lockdown on morbidity risk may be smaller 

than one could expect simply by monitoring the drop of 

the activity. Further studies including direct association 

with epidemiological data are required to test this 

hypothesis. 

 

The idea of reducing complex biological signals to as 

little as one variable, the BAA, in relation to the 

current or future health arises from the effectively low 

dimensionality of physiological systems. Typically, 

physiological and behavioral responses manifest 

themselves as highly coordinated changes in 

physiological variables, such as blood tests [4] or daily 

physical activity patterns [20]. The increasing 

concordance between the physiological indices is 

expected to increase late in life, as the range of the 

fluctuations and the organism state recovery time 

effectively diverge at advanced ages indicating a 

maximum attainable lifespan [4]. On the contrary, the 

number of the relevant variables is expected to 

increase if we turn to the characterization of the 

organism state variation at a higher sampling rate. This 

might be the case for a situation involving response to 

an acute illness on time scales of days or a few weeks 

[30], such as increased RHR during fever [31, 32] or 

change in sleep patterns as potentially a COVID-19 

specific signal [33, 34]. 

 

The quantitative characterization of the dynamic 

properties of BAA fluctuations or recovery processes 

requires a reliable determination of baseline BAA. This 

task may be hampered by seasonal variation of the 

physiological state variables, such as blood tests [21, 

35], blood pressure [36], resting heart rate [37], and of 
course physical activity [12]. High-quality research 

studies acknowledge this problem and adjust for 

baseline oscillations [12, 28]. Such corrections are 

straightforward for relatively short time scales involved 

in acute respiratory illnesses [30] or post-operative 

recovery [38].  

 

Unfortunately, proper adjustments are not always 

possible in practice. Health outcomes associated with 

BAA may be years apart from the time (and hence the 

season) of observations [19]. Otherwise, the time of 

measurements may be available at poor granularity. For 

example, NHANES provides publicly only the binary 

labels corresponding to the winter–spring (November–

April) or summer–fall (May–October) seasons.  

 

We trained the GeroSense BAA model with an 

additional loss penalizing the winter-summer 

distribution difference. In such a way, the model output 

is decoupled from seasonal variations and yet 

demonstrated pretty good performance in ranking health 

outcomes. We expect that this feature of GeroSense 

BAA will be handy for practical applications. 

 

The longitudinal character of motion data allows the 

investigation of organism state fluctuations in 

response to natural stresses and diseases. We 

computed autocorrelation functions of GeroSense 

BAA along the individual BAA trajectories. The 

recovery rate measured as the inverse decay time of 

the autocorrelation function demonstrated an age-

dependent decrease (Figure 8A). Extrapolation to 

advanced ages shows, that the recovery rate vanishes 

(and hence the resilience formally diverges) at some 

age exceeding 100 years, which may be an indication 

of limiting lifespan [4]. 

 

The recovery time among the most healthy individuals 

was in the range of a few weeks. We used a somewhat 

arbitrary cutoff corresponding to the recovery rate less 

than 3 week-1 and used it to mark individuals with 

longer recovery time as those who lack resilience. We 

observed a progressive exponential increase of the 

fraction of non-resilient persons in the population with 

age (Figure 8B). This number grew and doubled every 

8 years, which is close to the mortality rate doubling 

time in Gompertz mortality law for the human 

population [16].  

 

Long auto-correlation times of state fluctuations are 

typical for complex systems approaching a tipping point 

or in the process of disintegration [14] and represent a 

hallmark of aging [15, 4]. Case fatality rates (CFR) 

accelerate with age in the case of COVID-19, stroke, 

and probably other diseases. The characteristic doubling 

rate in the case of COVID-19 is reported in [39] as 6−9 
years. Our estimation from the figure in [40] yielded 

≈10 years for the doubling rate for one-year survival of 

stroke patients. The physiology of stroke and infection 
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diseases is apparently very different. The similarity of 

patterns of age-dependence of CFR is intriguing and 

may suggest that the loss of resilience may be a good 

marker of the approaching loss of dynamic stability of 

an organism and hence a major and universal 

contributing factor to the fatality.  

 

The reversible character of the association between 

mortality risk-based BAA and unhealthy lifestyles 

(such as smoking) suggests that BAA is not a 

biomarker of aging but instead is a measure of the 

overall stress level. BAA’s dependence on age in 

large cross-sectional datasets is a marker of stress 

imposed by the increasing burden of chronic diseases. 

The high sampling rate achievable by the motion data 

lends us a richer set of biomarkers associated with 

age. Aside from the average BAA level, the 

continuous data collected by wearable sensors 

provides a practical opportunity to investigate the 

autocorrelation and variance properties of BAA 

fluctuations, which are independent organism state 

variables, each uniquely informing about the user’s 

health state. We can hardly imagine a large-scale 

blood test study involving sampling more often than 

once a month or so for healthy people. Therefore, only 

the motion data analysis exemplified here is the only 

technology currently up for the task. 

 

Wearable device motion data have already been used 

for monitoring acute illnesses including detection of 

early signs of the outbreak of influenza-like illnesses 

[28] and COVID-19 [30, 34]. Application of motion 

data, including the wider deployment of the GeroSense 

system, described here, should provide means to 

monitor levels of stress and resilience in response to 

environmental conditions or interventions on a 

population level in different countries and socio-

economic groups in future studies. We hope that future 

developments will lead to further applications of AI in 

geroscience research, public health, and policy decision-

making. 

 

MATERIALS AND METHODS 
 

Datasets 

 

UK Biobank 

Physical activity for UK Biobank participants aged 

40−80 y.o. (54,777 female and 42,543 male) was 

measured by Axivity AX3 tri-axial accelerometers 

worn on the wrist for one week. We converted 100Hz 

raw acceleration measurements to step counts per 

minute to fit the format of data in other datasets used 

in this study. The number of steps during each 

consecutive minute was counted as the number of 

peaks of the absolute value of acceleration exceeding 

1.3g. To ensure the local noise does not affect the 

result, only one peak (the highest) was counted in 

each 480ms sliding window with a step of 160ms 

resulting in at most 3 step counts during each 960ms. 

Steps closer to each other than 90s were combined 

into walking bouts and bouts with less than 5 steps in 

total were discarded. 

 

NHANES 

Physical activity for NHANES 2005−2006 participants 

was used in the form of step counts per minute collected 

by ActiGraph AM-7164 single-axis accelerometer worn 

on hip. Data were retrieved from the file “Physical 

Activity Monitor” of the “Examination data” category. 

Samples for 3,362 female and 3,148 male participants 

aged 6−85 y.o. were used. 

 

Healthkit 

Physical activity for users of Gero app aged 45−75 y.o. 

(464 female and 1,412 male users of smartphone, 125 

female and 598 male users of smartwatch) was obtained 

from Healthkit. Raw activity data comprised the number 

of steps recorded by either smartphone or smartwatch 

during a time period with start and end timestamps and 

was resampled to equispaced time series of steps per 

minute. 

 

Morbidity status 

 

Binary morbidity status for the Healthkit dataset was 

assigned according to response to the survey question 

"Have you ever been told you have one of the 

following: diabetes, hypertension, cancer, coronary 

heart disease, heart failure, heart attack, or stroke?" 

Binary morbidity status of NHANES and UK Biobank 

participants was assigned according to the presence of 

at least one of those diagnoses. We used NHANES 

data on health condition and age at diagnosis available 

in the questionnaire category “Medical Conditions” 

(MCQ). Data on diabetes and hypertension was 

retrieved additionally from questionnaire categories 

“Diabetes” (DIQ) and “Blood Pressure and 

Cholesterol” (BPQ), respectively. For UK Biobank we 

aggregated ICD10 (block level) data to match that of 

NHANES and used the following ICD10 codes to 

cover the health conditions in UK Biobank: diabetes 

(E10-E14), hypertension (I10-I15), cancer (C00-C99), 

coronary heart disease (I20-I25), congestive heart 

failure (I50), myocardial infarction (I21, I22), and 

stroke (I60-I64). 

 

Life expectancy 

 
Empirical life expectancy from birth was determined for 

professional occupation groups using linked death 

register follow-up data for NHANES 2005−2015 
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surveys. To do that we fitted parameters of Gompertz 

likelihood adopted from [41]: 
 

( ) ( )Γ ΓΔ0
0ln 1 ln Γ  ,

Γ
n nt t

n

all dead

M
LH e e M t

−
− = − − +   

 

where M0 and Γ are the initial mortality rate and 

mortality doubling rate of the Gompertz mortality law, 

tn is the age of n-th participant at the end of followup, 

and Δtn is the follow-up time since enrollment in 

NHANES survey.  
 

Once M0 and Γ were obtained by the fit for each 

professional occupation group, the life expectancy t  in 

the group was calculated as: 
 

0

1 Γ
ln  ,

Γ Γ
t

M

 
= − 

 
 

 

Where γ≈0.58 is the Euler-Mascheroni constant. The 

expression for life expectancy is asymptotically correct 

whenever 
0 / Γ 1M , which is definitely true in 

human cohorts. 
 

Statistical analysis 
 

Statistical analysis of the association of various 

Biological Age measures with morbidity/smoking status 

was performed using two-sided Mann-Whitney test. To 

ensure the reported p-values are comparable between 

tests we used the same cutoff of maximum of 500 

samples in each test with 100 random samplings 

followed by combining p-value according to Fisher’s 

combined probability method [42]. All statistical tests 

were carried out using the python package SciPy 

(version 1.5.2). 
 

Blood tests-based biological age models 
 

In this work, we used blood tests-based biological age 

models trained using Cox proportional hazards 

approach in NHANES mortality follow-up data and 

reported elsewhere earlier. The Blood CBC (DOSI) 

model was trained using log-scaled values of 

hemoglobin, mean corpuscular volume, mean 

corpuscular hemoglobin concentration, red blood cell 

distribution width, red blood cell, platelet, neutrophil, 

lymphocyte, monocyte, and eosinophil counts as well as 

biological sex label [4]. The Blood Biochemistry model 

additionally included age, and log-scaled values of C-

reactive protein, albumin, alkaline phosphatase, gamma-

glutamyl transferase, globulin, and serum glucose [22]. 
The Blood PhenoAge model was based on age, 

albumin, creatinine, serum glucose, log-scaled C-

reactive protein, lymphocyte percent, mean cell volume, 

red cell distribution width, alkaline phosphatase, and 

white blood cell count [2].  

 
Neural network architecture 

 
Deep neural network architecture is schematically shown 

in Figure 1. Wearable data is input in the form of a 

continuous array of steps per minute. The input is 

immediately converted to a one-hot embedding 

representation, where each bin corresponds to an 

increment of 4 steps per minute. Next, the encoded data is 

processed by a block of 16 1D-convolutional layers, each 

having 16 filters with a kernel size of 3 and “elu”-

activation. One in two convolutional layers is followed by 

a local max-pooling with stride 2, 3 or 5, and each layer is 

followed by batch-normalization. The output of the 

convolutional block was 4 features per every 1440 points 

in the input array, which corresponds to the number of 

minutes in one day. Finally, the features were subject to a 

7 day-long average pooling and linearly combined with 

binary biological sex label so that the deep neural network 

was capable of outputting a prediction once per day based 

on 7 previous days. 

 
The output of the deep neural network was interpreted 

as the Biological Age Acceleration (BAA) expressed in 

years of healthy life expectancy gained or lost. To 

guarantee this, during the supervised training of class 

label predictor we obtained the value of the Biological 

age of each NHANES and UK Biobank user by adding 

the network output (BAA) to the chronological age. The 

Biological age was then subject to sigmoid activation 

and fitted to binary morbidity status label, assuming that 

such procedure is an approximation to fitting 

proportional hazards model [18, 19]. 

 
The Domain adaptation networks were employed in the 

form of pairwise Kullback-Leibler divergence loss 

functions applied to enforce similar feature distributions 

for samples from UK Biobank on one side and 

NHANES, HealthKit smartphones, and smartwatches 

on the other side. Additionally, a domain adaptation was 

applied to UK Biobank samples collected during 

summer and winter as well as to samples with up to 3 

zero-imputed (missing) days. 

 
The training procedure was run for 2000 iterations, each 

batch comprising 256 samples. The class predictor was 

trained on each iteration for UK Biobank samples and 

only on one in five iterations for NHANES to avoid 

potential overfitting since the number of NHANES 

samples was small. All domain adaptation networks 

were trained on each iteration. Each network was 
trained using Adam optimizer as implemented in python 

package tensorflow-gpu (version 2.3.1) with a learning 

rate of 1E−3. 
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Data and code availability 

 

Data and code are available at https://gerosense.ai from 

the corresponding authors upon reasonable request. 
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