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INTRODUCTION 
 

Patients with chronic kidney disease (CKD) face a 

dramatically increased risk of mortality from 

cardiovascular disease (CVD) [1, 2]. Structural and 

functional alterations of the cardiovascular (CV) 

system characterize CKD including endothelial 

dysfunction, arterial stiffening and changes in  
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ABSTRACT 
 

CVD remains the major cause of mortality with graft functioning in Kidney transplant recipients (KTRs), with an 
estimated risk of CV events about 50-fold higher than in the general population. Many strategies have been 
considered to reduce the CV risk such as the use of mTOR inhibitors. We evaluate whether chronic mTOR 
inhibition might influence CV aging in KTRs studying the molecular mechanisms involved in this effect. We 
retrospectively analyzed 210 KTRs with stable graft function on therapy with CNI and mycophenolic acid (Group 
A, 105 pts.), or with CNI and mTORi (Everolimus, Group B, 105 pts.). The presence of mTOR inhibitor in 
immunosuppressive therapy was associated to increase serum levels of Klotho with concomitant reduction in 
FGF-23, with a significant decrease in left ventricular mass. In addition, KTRs with mTORi improved 
mitochondrial function/biogenesis in PBMC with more efficient oxidative phosphorylation, antioxidant capacity 
and glutathione peroxidase activity. Finally, group B KTRs presented reduced levels of inflammaging markers 
such as reduced serum pentraxin-3 and p21ink expression in PBMC. In conclusion, we demonstrated that mTOR 
inhibition in immunosuppressive protocols prevents the occurrence and signs of CV aging in KTRs. 
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left ventricular geometry, closely resembling  

the modifications of vessels wall and heart of  

aging subjects [3]. Indeed, CKD can be  

considered as a model of accelerated CV aging [2, 4–

6], since heart and vessels are more susceptible  

to several stress conditions [7]; with development 

several hemodynamic changes, hypertension and 

atherosclerosis. Interestingly, this process appears 

 to be independent by traditional cardiovascular  

risk factors, but linked to accelerated aging 

phenomena [8].  

 

Mitochondria may represent a further link in this 

contest, since mitochondrial dysfunction has been 

reported in different models of CKD [9]. These 

subcellular organelles play a key role in the aging 

process modulating cellular oxidative stress, although 

there is now evidence of alternative pathways of aging-

associated mitochondrial dysfunction leading to 

functional decline of cells independent of reactive 

oxygen species [9]. Klotho, a fibroblast growth factor- 

23 (FGF-23) co-receptor, has a well-recognized 

function in the aging process and may represent a link 

between aging and kidney disease [10]; Klotho plays a 

key role in the regulation of aging, particularly at the 

cardiovascular level, by inhibiting local phosphate 

uptake into vascular smooth muscle cells (VSMCs), and 

their differentiation in osteoblast-like cells and 

preservation of endothelial function [11, 12].  

 

Mammalian target of rapamycin (mTOR) is a key 

cellular kinase, whose inhibition has been associated with 

an increased lifespan in worms, flies and mice [13, 14]. 

In addition, mTOR modulates several metabolic 

pathways contributing to cellular senescence, including 

autophagy, mitochondrial respiratory function and 

biogenesis, and Klotho expression/function [15, 16]. 

Moreover, mTOR is up-regulated by nutrients, including 

phosphate, that induces vascular calcification, driving 

osteogenic trans-differentiation of VSMCs [17]; 

interestingly, mTOR activation in VSMCs can reduce 

expression of klotho [17, 18]. 

 

Specifically, in the setting of kidney transplant 

recipients (KTRs), CVD remains the major cause of 

mortality with functioning graft [19], with an 

estimated risk of CV events about 50-fold higher than 

in the general population [20]. I Immunosuppressive 

therapy can adversely affect kidney function; 

moreover, immunosuppressive drugs might lead to 

relevant side effects linked to CVD with the 

development of unfavorable CV scenario in KTRs 

[21, 22]. Many strategies have been considered to 
reduce the CV risk of KTRs, such as steroids or 

calcineurin inhibitors (CNI) minimization, but current 

data are inconclusive [23]. The cornerstone of CNI 

minimization is the introduction of mTOR inhibitors 

(mTORi) in the immunosuppressive protocol [24–26].  

 

In this study we investigated whether chronic mTOR 

inhibition might influence CV aging in KTRs; 

moreover, we evaluated the molecular mechanisms 

involved in this effect, focusing on the role of 

klotho/FGF23 axis and mitochondrial function 

/biogenesis. 

 

MATERIALS AND METHODS 
 

Patients 

 

We conducted a multicenter, observational, case–

control study enrolling KTRs in Transplantation 

centers of Foggia and Bari (Italy). The study protocol 

was approved by the Ethical Committee of the 

coordinating center (Study n° 4440; Prot. 

N.670/CE−2014) according to the Declaration of 

Helsinki. Once written informed consent was 

collected, we included in the study 210 renal 

transplant recipients with stable graft function and 

affected by CKD stage 3–5, on therapy with CNI and 

mycophenolic acid (Group A, 105 pts.), or with CNI 

and mTORi (Everolimus) (Group B, 105 pts.) from at 

least one year. The patients were recruited after 

qualifying to the following criteria: inclusion criteria: 

age>18 years; recipient of a primary renal allograft 

from a cadaveric donor, stable graft function, 

calcineurin-inhibitors-based therapy; estimated GFR 

<60 ml/min, time from transplantation >12 and <60 

months; leukocytes>4x109/L, platelets>100x109/L, 

fasting triglycerides<350mg/dL, fasting cholesterol 

<300mg/dL. Exclusion criteria: panel reactive 

antibodies >50%; an acute rejection episode in the 

previous 12 months; active systemic infection  

[27]; presence of neoplasia and previous history of 

cancer [28]. 

 

No changes in immunosuppressive therapy were done 

from at least one-year former enrollment for all patients 

recruited. The enrollment period was 12 months and 

follow-up time was two years monitoring the principal 

CV events. The immunosuppressive efficacy was 

monitored through the measurement of the drugs trough 

level (T.L.). The two groups were matched for the main 

demographic features, graft function and transplantation 

vintage. 

 

Methods 

 

Cardiac evaluation 

All patients were evaluated by conventional 2D and 

TDI echocardiography under resting conditions as 

previously described [29]. 
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Transthoracic echocardiography was performed with 

the use of iE33 (Philips Medical Systems, Andover, 

MA, USA) as previously described [30, 31].  

 

TDI was performed using apical views for the long-axis 

motion of the ventricles. Two-dimension 

echocardiography with TDI-color imaging was performed 

using aS5-1 Sector Array Transducer with Pure Wave 

Crystal Technology (5 to 1 MHz). Two-dimensional 

echocardiography with TDI color imaging views were 

optimized for pulse repetition frequency, color saturation, 

sector size, and depth and were allowed the highest 

possible frame rate. At least 3 consecutive beats were 

stored, and the images were analyzed offline with the aid 

of a customized software package (QLAB quantification 

software, Philips).  

 

PBMC isolation and RNA extraction 

 

Twenty milliliters of whole blood were collected from 

patients (8 CNI-MPA and 10 CNI-EVE) at the time of 

enrollment (T0). For 5 out of 8 CNI-MPA patients, 

whole blood was harvested at T0 and after 6 (T1) and 

12 months (T2) from conversion to Everolimus 

treatment. PBMCs were isolated by density separation 

over a Ficoll–Hypaque gradient (Flow-Laboratories, 

Irvine, UK). Total RNA was extracted by the RNeasy 

mini kit (Qiagen, Valencia, CA).  

 

Real-time quantitative qPCR 

 

Reverse transcription of total RNA (500 ng) was 

performed as previously described [32]. qPCR was 

conducted in triplicate using SsoAdvanced™ 

Universal SYBR® Green Supermix (Bio-Rad 

Laboratories, Hercules, CA, USA) and two  

separate sets of oligonucleotide primers specific 

 for Homo sapiens cyclin-dependent kinase inhibitor 

1A (CDKN1A), transcript variant 1, mRNA (p21), 

(upstream 5’- TGGAGACTCTCAGGGTCGAAA-3’, 

downstream:5′ GGCGTTTGGAGTGGTAGAAATC-

3’ Invitrogen, Milan, Italy) and glyceraldehyde-3 

phosphate dehydrogenase (GAPDH) (upstream 5′-

GAA GGT GAA GGT CGG AGT CA-3′; 

downstream: 5′-CAT GGG TGG AAT CAT ATT 

GGA A-3′; Invitrogen, Milan, Italy) [33]  

(Light Cycler@96 instrument (Roche, Mannheim, 

Germany) was programmed with an initial step  

of 30 seconds at 95° C, followed by 40 thermal  

cycles of 15 seconds at 95° C and 60 seconds at  

60° C for GAPDH and p21. Melting curve  

analysis was employed to exclude nonspecific 

amplification products. The comparative Ct method 
(ΔΔCt) was used to quantify gene expression  

and the relative quantification (RQ) was calculated 

 as 2−ΔΔCt. 

Klotho/FGF23 and PTX-3 serum level assessment 

 

Circulating Klotho/FGF23 and PTX3 were measured by 

ELISA, according to the manufacturer's instructions 

(R&D Systems, Minneapolis, MN). 

 

Mitochondrial function/biogenesis 

 

Laboratory measurements 

Blood samples were obtained and treated as previously 

described [34].  

 

Serum fluorescent adducts formed between 

peroxidation-derived aldehydes (HNE and MDA) and 

proteins were measured by spectrofluorimetry as 

previously reported [35]. The antioxidant activity was 

measured as Trolox equivalent antioxidant capacity 

(TEAC) in blood, according to a previously published 

method [36]. Glutathione peroxidase (GPx) activity was 

analyzed in PBMCs by spectrophotometry following the 

Cayman Assay kit procedure (n° 703102). 

 

Measurement of respiratory activity 

We resuspended freshly isolated PBMCs at 1 × 

106cells/500 μl in 10 mM KH2PO4, 27 mM KCl, 1 

mM MgCl2, 40 mM HEPES, 0.5 mM EGTA (pH 7.1) 

and evaluated O2 consumption by high resolution 

respirometry (Clark electrode, Hansatech Instruments 

Ltd, Norfolk, UK) at 37° C under continuous stirring. 

Next, we added oligomycin (8 µg/ml), followed by 5 

min by the addition of valinomycin (2 µg/ml). Oxygen 

consumption rate (OCR) was corrected for 3 mM 

KCN-insensitive respiration and normalized to the 

cell number. finally, we calculated respiratory control 

ratio (RCR) by dividing the rates of oxygen 

consumption obtained before and after the addition of 

oligomycin. 

 

Flow cytometric analysis 

We investigated mitochondrial injury and alteration in 

membrane potential (Δψ) by staining with 5,5′,6,6′-

tetrachloro-1,1′,3,3′-tetrathylbenzimidazolyl carbocyanine 

iodide (JC-10; Abcam Inc, Cambridge, UK),.  

 

We detected reactive species by using 2′,7′-

dichlorofluorescein diacetate (DCFH-DA, Sigma-

Aldrich, St Louis, Missouri, USA). We washed the cells 

with PBS and incubated with 10 μM DCFH-DA for 30 

min at 37° C. Analysis was carried out by a Flow Sight 

Imaging flow cytometer (Luminex Corporation, MV ‘s-

Hertogenbosch, the Netherlands). 

 

Statistical analysis 

 

Data were expressed as mean ± standard deviation of the 

mean (SDM). Gaussian distribution of the samples was 
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evaluated by Kolmogorov–Smirnov test. The significance 

of differences between the two groups was assessed by 

the student’s t-test for unpaired samples (SPSS, Inc., 

Chicago, IL; GraphPad Software, Inc., San Diego, CA). 

 

We expressed continuous variables as mean ± standard 

deviation, and categorical variables as percentages. We 

compared mean values with Student's t-test for variables 

with normal distribution or with the Mann–Whitney 

non-parametric U test for variables with a non-normal 

distribution. Percentages were compared with χ2 test. A 

p<0.05 was considered statistically significant. 

 

RESULTS 
 

Demographic and biochemistry data 

 

We did not observe statistical differences between the 

two groups of patients at the end of follow-up regarding 

age, transplant age, graft function, acute rejection 

episodes, appearance of de Novo Donor Specific 

antibodies, blood levels of immunosuppressive drugs, as 

well as for leukocytes, platelets, triglycerides, 

cholesterol, parathormone (PTH) and 1,25 

dihydroxycholecalciferol (Table 1).  

 

Interestingly, we observed a significant statistical 

difference between the two groups of patients for the 

values of FGF-23, Klotho, phosphate urine excretion 

(FGF-23 pg/ml; 2068,2 + 846,5; 320,7 + 191; 

P=0.00001; Klotho pg/ml 425,8 + 102; 802 + 109; 

p=0.01; phosphate urine excretion uPg/24 751,091 + 

342,659; 878,142 + 270,913; p=0.03, A vs B) (Figure 

1A–1C, respectively). The presence of mTOR inhibitor 

in immunosuppressive therapy was associated with an 

increase Klotho levels with a concomitant reduction in 

FGF-23 levels; we did not find differences in PTH and 

1,25 dihydroxycholecalciferol, demonstrating that 

klotho-FGF-23 axis in the kidney supports the 

phosphate homeostasis inducing phosphate urine 

excretion. 

 

Cardiac evaluation 

 

When we analyzed cardiac parameters, we did not 

observe any difference in the two groups regarding 

pulse wave velocity (PWV), Flow Mediated Dilation 

(FMD), ejection fraction (EF), LV-filling velocity and 

E-deceleration time (EDT), the ratio of trans-mitral 

early to late (E/A ratio), peak velocities of trans-mitral 

early (E) and late diastolic (A) LV filling. Moreover, 

none of patients had experiences of serious CV events 

before and during the follow-up period.  

 

In contrast, we observed a significant statistical 

difference between the two groups of patients in left 

ventricular mass (LVM) (gr; 232,7 + 45; 187,8 + 31; 

p=0.02, A vs B) (Figure 1D). The cardiac evaluation 

showed that only the value of LVM was reduced in 

patients of group B compared with Group A. This result 

underlines the protective effect of mTOR inhibitors on 

heart function, because LVM is the strongest predictor 

of the risk of subsequent congestive heart failure, a CV 

complication that can negatively affects the outcome of 

KTRs. 

 

Mitochondrial function/biogenesis 

 

Next, we analyzed the oxygen uptake of isolated 

PBMCs by high resolution respirometry. We found a 

significant increased oxygen consumption rate (OCR) in 

resting conditions (RR) in the CNI+mTORi group 

compared with CNI-MPA (Figure 2A). The addition of 

the FOF1-ATP synthase inhibitor oligomycin (OL) led to 

a significant OCR depression in both groups, suggesting 

that a significant part of mitochondrial respiration was 

coupled to ATP synthesis (Figure 2B). The collapse of 

the mitochondrial transmembrane potential (ΔΨm) by 

the addition of the K+-ionophore valinomycin (VAL) 

restored the OCR to the levels of resting respiration in 

both groups (Figure 2C). We found that these activities 

were strongly inhibited by KCN and therefore linked to 

the mitochondrial respiratory chain. 

 

The difference between the RR and after OL addition 

represents the ATP-related oxygen consumption. As 

shown in Figure 3A, this rate was increased in PBMCs 

from patients treated with CNI+mTORi compared with 

the CNI-MPA group. Similarly, the respiratory control 

ratio (RCR), which is the ratio between the resting 

respiration and oxygen uptake after OL addition, was 

higher in the CNI+mTORi group rather than CNI, 

indicating more efficient oxidative phosphorylation 

(Figure 3B). 

 

The cytofluorimetric analysis of mitochondrial 

membrane potential highlighted significant differences 

between the PBMC groups, reflecting a significant 

higher mitochondrial polarization in CNI+mTORi 

treated patients than CNI-MPA (Figure 4A). To 

determine the intracellular production of reactive 

species, DCFH-DA staining was performed on PBMCs 

from the same groups. Flow cytometry analysis showed 

a significantly higher level of fluorescent cells in 

patients treated with CNI+mTORi rather than CNI-

MPA (Figure 4B). 

 

To verify whether the increased production of reactive 

species in PBMCs from patients treated with 
CNI+mTORi was related to circulating oxidative stress, 

the level of protein oxidation was measured in terms of 

serum HNE- and MDA-protein adducts (Figure 5). We 
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Table 1. Demographic, clinical and biochemistry data. 

 T0 Group A Group B T24 Group A Group B P value 

Number  105 105  105 105 NS 

HLA Mismatches (n°)  3 + 1 2.8 + 1.3  3 + 1 2.8 + 1.3 NS 

GFR<60 ml/min  42 + 14 39 + 19  40 + 9 41 + 16 NS 

Time from transplantation (mo)  26.57 + 5.04 29.17 + 5.9  50.57 + 5.08 53.17 + 5.88 NS 

Age (yrs)  48.18 + 8.18 53.75 + 6.09  50.18 + 8.2 55.75 + 6.1 NS 

Acute rejection episodes (n°)  0 0  0 0 NS 

Fasting triglycerides (mg/dl)  198 + 39 221 + 68  198 + 39 221 + 88 NS 

Fasting cholesterol (mg/dl)  175 + 48 196 + 39  188 + 32 202 + 27 NS 

White blood cells (mmc)  8752 + 1263 6523 + 985  7120 + 1452 6900 + 1159 NS 

Platelets (mmc)  291 + 111 269 + 124  275 + 97 212 + 74 NS 

PTH (pg/ml)  289 + 99 304 + 87  312 + 114 348 + 107 NS 

1,25 VIT D (ng/ml)  23.4 + 11.3 28.2 + 13.7  20.4 + 12.2 22.6 + 15.7 NS 

De novo DSA %  0 0  0 0 NS 

Immunosuppressive Therapy  TAC – MMF - CS TAC -  EVR - CS  TAC – MMF - CS TAC -  EVR - CS NS 

T.L. Tacrolimus (ng/ml) 

T.L. Everolimus (ng/ml) 

 6.8 + 2.1 4.8 + 1.6  6.1 + 0,9 4.2 + 1.9 NS 

 0 3.8 + 1.1  0 3.1 + 0,7 NS 

 

did not observe any difference in the level of aldehyde-

protein adducts between the two groups, suggesting 

that, despite a higher production of reactive species by 

the PBMC from patients treated with CNI+mTORi, no 

circulating oxidative damage was observed. 

 

Thus, the systemic antioxidant defense in terms of 

blood trolox equivalent antioxidant capacity (TEAC) 

and glutathione peroxidase (GPx) activity in PBMC 

were studied. Interestingly, both TEAC and GPx 

activity were increased in the CNI+mTORi group with 

respect to CNI (Figure 6A, 6B). 

 

Inflammaging and senescence markers 

 

We finally evaluated the effect of mTOR inhibitors on 

two of the principal markers of Inflammaging and cellular 

Senescence, Pentraxin-3 and p21ink. Interestingly, we

 

 
 

Figure 1. Analysis of FGF-23, klotho, and phosphate urine excretion in the two groups of patients. As shown, we observed a 
significant statistical difference between the two groups of patients for the values of FGF-23, Klotho, phosphate urine excretion, indicating 
that patients receiving mTORi Group (B) presented reduced FGF-23 levels (A), increased Klotho levels (B) with enhanced phosphaturia (C). 
Interestingly, we also found a reduced left ventricular mass (LVM) in group B patients (D). 
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observed a statistically significant difference between 

the values of these markers in the two groups of patients 

(PTX3 pg/ml 115,73+48,14 vs 76,2+34,21; p=0.02; 

p21ink pg/ml 1,03+0,12 vs 0.80+0,15; p=0.002 A vs B) 

(Figure 7A, 7B, respectively). These results suggested 

that the inhibition of the mTOR pathway could block 

leucocyte transformation into pro-inflammatory and 

senescence phenotype. Real-time PCR also confirmed 

the down-regulation of p21 in PBMCs from group B 

patients compared to group A (Figure 7B). 

 

DISCUSSION 
 

In this study, we demonstrated that mTOR inhibition 

prevents the occurrence and signs of CV aging in 

kidney transplant recipients. Our results acquired a 

particular significance because they have been obtained 

in a high-risk patient population, such as kidney 

transplant patients affected by chronic graft 

dysfunction, a population similar to CKD patients.  

 

Several lines of evidence demonstrated that impaired 

renal function led to increased CV risk in KTRs [37–41]. 

A post hoc analysis of the FAVORIT Trial showed an 

association of lower eGFR (less than 45 ml/min/1.73 m2) 

with CV adverse events [42]; in a post hoc analysis of the 

ALERT study, decreased renal function was associated 

with increased risk of cardiac death [43]. These findings 

are further supported by the PORT study in KTRs 

showing a correlation between lower eGFR and increased

 

 
 

Figure 2. Boxplot representation of the normalized and KCN-insensitive-corrected oxygen consumption rates measured in peripheral blood 
mononuclear cells (PBMC) from patients treated with calcineurin inhibitor (CNi) or CNi + mTOR inhibitor (CNi+mTORi) under resting 
conditions (RR, A), in the presence of oligomycin (OL, B) and in the presence of valinomycin (VAL, C). Statistical difference was assessed by 
unpaired student’s t-test. 

 
 

Figure 3. (A) Boxplot representation of the ATP-dependent O2 consumption, measured in peripheral blood mononuclear cells (PBMC) from 

patients treated with calcineurin inhibitor (CNi) or CNi + mTOR inhibitor (CNi+mTORi) as absolute difference between that obtained in the 
absence and that in the presence of oligomycin (RR-OL) or normalized to basal respiration ((RR-OL)/RR). (B) Boxplot representation of the 
respiratory control ratio obtained by dividing the oxygen consumption rates measured in PBMCs from patients treated with CNi or CNi+mTORi 
under resting conditions by that in the presence of oligomycin (RR/OL). Statistical difference was assessed by unpaired student’s t-test. 
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coronary heart disease [44]. In this context, 

immunosuppressive therapy holds a particular 

importance. It is well known that CNI therapy is closely 

associated with worsening of renal function. Chronic 

CNIs nephrotoxicity, which is largely nonspecific in 

appearance, progresses over time [45, 46]. Although 

evidence showed less nephrotoxic effect of tacrolimus 

compared to cyclosporine in this setting of patients [47], 

however, either CNIs seem to show similar toxicity 

profile in terms of progressive eGFR reduction [48]. 

These facts strengthen our study model since all our 

patients were affected by CKD and with CNIs based 

therapy with a unique difference being the 

presence/absence of mTORi. Then, our results 

demonstrate that the presence of mTORi in the 

immunosuppressive protocol improves heart function, 

through the reduction of LVM, the strongest predictor of 

congestive heart failure that negatively affects the 

outcome of KTRs. 

 

Another important issue of our results is the effect of 

mTORi on Klotho/FGF23 axis. Klotho is probably the 

main ‘aging suppressor’ gene; its defect leads to 

multiple aging-like phenotypes with premature death 

around 2 months of age [13, 49]. Klotho is a trans-

membrane protein mainly express in the kidney where it 

works as a co-receptor for FGF-23 [50] mediating 

several functions [51]. In KTRs, mTORi influences 

phosphate homeostasis and prolongs hypophosphatemia 

that usually occurs in the early post-transplant period

 

 
 

Figure 4. (A) Percentage of peripheral blood mononuclear cells (PBMC) with polarized mitochondria from patients treated with 
calcineurin inhibitor (CNi) or CNi + mTOR inhibitor (CNi+mTORi). Mitochondrial polarization was detected by flow cytometry analysis of 
cells stained with JC-10. (B) Cytofluorimetric detection of reactive species in PBMCs from patients treated with CNi or CNi+mTORi, after 
staining with 2′,7′-dichlorofluorescein diacetate (DCFH-DA); AUF, arbitrary units of fluorescence. Statistical difference was assessed by 
unpaired student’s t-test. 

 

 
 

Figure 5. Serum levels of fluorescent hydroxynonenal- (HNE, A) and malondialdehyde- (MDA, B) protein adducts in patients treated with 
calcineurin inhibitor (CNi) or CNi + mTOR inhibitor (CNi+mTORi). AUF, arbitrary units of fluorescence. 
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[52]. It has been demonstrated the mTOR activation can 

up regulate phosphate transport across the apical 

membrane of proximal tubular epithelial cells by the 

Na+-coupled phosphate transporter; interestingly 

inhibition of mTOR can abrogates this effect [53]. The 

fact that we did not note a difference in phosphate 

serum levels between the two groups of patients may be 

due to an adaptive mechanism typically of CKD. 

Moreover, our data identify a direct effect of the 

mTORi on increased urine phosphate excretion, in spite 

of a reduction in FGF-23 serum level, as suggested by 

Tataranni et al. [54]. 

 

Several evidences suggest a direct and significant 

correlation between CVD and Klotho expression. 

Klotho can inhibit local phosphate uptake into VSMCs, 

counteract matrix mineralization and suppress 

osteoblast-like differentiation of VSMCs; moreover, 

Klotho can effici4ntly preserve endothelial function [11, 

12, 49]. interestingly, mTOR-inhibitors can be 

considered as up-regulators of klotho, potentially 

preventing or delaying the onset of age-related 

cardiovascular dysfunctions, as suggested by our 

results. 

 

The most relevant issue of our work was the results 

obtained from the study of mitochondrial 

function/biogenesis. We showed a significantly 

increased oxygen consumption rate in patients treated 

with mTORi, as well as the respiratory control ratio

 

 

Figure 6. (A) Trolox equivalent antioxidant capacity (TEAC) levels in blood from patients treated with calcineurin inhibitor (CNi) or CNi + 
mTOR inhibitor (CNi+mTORi). (B) Glutathione peroxidase (GPx) activity in peripheral blood mononuclear cells (PBMC) from patients treated 
with CNi or CNi+mTORi. Statistical difference was assessed by unpaired student’s t-test. 

 

 
 

Figure 7. Evaluation of pentraxin-3 and p21ink as markers of inflammaging in the two groups of kidney transplant recipients. 
The inhibition of mTOR pathways in group (B) was associated with reduced circulating levels of Pentraxin-3 (A) and down-regulation of p21 in 
PBMC (real-time PCR). 
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 (RCR), indicating a more efficient oxidative 

phosphorylation in this group. Moreover, the increase in 

intracellular production of reactive species, observed in 

the mTORi treated group, was not correlated with 

circulating oxidative damage. Interestingly, the 

systemic antioxidant defense was increased in the 

mTORi group. Finally, our findings reflected a 

significantly higher mitochondrial polarization that is an 

important sign of cellular efficiency. This is an 

important viewpoint since cardiomyocytes must rely on 

a constant supply of high-energy phosphates from 

mitochondria to maintain physiological contractile 

function of the heart; as consequence, the dysregulation 

of their homeostasis may play a pivotal role in the onset 

and development of aging-related cardiovascular 

disorders [55]. Mitochondria are indeed the primary 

source of ROS, which triggers endogenous process of 

apoptosis;; interestingly, this is considered the leading 

cause of cell death in aging cardiomyocytes [56–59]. In 

addition, in presence of increased ROS production, the 

Nrf-2 activity might be inhibited with a subsequent 

increase in TNF-α level:; this will lead to upregulation 

in Nox complex expression and activity, generating a 

vicious cycle [58]. Interestingly, there are organs like 

the heart that are particularly sensitive to this 

phenomenon, with a limiting rate of replication and 

high levels of oxygen consumption; this explains the 

harmful cardiovascular consequences of aging [60]. In 

this contest, our results suggest that the mTOR 

inhibition could be considered an important regulator of 

oxidative stress by promoting mitochondrial biogenesis 

and function. Finally, we evaluated two pivotal markers 

of inflammaging [61] in two groups of patients to verify 

the anti-aging effect of mTORi on these biomarkers. 

Our findings showed that the presence of mTORi was 

associated with a reduction of the above markers, 

indicating that blocking the mTOR pathway reduces or 

delays age-related biomarkers. As is well known, PTX3 

is a specific marker of localized vascular inflammation 

and damage, because it is synthesized by cells directly 

involved in atherosclerosis such as macrophages smooth 

muscle cells and endothelial cells and [62]. PTX3 as a 

pivotal role in in innate immunity as a soluble pattern 

recognition receptor; moreover, PTX3 is localized in 

atherosclerotic lesions [63]. PTX3 can induce tissue 

factor expression in monocytes and endothelial cells 

[64] therefore contributing to thrombosis through this 

mechanism. In addition, PTX3 was associated with 

CVD, all cause death and CVD risk factors in a large 

cohort of patients [65]. Finally, our results supported the 

findings of Flynn et al. that demonstrated, in animal 

models, that rapamycin-based therapy can extends the 

lifespan of mammals with functional benefits to several 
tissues such as improvement in contractile function, 

antihypertrophic signaling in the aged heart and 

reduction of age-related inflammation [66]. In addition, 

p21ink is known as a cyclin-dependent kinase inhibitor 

with a pivotal role in renal aging at the level of tubular 

epithelial and leucocytes; our data demonstrated that 

mTORi could reduce the activity of this kinase with 

positive effects on cellular homeostasis and vitality. 

 

Potential study limitations include its retrospective 

nature and the relatively small number of patients, 

other than the fact that no major CV events occurred 

during the two years of follow-up that prevent us 

doing a direct conclusion. Conversely, kidney graft 

recipients with CKD constituted our pts’ population. 

These subjects share the same or even a greater, CV 

risk and that the use of steroids and CNI had 

influenced our observation; since we do not plan to 

withdraw these drugs, the effects observed were 

uniquely due to mTOR inhibition and this represent a 

key strength of our study. Moreover, the main 

problem with the use of mTORi is the high drop-out 

rate due to side effects. However, with dose-proposed, 

none patients were drop-out.  

 

In summary, our findings represent, the first attempt, to 

our knowledge, to investigate the ability of chronic 

pharmacological mTOR inhibition to delay vascular 

changes in a human model of accelerated vascular aging 

like KTRs. In addition, our results may shed light on the 

mechanisms involved in the pathogenesis of CKD-

induced CVD and clarify, in a clinical setting, the links 

between mTOR activation and other relevant regulatory 

systems in aging biology as klotho/FGF23 axis and 

mitochondrial function/biogenesis. 
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