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INTRODUCTION 
 

Bladder cancer is the most common malignant tumor 

of the urinary system. It is the ninth most incident 

neoplasm in China and the 10th most common 

malignant tumor worldwide [1, 2]. Bladder cancer 

incidence increases with age, with the age of peak 

incidence at 50–70 years. Its incidence in men is 3–4 

times greater than that of women [3]. With the  

aging of the population, changes in living habits, and 

improvements in diagnostic technology, bladder 

cancer incidence has increased yearly. Although the 

diagnosis and treatment of bladder cancer have greatly 

improved, advanced bladder cancer outcomes remain 

poor; the 5-year survival rate is low. Although  

studies have reported some prognostic biomarkers for 

bladder cancer [4], their utility is reduced by various 

factors, and the predictive power of individual 
indicators is insufficient. By contrast, genetic testing 

provides better predictive performance, and multigene 

prognostic models guide clinicians in choosing 

appropriate treatments [5].  
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ABSTRACT 
 

Background: Bladder cancer (BLCA) is one of the most common urinary tract malignant tumors. It is associated 
with poor outcomes, and its etiology and pathogenesis are not fully understood. There is great hope for 
immunotherapy in treating many malignant tumors; therefore, it is worthwhile to explore the use of 
immunotherapy for BLCA. 
Methods: Gene expression profiles and clinical information were obtained from The Cancer Genome Atlas 
(TCGA), and immune-related genes (IRGs) were downloaded from the Immunology Database and Analysis 
Portal. Differentially-expressed and survival-associated IRGs in patients with BLCA were identified using 
computational algorithms and Cox regression analysis. We also performed functional enrichment analysis. 
Based on IRGs, we employed multivariate Cox analysis to develop a new prognostic index.  
Results: We identified 261 IRGs that were differentially expressed between BLCA tissue and adjacent tissue, 30 
of which were significantly associated with the overall survival (all P<0.01). According to multivariate Cox 
analysis, nine survival-related IRGs (MMP9, PDGFRA, AHNAK, OAS1, OLR1, RAC3, IGF1, PGF, and SH3BP2) were 
high-risk genes. We developed a prognostic index based on these IRGs and found it accurately predicted BLCA 
outcomes associated with the TNM stage. Intriguingly, the IRG-based prognostic index reflected infiltration of 
macrophages. 
Conclusions: An independent IRG-based prognostic index provides a practical approach for assessing patients' 
immune status and prognosis with BLCA. This index independently predicted outcomes of BLCA. 
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The rise of immunotherapy, especially immune 

checkpoint inhibitors, has changed the treatment mode 

for advanced bladder cancer [6]; however, its 

remission rate remains substantial; therefore, it would 

be helpful to generate an immune-related gene model 

to stratify the risk of bladder cancer both to predict 

outcomes and to track treatment. And the study  

of the immune gene-related model has been reported 

in a variety of tumors, including colorectal  

cancer, head and neck cancer, and papillary thyroid 

cancer [5, 7, 8]. 

 

In the present study, based on TCGA, we aimed to 

identify reliable immune gene-related biomarkers to 

predict bladder cancer outcomes. We used R software to 

identify differentially expressed immune genes 

combined with clinical data from TCGA. We selected 

immune genes significantly related to outcomes to 

construct a model that predicts bladder cancer 

outcomes. Our findings may lay the foundation for in-

depth immune-related work and may enable 

personalized treatment of bladder cancer. 

 

MATERIALS AND METHODS 
 

Clinical samples and data collection  

 

Transcriptome RNA-sequencing data and corresponding 

clinical data of all bladder cancer samples (including 410 

bladder cancer samples and 19 non-tumor samples) were 

downloaded from TCGA (https://cancergenome.nih.gov/), 

excluding patients with overall survival of <90 days and 

unclear clinical stage [9]. Each tumor sample 

corresponded to one patient. The data collection date was 

June 1, 2020. The list of immune-related genes (IRGs) 

was downloaded from the immunology database and the 

analysis portal (ImmPort) database (https://www. 

immport.org/home) [10]. ImmPort provides accurate and 

timely immunological data, including IRGs for cancer 

research. The data shared through ImmPort provides a 

strong foundation for immunology research. The IRGs we 

downloaded from this website were involved in immune 

activity [11].  

 

Analysis of differentially expressed genes  
 

Transcriptome RNA-sequencing data was collated and 

standardized. Differential gene analysis returned a list of 

significantly differentially expressed genes (DEGs) using 

the limma package in R software [12], with the log2 | fold 

change | >1 and the false discovery rate <0.05 as the 

cutoff values [8]. We created heat maps of DEGs using 

the pheatmap package and drew differential gene 

expression volcano plots using the ggplot2 package [13, 

14]. Then, we extracted differentially expressed IRGs 

from the intersection of immune genes and all DEGs.  

Differential immune gene analysis 

 

The search tool STRING (https://string-db.org/) allows 

searches for interacting genes; it is a biologically 

predictive web resource containing many proteins and 

known interaction functions [15]. We used the 

correlations of these functions and expression levels to 

analyze and evaluate the interactions of DEGs. We 

designated a composite score greater than 0.4 as the 

cutoff criterion. Based on STRING information, we 

built a PPI network using Cytoscape software [16] 

(version 3.7.2).  

 

Survival-related IRGs and survival analysis 

 

We downloaded the clinical characteristics and 

follow-up data from TCGA and selected overall 

survival (OS) as the primary endpoint; we then 

analyzed and sorted the data using Perl software. We 

used a univariate Cox regression analysis to select 

genes related to survival (false discovery rate <0.05). 

Based on the Schoenfeld residual (phtest) of the Cox 

regression model, we made proportional hazards 

assumptions. The significance value of the overall 

proportional hazard test was less than 0.01 (P <0.01). 

The hazard ratio (HR) is the ratio of the expression of 

IRGs between tumor samples and standard samples. 

We defined high-risk IRG (HR >1) and low-risk IRG 

(HR <1), with HR = 1 as the critical value. 

 

Transcription factor-mediated regulatory network 

 

Transcription factors (TFs) control gene expression, 

including IRG, and play a vital role in regulating 

immune function. Therefore, it is necessary to explore 

the interaction between survival-related IRGs and 

TFs. First, we downloaded 318 TFs from  

the Cistrome Cancer database (http://cistrome.org/Cist 

romeCancer/) [17]. Then, we extracted differentially 

expressed TFs from all DEGs to draw expression heat 

maps and volcano maps. Subsequently, we used R 

software to carry out correlation analysis of 

differentially expressed TFs and survival-related 

IRGs. If the |correlation value| was >0.6 and P <0.05, 

the correlation was reliable. We constructed a TF-

mediated regulatory network for high-risk survival-

related IRGs (HR >1) and potential TF using 

Cytoscape software. 

 

Development of the IRG-based prognostic index 

 

We used expression data and coefficients of these 

survival-related IRGs to develop an IRG-based 
prognostic index (IRGPI) using multivariate analysis. 

We used multivariate Cox regression analysis to 

calculate the correlations between risk scores and OS 

https://cancergenome.nih.gov/
https://www.immport.org/home
https://www.immport.org/home
https://string-db.org/
http://cistrome.org/CistromeCancer/
http://cistrome.org/CistromeCancer/
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and identify potential prognostic IRGs, with 

integrated IRGs remaining independent prognostic 

indicators. Specifically, we constructed the IRGPI by 

multiplying the expression value with the Cox 

regression coefficient [18]. 

 

Assessment of IRGPI and genetic alteration analysis 

 

We classified patients as high-risk or low-risk based 

on IRGPI values and used the R package pheatmap to 

draw risk curves. We drew corresponding Kaplan–

Meier survival curves to show the OS of the various 

risk groups. We drew receiver operating characteristic 

(ROC) curves to assess the sensitivity and specificity 

of the model. IRGPI and clinicopathological factors 

were analyzed for single factor and multi-factor 

survival. These analyses were performed using the R 

package survival [19]. We also explored the 

correlation between hub IRG expression and 

clinicopathological factors.  

 

Immune cell correlation analysis 

 

The Tumor Immune Estimation Resource (TIMER 

https://cistrome.shinyapps.io/timer/) is an online 

database that contains tumor-infiltrating immune 

cells. We obtained infiltration levels of six immune 

cells (B cells, CD4+ T cells, CD8+ T cells, 

neutrophils, macrophages, and dendritic cells) from 

TCGA and other public validation databases 

containing tumor information. TIMER reanalyzed 

gene expression data. Using the database, we 

determined the abundance of tumor-infiltrating 

immune cells of six subtypes and the relationships 

between immune cell infiltration and other 

parameters. Studies confirmed that the platform is 

appropriate for the present study [8, 20, 21]. We 

downloaded immune infiltration levels of patients 

with BLCA from TIMER and calculated the 

correlations between IRGPI and immune cell 

infiltration. P <0.05 was considered statistically 

significant. 

 

Statistical analysis 

 

We used R software (version 3.6.1) and R-associated 

packages to perform function enrichment analysis, 

differential analysis of immune genes, Cox regression 

analysis, and survival analysis [22]. We used survival and 

survminer packages in R to create Kaplan–Meier curves 

and survival ROC curves. We used these findings to 

assess the performance of IRGPI based on the area under 

the curve (AUC) of the survival ROC curve [23]. We used 
an independent t-test to calculate the differences between 

clinical features and prognosis-related IRGs. P <0.05 was 

considered statistically significant. 

RESULTS 
 

Identification of differentially expressed IRGs 

 

We downloaded 410 BLCA samples and 19 normal 

samples, including a total of 18769 genes. We identified 

4893 DEGs using the R limma package; these included 

3468 up-regulated DEGs and 1425 down-regulated 

DEGs (Figure 1A, 1C). Using the list of IRGs, we 

identified 261 differentially expressed IRGs, including 

120 up-regulated, differentially expressed IRGs, and 

141 down-regulated, differentially expressed IRGs 

(Figure 1B, 1D). 

 

Identification of survival-associated IRGs 

 

To identity the differentially survival-associated IRGs, 

we performed univariate Cox regression analysis on the 

expression of 261 differentially expressed IRGs in 

BLCA. We found that the expression of 26 

differentially survival-associated IRGs significantly 

correlated with OS in patients with BLCA (all P 

<0.001) (Table 1). The forest plot results in Figure 2 

show the prognostic value of these IRGs in patients 

with BLCA. There were 23 genes with HR >1 and three 

genes with HR <1. This indicates that most IRGs are 

high-risk genes for the outcome of BLCA. 

 

Transcription factor regulatory network 

 

TF plays a crucial role in regulating molecular 

networks. To explore the molecular mechanisms 

between survival-associated IRGs and TF, we 

downloaded 318 tumor-related TFs from the cancer 

database to study their regulatory mechanisms. We 

identified 77 differentially expressed TFs (Figure 3A, 

3B) in genes that were differentially expressed between 

BLCA samples and normal samples, of which 41 were 

up-regulated and 36 were down-regulated (Figure 3A, 

3B). To study the relationship between differentially 

expressed TF and survival-associated IRGs, we 

constructed a TF-mediated regulatory network based on 

18 TFs and eight survival-associated IRGs (Figure 3C). 

WWTR1 had the most connections with other survival-

associated IRGs, while THBS1 had the most 

connections with other TFs. 

 

Development of IRGPI 

 

To develop an IRGPI, we identified nine survival-

associated IRGs for BLCA using multivariate Cox 

regression analysis, and we constructed the optimal 

IRGPI to group patients with BLCA (Figure 4). We 

calculated risk scores based on expression levels of 

nine survival-associated IRGs and regression 

coefficients, with the following formula: risk score = 

https://cistrome.shinyapps.io/timer/
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[expression level of MMP9×(0.0003)] + [expression  

level of PDGFRA×(0.0290)] + [expression level of 

AHNAK×(0.0124)] + [expression level of OAS1 

×(−0.0084)] + [expression level of OLR1×(0.0053)] + 

[expression level of RAC3×(0.0229) + [expression level 

of IGF1×(0.2830)] + [expression level of PGF×(0.0180)] 

+ [expression level of SH3BP2×(−0.0788)]. We divided 

patients with BLCA into a high-risk group (n = 184) and 

a low-risk group (n = 185) according to the median 

risk score. The distribution of risk scores and survival 

status are shown in Figure 4. High-risk patients died 

more often than did low-risk patients. According to 

Kaplan–Meier survival analysis, OS was significantly 

lower in the high-risk group than in the low-risk    

group (P = 2.672e−09) (Figure 5). The five-year 

survival rate for the high-risk group was 51.63%, 

while the five-year survival rate for the low-risk group 

was 25.95% (Figure 5). We generated ROC curves, 

and the AUC was calculated to evaluate the prediction 

accuracy of the IRGPI. The area was 0.725, 

suggesting that the IRGPI has excellent potential for 

predicting patients' survival with BLCA (Figure 5). 

Univariate and multivariate analysis (Table 2) 

suggested that IRGPI significantly correlates with 

survival in BLCA. The pathological stage, T stage, N 

stage, and IRGPI were independent predictors (Table 

2). However, the multivariate analysis suggested that 

only IRGPI was an independent predictor of  outcome

 

 
 

Figure 1. Differentially expressed IRGs. (A) Heatmap demonstrating DEGs between BLCA and normal samples, with red representing 
high expression and green representing low expression. (B) Heatmap demonstrating differentially expressed IRGs between BLCA and normal 
samples, with red representing high expression and green representing low expression. (C) Volcano plot of 4893 DEGs, with red representing 
up-regulated DEGs and green representing down-regulated DEGs. (D) volcano plot of 261 differentially expressed IRGs, with red representing 
up-regulated IRGs and green representing down-regulated IRGs. 
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Table 1. General characteristics of BLCA-specific immune-related genes. 

Gene symbol LogFC FDR HR P-value 

THBS1 -2.364170784 0.0001167 1.004234339 0.009624386 

CXCL12 -1.793919298 5.48E-08 1.013942892 0.001039896 

ZC3HAV1L 1.32960684 0.000174748 1.117544502 0.006339535 

MMP9 3.04862784 0.006420263 1.000283778 0.001779972 

FABP6 2.003815556 0.002768244 0.980771613 0.008948499 

RBP7 -1.120977579 7.12E-06 1.013395606 0.000240158 

ADIPOQ -1.228311896 4.98E-07 1.113856355 1.90E-05 

ELN -1.951814757 5.57E-07 1.017100402 0.00424009 

PDGFRA -1.877812889 1.53E-06 1.046033385 0.000892835 

AHNAK -1.013000982 0.006016427 1.013593551 5.82E-08 

PTX3 -2.032872149 7.73E-05 1.010441923 0.006173227 

OAS1 1.161396793 0.00249904 0.986847766 0.003445374 

OLR1 2.847420735 0.009974211 1.007461503 0.009630675 

RAC3 2.871069381 4.99E-09 1.026505382 1.66E-05 

SLIT2 -2.537542555 3.07E-08 1.152167049 0.009068295 

EDNRA -1.795229834 6.78E-06 1.086359281 0.00075286 

IGF1 -1.186085678 3.59E-06 1.440812129 2.84E-07 

KITLG -1.011084991 0.000780218 1.025879879 0.008832397 

PDGFD -1.75479763 1.99E-06 1.07999107 0.000619345 

PGF 1.55827545 0.001770518 1.037799866 6.85E-05 

SPP1 4.546905253 4.53E-07 1.000160276 0.005339656 

ANGPTL1 -2.694001199 1.19E-07 1.028080936 0.004962655 

IL17RD -1.187999641 0.007763757 1.068321126 0.008041726 

IL17RE 1.146456501 0.004545266 1.045799441 0.007436093 

NRP2 -1.387343245 0.001626737 1.043984621 0.009260416 

OXTR 2.293078486 8.88E-05 1.03604654 0.006923307 

PTGER3 -1.842483391 1.97E-05 1.307642614 0.002505678 

TACR1 -2.18286288 1.15E-08 1.417848098 0.00706276 

SH3BP2 1.132467385 1.07E-06 0.900277442 0.009410188 

 

in BLCA after adjustment for all relevant clinical 

factors (Figure 6). 

 

Clinical correlation analysis 

 

To further evaluate the clinical value of IRGPI, we 

analyzed the relationships between the nine survival-

associated IRGs and IRGPI with clinicopathologic 

factors, including age, gender, pathological stage, T 

stage, N stage, and M stage (Table 3). IRGPI was an 

independent predictor. It showed statistically 

significant differences in terms of pathological and T-

stage, but no statistically significant differences in 

terms of age, gender, N stage, or M stage (Figure 7). 

These findings suggest that IRGPI accurately predicts 

the pathological stages of BLCA. We also evaluated 
the relationships between the abundances of six types 

of immune cells and the immune-based prognostic 

index to determine whether the IRGPI accurately 

reflected the tumor immune microenvironment status. 

We found that IRGPI significantly correlated with 

macrophages (Figure 8E). There was no significant 

correlation between IRPGI and five types of immune 

cells, including B cells (Figure 8A), CD4+ T cells 

(Figure 8B), CD8+ T cells (Figure 8C), dendritic cells 

(Figure 8D), or neutrophils (Figure 8F). 

 

DISCUSSION 
 

Bladder cancer is a common malignant tumor of the 

urinary system and has become the 10th most common 

malignant tumor in Europe and America [1]. About 

70% of bladder cancers are non-muscular invasive 

bladder cancer, and 30% are muscular invasive bladder 
cancer. Non-muscular invasive bladder cancer is 

characterized by a high recurrence rate and low 

mortality, while about 50% of muscular invasive 

bladder cancer is potentially lethal [24]. The clinical  
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Figure 2. Forest plot of the hazard ratios showing the prognostic values of survival-associated IRGs, red dots represent high-
risk genes (HR > 1), and green dots represent low-risk genes (HR < 1). 

 

 

Figure 3. Transcription factor (TF) regulatory network. Differentially expressed TFs in the DEGs between BLCA samples and normal 

samples. (A) The heatmap and (B) volcano plot of differentially expressed TFs. (C) In the-mediated regulatory network, triangles represent 
TFs; circles represent IRGs. 
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manifestations of non-muscular invasive bladder cancer 

are heterogeneous, and it is essential to accurately 

predict the risk of progression of non-muscular invasive 

bladder cancer. Accurate identification of high-risk 

populations and formulation of optimal treatment plans 

in a timely fashion are clinical problems that need to be 

resolved. Previous studies showed that the prognosis of 

patients undergoing cystectomy due to the progression 

of non-muscle invasive bladder cancer is worse than 

that of patients newly diagnosed with muscle-invasive 

bladder cancer directly undergoing cystectomy [25]. 

This suggests that early cystectomy improves outcomes 

in those at high risk for progression. 

The immune system recognizes and eliminates tumor 

cells; however, tumor cells can evade the immune 

system through immune escape and immune 

suppression. Abnormal immune responses are closely 

related to the occurrence and progression of tumors 

[26]. Studies found that IRGs play critical regulatory 

roles in immune responses, including the following: 

regulation of differentiation and development of bone 

marrow hematopoietic stem cells; regulation of  

the development, differentiation, and activation of  

immune cells; and participation in the activation of 

autophagy and inflammatory processes [27]. Studies 

showed that IRGs predict survival and outcomes for

 

 
 

Figure 4. Development of the IRGPI. (A) Distribution of patients with high-risk scores (red color) and low-risk scores (green color); (B) 

survival status of patients with BLCA (red dots stand for the deceased patients and the green dots stand for the survivors); (C) heatmap of the 
nine survival-associated IRGs expression profiles.  
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various tumors, and they are potential targets for 

tumor therapy [5, 7, 8, 28, 29]. 

 

The development of high-throughput sequencing 

technology gave rise to the combination of microarray 

data and bioinformatics for tumor diagnosis and the 

discovery of prognostic biomarkers. Data mining 

technology generates gene signatures containing various 

relevant genes. These gene signatures are widely used 

in molecular diagnosis, individualized treatment, and 

survival prediction [30]. Their predictive accuracy is 

better than those of single biomarkers [31]. 

 

For these reasons, it is desirable to use bioinformatics 

technology to establish immune-related gene signatures 

to guide treatment and predict outcomes for patients 

with BLCA. We conducted a comprehensive analysis of 

the BLCA gene expression profile to identify IRGs that 

play central roles in the development and outcomes of 

BLCA. We identified nine IRGs (MMP9, PDGFRA, 

AHNAK, OAS1, OLR1, RAC3, IGF1, PGF, and 

SH3BP2) to predict OS using univariate and multi-

variate Cox proportional hazard regression models. We 

used the expression levels of these IRGs to establish a 

prediction model. This method is more economical and 

clinically feasible than whole-genome sequencing. The 

combination of nine gene signatures with clinico-

pathological parameters can enable clinicians to 

determine individual outcomes more accurately. The 

risk scoring system is easy to understand and helps 

customize treatment plans. The ROC curve, Kaplan–

Meier analysis, and internal verification showed that 

this model accurately predicted the OS of BLCA. The 

correlation analysis between clinicopathological and 

risk scores showed that the risk scores were related to 

the pathological and T-stage.  

 

We also explored the ability of risk score and other 

clinicopathological parameters to predict survival and 

found that risk score was an independent prognostic 

indicator of BLCA.  

 

Some of the nine IRGs participate in the development 

of BLCA and affect outcomes, and some have not been 

reported. A study reported that LINC01605 up-

regulated the expression of MMP9 to promote 

proliferation, migration, and invasion of BLCA cells 

[32]. PDGFRA is up-regulated in BLCA tissues, which 

is significantly related to tumor prognosis and can be 

used as a prognostic marker of BLCA [33]. In urine 

cytology, BLCA can be distinguished from benign 

urothelial lesions by detecting ANHAK [34]. A study 

found that ANHAK was significantly related to the 

outcomes of BLCA [35]. OAS1 was significantly 

related to outcomes of BLCA and can be used as a 

prognostic marker [35]. RAC3 is highly expressed in 

bladder cancer tissues and can promote the 

proliferation, migration, and invasion of bladder cancer 

cells [36]. A study reported that plasma IGF1 is highly 

expressed in patients with bladder cancer; measuring

 

 
 

Figure 5. The evaluation of the IRGPI. (A) The Kaplan-Meier curves of OS for patients with high-risk scores (red line) and low-risk scores 

(blue line); (B) Verification of the accuracy of the IRGPI based on analysis of the AUC of the survival-dependent ROC curve. 
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Table 2. Univariate and multivariate Cox regression analysis of BLCA. 

Variables 

Univariate analysis  Multivariate analysis 

HR (95% CI) P value  HR (95% CI) P value 

Age 1.025(0.995-1.056) 0.104  1.023(0.991-1.056) 0.156 

Gender 0.560(0.309-1.016) 0.056  0.696(0.356-1.360) 0.288 

Pathological 

stage 
1.894(1.283-2.797) 0.001  1.565(0.734-3.339) 0.246 

T stage 1.720(1.133-2.610) 0.011  1.297(0.753-2.234) 0.349 

N stage 1.485(1.102-2.002) 0.009  0.981(0.554-1.736) 0.947 

M stage 1.881(0.582-6.087) 0.291  1.382(0.360-5.305) 0.638 

IRGPI 1.261(1.155-1.377) <0.001  1.228(1.108-1.362) <0.001 

 

plasma IGF1 values can help assess bladder cancer risk 

[37]. There is no report on the roles of OLR1, PGF, or 

SH3BP2 in outcomes of bladder cancer. 

 

We also focused on the relationship between risk score 

and tumor microenvironment to reveal its potential 

clinical significance. The risk score reflects the 

infiltration state of macrophages. The higher the risk 

score, the higher the abundance of macrophages, 

suggesting that higher amounts of abnormal expression 

of immune genes correspond to a higher abundance of 

macrophages in the tumor immune microenvironment; 

this, in turn, participates in the occurrence and 

progression of BLCA and the processes of invasion and 

metastasis. Tumor-associated macrophages are part of 

the tumor microenvironmental cells and affect the 

progress of solid tumors. Studies have found that 

macrophages can directly affect the immune response to 

bladder cancer induced by Bacillus Calmette-Guerin 

[38]. In addition, studies have found that exosomes 

miR-21 can promote cancer progression through 

polarized tumor-associated macrophages [39]. 

This study may provide new insights into the 

molecular mechanisms, immunotherapy, and 

prognostic predictions of BLCA. One of the 

advantages of the BLCA predictive risk-scoring 

model constructed in this study is its high sensitivity 

and specificity for predicting OS. Random internal 

verification demonstrated its effectiveness. The risk 

scoring model is related to the immunosuppressive 

environment and immune checkpoint expression and 

may help clinicians plan personalized immunotherapy 

for patients with BLCA.  

 

This study also has some limitations. First, the risk 

scoring model needs to be further validated in multi-

center clinical trials and prospective studies. Second, 

further research on the functions and mechanisms of the 

nine IRGs is needed.  

 

Data availability  

 

All data generated or analyzed during this study are 

included in this article. 

 

 
 

Figure 6. Univariate (A) and multivariate (B) Cox regression analysis in terms of OS for patients with BLCA.
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Table 3. The relationship between the expression of the survival-associated IRGs and clinicopathological 
factors in BLCA. 

Genes 
Age(>65/≤65)  

Gender  

(male/female) 
 

Pathological 

stage  

(IV-III/I-II) 

 

T stage (T3-

T4/T1- 

T2) 

 
N stage (N1-

3/N0) 
 M stage (M1/ M0) 

t P  t P  t P  t P  t P  t P 

MMP9 -0.078 0.938  0.658 0.513  -1.636 0.105  -1.991 0.048  -0.566 0.573  -1.089 0.322 

PDGFRA 0.538 0.591  0.849 0.401  -3.077 0.002  -3.040 0.003  -1.203 0.232  -0.462 0.660 

AHNAK 0.760 0.449  1.447 0.157  -3.700 <0.001  -3.933 <0.001  -2.238 0.028  0.942 0.382 

OAS1 -2.146 0.034  -2.543 0.013  2.159 0.034  2.148 0.034  1.775 0.079  2.929 0.023 

OLR1 -0.763 0.448  0.024 0.981  -1.094 0.277  -1.059 0.292  -0.364 0.717  2.989 0.004 

RAC3 0.382 0.703  1.040 0.305  -0.544 0.588  0.066 0.947  -1.703 0.093  -1.129 0.309 

IGF1 -0.094 0.925  0.856 0.397  -3.557 <0.001  -3.111 0.002  -1.090 0.279  -0.965 0.373 

PGF 0.343 0.732  -0.634 0.529  0.883 0.380  0.270 0.788  2.090 0.039  -0.851 0.431 

SH3BP2 -0.798 0.427  0.214 0.832  1.799 0.077  0.900 0.371  2.546 0.012  -0.121 0.908 

riskScore -0.265 0.791  1.693 0.100  -2.981 0.003  -2.754 0.007  -1.381 0.170  -0.412 0.689 

 

 
 

Figure 7. The relationships between the immune-based prognostic index and clinicopathological factors. (A) age; (B) gender; (C) 

pathological stage; (D) T stage; (E) N stage and (F) M stage in the high-risk (red) and low-risk (blue) groups of the BLCA. 
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Figure 8. Relationships between the abundances of six types of immune cells and the immune-based prognostic index in 
patients with BLCA. (A) B cells; (B) CD4 T cells; (C) CD8 T cells; (D) dendritic cells; (E) macrophages; (F) neutrophils. 
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