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INTRODUCTION 
 

Colon adenocarcinoma (COAD) is a common global 

cancer, and has the third highest incidence rate and the 

second highest mortality rate in the world [1]. A large 

number of studies have revealed that the occurrence and 

progression of COAD is associated with a variety of 

complex factors, such as diet, lifestyle, and genetics  

[2–4]. Moreover, the rate of early diagnosis of COAD is 

low, and most patients are diagnosed with advanced 

disease, so current prognosis of COAD in patients  

is not satisfactory [5]. Colectomy and neoadjuvant 

chemoradiotherapy are main treatments for COAD. 

Unfortunately, the five-year relative survival rate for 

persons with COAD is only 65% [6]. Therefore, 

biomarkers with high sensitivity and strong specificity 

are urgently needed for early diagnosis, survival 

prediction, and even early treatment of COAD. 

 

As an important part of epigenetics, DNA methylation 

is an important molecular mechanism associated with 

human tumorigenesis. In particular, an abnormal 
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ABSTRACT 
 

Evidence suggests that abnormal DNA methylation patterns play a crucial role in the etiology and pathogenesis 
of colon adenocarcinoma (COAD). In this study, we identified a total of 97 methylation-driven genes (MDGs) 
through a comprehensive analysis of the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) 
databases. Univariate Cox regression analysis identified four MDGs (CBLN2, RBM47, SLCO4C1, and TMEM220) 
associated with overall survival (OS) in COAD patients. A risk prediction model was then developed based on 
these four MDGs to predict the prognosis of COAD patients. We also created a nomogram that incorporated 
risk scores, age, and TNM stage to promote a personalized prediction of OS in COAD patients. Compared with 
the traditional TNM staging system, our new nomogram was better at predicting the OS of COAD patients. In 
cell experiments, we confirmed that the mRNA expression levels of CLBN2 and TMEM220 were regulated by the 
methylation of their promoter regions. Moreover, immunohistochemistry showed that CBLN2 and TMEM220 
were potential prognostic biomarkers for COAD patients. In summary, we have established a risk prediction 
model and nomogram that might be effectively utilized to promote the prediction of OS in COAD patients. 
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methylation pattern in the promoter region of cancer-

related genes is related to the diagnosis and prognosis 

of many types of cancers [7–10]. Additionally, 

previous studies have shown that methylated mRNA 

may be a valid predictor of COAD [11, 12]. Chae et 

al. reported that FOXO1 hypermethylation could 

modulate COAD cell proliferation and apoptosis [13]. 

Zhao et al. revealed that the abnormal methylation of 

the CXCL3 and CXCL8 promoter regions was 

associated with the poor prognosis of patients with 

COAD [14]. However, as far as we know, there  

have been few studies that have integrated clinical 

data and multiscale omics data to predict the 

prognosis of COAD, and long-term efforts are still 

needed [15, 16]. 

 

The Cancer Genome Atlas (TCGA) project and  

the Gene Expression Omnibus (GEO) database have 

collected a great quantity of cancer-related 

histochemical data and patients’ clinical data, and 

provide a large amount of data for researchers to 

explore the prognosis and biomarkers of various 

malignant tumors. In this study, we integrated 

methylation and mRNA expression profiling data 

from the TCGA and GEO databases, identifying 

methylation-driven genes (MDGs) related to COAD 

prognosis, and with these, we established a risk 

prediction model. In addition, we combined risk score 

and clinical variables to establish a nomogram to 

individualize the prediction of the overall survival 

(OS) of COAD patients. At the same time, we verified 

that two genes from our risk prediction model 

(CBLN2 and TMEM220) were silenced by promoter 

region methylation in colon cells. Finally, through 

immunohistochemistry, CBLN2 and TMEM220 were 

shown to be potential prognostic biomarkers of 

COAD. 

 

RESULTS 
 

Identification of aberrantly methylated and 

differentially expressed genes in COAD 

 

An analysis flow chart of our bioinformatics workflow 

is shown in Figure 1A. A total of 1940 differentially 

expressed genes (DEGs) were detected by overlapping 

date from the TCGA database and GSE39582 (Figure 

1B). Similarly, 6681 differentially methylated genes 

(DMGs) were identified by overlapping TCGA data and 

GSE48684 (Figure 1C). Subsequently, we overlapped 

these DEGs and DMGs, and identified 659 aberrantly 

methylated DEGs, including 129 genes with high 

expression and hypermethylation, 188 genes with low 

expression and hypermethylation, 192 genes with high 

expression and hypomethylation, and 150 genes with 

low expression and hypomethylation (Figure 1D). 

Identification of MDGs in COAD 

 

Promoter hypermethylation can trigger transcriptional 

silencing of cancer-related genes. Therefore, we 

selected genes with high methylation and low 

expression for further analysis. We evaluated the 

Pearson coefficients from gene expression and 

methylation values for aberrantly methylated DEGs. In 

total, 97 aberrantly methylated DEGs were identified as 

MDGs (Pearson coefficient < -0.3 and P < 0.05; Figure 

2 and Supplementary Table 1). 

 

Development of a risk prediction model of COAD 

patients 

 

There were 414 COAD patients with both expression 

data and complete clinical information in the TCGA 

database, thus, we used these datasets to identify 

prognostic genes for COAD. Univariate Cox 

regression analysis initially identified that among 97 

MDGs, 6 MDGs (CBLN2, GSTM1, RBM47, SH3GL3, 

SLCO4C1, and TMEM220) were significantly 

correlated with OS of COAD patients (Table 1, P < 

0.05). GSTM1 and SH3GL3 were excluded due to 

having a Hazard ratio (HR) >1. These four prognostic 

genes were then utilized to build a best-fit risk 

prediction model using least absolute shrinkage and 

selection operator (LASSO) Cox regression analysis. 

The risk prediction formula was as follows: Risk 

score = (-0.121 * Expression level of CBLN2) + (-

0.377 * Expression level of RBM47) + (-0.065* 

Expression level of SLCO4C1) + (-0.136 * Expression 

level of TMEM220). We then calculated the risk 

scores of 414 COAD patients using the formula 

above. The distribution of risk scores and the patients’ 

survival status are shown in Figure 3A. A risk 

heatmap was used to visualize the expression profiles 

of these four prognostic genes (Figure 3A). The 

median risk (-5.979) was used as a cutoff point to 

divide COAD patients into a high-risk group (n = 207) 

and a low-risk group (n = 207). Kaplan-Meier (K-M) 

analysis showed the patients in the high-risk group 

had worse prognosis than those in the low-risk group. 

(Figure 3B, P = 0.004). The areas under the curves 

(AUCs) of the 1-, 2-, and 5-year OS predictions were 

0.669, 0.651 and 0.652, respectively (Figure 3C). 

Meanwhile, compared with any single mRNA, the 

signature from all four genes had higher accuracy for 

predicting a patients' OS (Supplementary Figure 1). 

These results showed that this genetic signature was 

effective for OS prediction. 

 

In order to clarify the importance of the four prognostic 
genes above in COAD patients, we used the GSE17536 

array data as an independent validation set. We 

calculated the risk scores of all patients according to the 
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risk score formula mentioned above. As expected, 

scatter plots, risk heatmaps and K-M curves were able to 

accurately distinguish high- and low-risk group patients 

using this dataset (Figure 3D, 3E). The AUCs of the 1-, 

2-, and 5-year OS predictions were 0.576, 0.544, and 

0.574 using the GSE17536 array data, respectively 

(Figure 3F). These results indicated that our model was 

effective for OS prediction in COAD patients. 

 

Stratification analysis 

 

A stratification analysis was then performed to 

investigate the applicable population using this risk 

prediction model and TCGA data. Patients were 

assigned to different subgroups based on their age (≤ 60 

/ > 60), sex (female/male), T stage (1 + 2/ 3 + 4) and 

TNM stage (I + II / III + IV). The results showed that 

our risk prediction model could delineate high- and low-

risk patients in each age, sex, T staging, and TNM 

staging subgroup. Unfortunately, the risk prediction 

model lost its prognostic value in patients of grade T (1 

+ 2) and TNM (I + II), which we attributed to the small 

sample size of these subgroups in the TCGA COAD 

dataset (Figure 4). 

 

Establishment and evaluation of a predictive 

nomogram 

 

Based on our stepwise and multivariate Cox regression 

analyses, we found that age, TNM stage and risk score 

were independent prognostic factors in 414 COAD 

patients (Figure 5A). Considering the different clinical 

 

 
 

Figure 1. Identification of differentially expressed genes (DEGs) and differentially methylated genes (DMGs) in colon 
adenocarcinoma (COAD). (A) Flowchart showing overall design and analytic procedure of this study. (B) Overlapping of DEGs from TCGA 
and GSE39582. (C) Overlapping of DMGs from TCGA and GSE48684. (D) Identification of aberrantly methylated DEGs. 
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characteristics of each patient, we built a nomogram 

that combined age, TNM stage, and risk score to 

individually predict the 1-, 2-, and 5-year OS of COAD 

patients (Figure 5B). The AUCs of the 1-, 2-, and 5-year 

of this nomogram were 0.776, 0.761 and 0.740, 

respectively (Figure 5C). The AUCs of 1-, 2-, and 5-

year prognosis from traditional TNM stage were 0.728, 

0.710, and 0.672, respectively (Figure 5C). At the same 

time, the concordance index (C-index) of the nomogram 

was significantly higher than traditional TNM stage 

(0.755 versus 0.706, P < 0.05). Therefore, in terms of 

predicting the OS of COAD patients, our nomogram 

was better than traditional TNM staging. Based on the 

median of the nomogram score as a cutoff value, 

patients were then divided into high-risk and low-risk 

groups. K-M analysis revealed that the high-risk group 

had significantly poorer OS (Figure 5D, P < 0.001). The 

calibration curves of our nomogram suggested that the 

predicted OS was consistent with the observed OS 

(Figure 5E). 

 

In the validation phase, a new nomogram still showed a 

higher predictive efficacy in using GSE17536 array. 

Similar to its performance in the TCGA cohort, the 

AUCs of the 1-, 2-, and 5-year nomograms were greater 

than those from TNM stage, respectively (Figure 6A). 

The calibration curves of the nomograms from 1-, 2- 

and 5-year OS displayed obvious concordance between 

the predicted OS and the observed OS, respectively 

(Figure 6B). In addition, the C-index values of  

the nomogram and TNM stage were 0.778 and  

0.774, respectively. Meanwhile, K-M curves could still 

distinguish high - and low-risk group patients  

(Figure 6C). 

 

Encyclopedia of genes and genomes (KEGG) 

enrichment of four candidate genes 

 

We performed gene set enrichment analysis (GSEA) 

with our four candidate genes to investigate the 

potential biological mechanisms via these genes in 

COAD progression. Patients were divided into high-

expression and low-expression groups based on the 

median expression value of these candidate genes. The 

results showed that the four candidate genes were 

involved in multiple tumor-associated pathways, such 

as the apoptosis, the calcium signaling pathway, the 

colorectal cancer, the Hedgehog signaling pathway, the

 

 
 

Figure 2. Correlation between the expression value and methylation value of the methylation-driven genes (MDGs) in colon 
adenocarcinoma (COAD) tissues. 
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Table 1. Six MDGs associated with overall survival (OS) of 
colon adenocarcinoma (COAD) patients. 

Gene name Gene name HR P value 

CBLN2 cerebellin 2 precursor 0.845 0.02 

GSTM1 Glutathione S-Transferase Mu 1 1.121 0.004 

RBM47 RNA Binding Motif Protein 47 0.649 0.048 

SH3GL3 
SH3 Domain Containing GRB2 

1.278 0.032 
Like 3, Endophilin A3 solute 

SLCO4C1 
carrier organic anion 

0.869 0.039 
transporter family member 4C1 

TMEM220 transmembrane protein 220 0.812 0.017 

 

 
 

Figure 3. Validation and development of risk prediction model in colon adenocarcinoma (COAD) patients. (A) Risk score 
distribution in COAD patients, survival status of COAD patients, and expression heatmap of four methylation-driven genes (MDGs) in a Cancer 
Genome Atlas (TCGA) training cohort. (B) The K-M curve of overall survival (OS) for COAD patients between two different groups in our TCGA 
training cohort. (C) Time-dependent ROC curves at 1 year, 2 years, and 5 years in the TCGA training cohort. (D) Risk score distribution of 
COAD patients, survival status of COAD patients, and expression heatmap of four MDGs in a validation cohort. (E) The K-M curve of OS for 
COAD patients between two different groups in a validation cohort. (F) Time-dependent ROC curves at 1 year, 2 years, and 5 years in a 
validation cohort. 
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JAK-STAT signaling pathway, and the TGF-β signaling 

pathway (Figure 7, Supplementary Table 2–5). 

 

Validation of differential expression of CBLN2 and 

TMEM220 due to promoter methylation 

 

First, to further verify our results based on data from the 

TCGA and GEO databases, we used quantitative real-

time PCR (qPCR) to determine candidate gene 

expression levels in NCM460 cells and SW480 cells, 

respectively. We found that the expression of CBLN2 
and TMEM220 was low in SW480 cells, but very high 

in NCM460 cells (Figure 8A). Second, in order to 

determine whether abnormally methylated promoter 

regions directly caused transcriptional silencing of 

CBLN2 and TMEM220, SW480 cells were treated with 

the DNA methyltransferase inhibitor 5-Aza-2′-

deoxycytidine (5-aza), and the expression of CBLN2 

and TMEM220 was determined via qPCR. This study 

found that the expression of CBLN2 and TMEM220 was 

restored in SW480 cells after treatment with 5-aza 

(Figure 8B). Third, methylation-specific PCR (MSP) 

was applied to identify the methylation status of the 
CBLN2 and TMEM220 promoter regions. Studies have 

previously shown that these regions are partially 

methylated in SW480 and SW620 cells (Figure 8C). 

CpG islands situated in the CBLN2 and TMEM220 

promoter regions and the designed MSP primers are 

shown in Figure 8D. In summary, we confirmed that the 

expression of CBLN2 and TMEM220 was silenced by 

the methylation of these promoter regions in a COAD 

cell line. 

 

Relationship between CBLN2 and TMEM220 

expression and OS of COAD patients 

 

The expression of CBLN2 and TMEM220 in 46 COAD 

tissues was then examined by immunohistochemistry. 

CBLN2 and TMEM220 protein expression levels were 

significantly different in tumor tissues as compared to 

controls (Figure 8E). A marker was considered positive 

when 20% or more cells were stained [17]. The 

prognostic effects of CBLN2 and TMEM220 on the OS 

of COAD patients were next evaluated through K-M

 

 
 

Figure 4. K-M analysis of overall survival (OS) for patients stratified by age, gender, T stage, and TNM stage.
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Figure 5. Establishment of an overall survival (OS) nomogram for colon adenocarcinoma (COAD) patients. (A) Univariate and 
multivariate analyses of risk score and clinical variables. Red solid dots represent significant difference, and black solid dots mean no 
difference. (B) A nomogram individually predicting OS in COAD patients. (C) The time-dependent ROC of our nomogram and TNM stage in the 
prediction of prognosis at 1-, 2-, and 5-year time points. (D) The K-M curve of our nomogram. (E) Calibration plot of the nomogram. The 
predicted and the actual probabilities of OS are plotted using blue solid and black dotted lines, respectively. 
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analysis. As shown in Figure 8F, both CBLN2 and 

TMEM220 led to significant survival differences in 46 

COAD samples (P = 0.033 and P=0.047, respectively). 

The clinical information for these patients is listed in 

Table 2. 

 

Effects of RBM47 gene knock-out on CBLN2, 

SLCO4C1 or TMEM220 expression levels 

 

Considering that RBM47 had the greatest influence on 

our risk prediction model, we further explored the 

correlation between RBM47 and CBLN2, SLCO4C1 and 

TMEM220. The expression values of CBLN2 and 

TMEM220 were decreased and the expression value of 

SLCO4C1 was increased in SW480 cells when RBM47 

was knocked out (Figure 8G). 

DISCUSSION 
 

COAD is a fatal malignancy, mainly caused by 

malignant transformation of colon epithelial cells [18, 

19]. Despite surgical resection with curative intent often 

being performed to treat COAD, the clinical outcome of 

patients with COAD remains poor [20, 21]. As a result 

of multi-Omics data and analysis, there has been a 

growing recognition that COAD is a molecularly 

heterogeneous disease [22, 23]. Recently, studies have 

started to emphasize genome-wide changes in 

expression and epigenetics as they relate to COAD, as 

well as evaluating their interactions to provide a more 

complete molecular profile of this disease [24–26]. In 

the present study, a joint analysis of clinical data and 

multiscale omics data was utilized to investigate the 

 

 
 

Figure 6. Validation of nomogram in a validation cohort. (A) Shown is the time-dependent ROC curves for 1-, 2-, and 5-year overall 

survival (OS) predictions from our nomogram compared with TNM stage. (B) Calibration curve for our nomogram in a validation cohort. The 
predicted and the actual probabilities of OS are plotted using blue solid and black dotted lines, respectively. (C) OS of our nomogram in a 
validation cohort. 
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epigenetic changes that may drive the initiation and 

progression of COAD. Simultaneously, we identified a 

powerful DNA methylation signature and nomogram 

for prognosis prediction of COAD in patients. 

 

Abnormal DNA methylation patterns occur frequently 

in tumors. Among these dysregulated genes driven by 

DNA methylation, some may promote malignant 

transformation via overexpression of oncogenes or 

knockdown of tumor suppressor genes (TSGs), which 

leads to the disorder of the tumor microenvironment and 

may be a prognostic biomarkers for tumors [27, 28]. In 

this study, we identified 659 abnormally methylated 

DEGs by comprehensive analysis of DNA methylation 

and transcriptome data from the TCGA and GEO 

databases. Simultaneously, we calculated the Pearson 

coefficient between the expression and methylation 

values of 659 abnormal methylated DEGs, yielding a 

total of 97 MDGs. Using a univariate Cox regression 

model, we determined that four MDGs (CBLN2, 

RBM47, SLCO4C1, and TMEM220) were protective 

genes for prognosis in COAD patients (HR < 1). While 

the efficacy of any single marker is often limited, a 

multi-marker signature can have greater diagnostic and 

prognostic value [29]. Thus, we constructed a risk 

prediction model based on these four MDGs, which had 

a high value in predicting the prognosis of COAD 

patients. The survival curves showed that the prognosis 

of patients in the low-risk group were significantly 

better than those in the high-risk group. A time-

dependent receiver operating characteristic (ROC) curve 

confirmed that there was higher prediction accuracy 

when predicting the OS at 1, 2, and 5 years. 

Stratification analyses show that this model was widely 

applicable in populations with different clinico-

pathologic features. In order to facilitate the 

personalized prediction of the OS of COAD patients, 

we combined age, TNM stage and risk score to 

construct a nomogram. This nomogram had excellent 

performance when used to predict the OS of COAD 

patients. In fact, compared with the traditional TNM 

staging system, our nomogram provided higher 

accuracy for prognosis of COAD patients. In order to 

test the issue of overfitting of our risk prediction model 

and nomogram, we used the GSE17536 external 

independent array to verify these two new models, and 

found that they still had high predictive performance in 

the OS of COAD patients. 

 

 
 

Figure 7. Representative enriched pathways in four candidate genes from gene set enrichment analysis (GSEA) software. 
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Figure 8. Experimental verification in colon cells and tissues. (A) qPCR was performed to identify the relative expression of CBLN2 and 

TMEM220 in NCM460 and SW480 cells. (B) qPCR was carried out to assess CBLN2 and TMEM220 expression levels in SW480 cells before and 
after treatment with 5-aza. (C) Methylation status of CBLN2 and TMEM220 was determined by MSP in SW480 and SW620 cells. (D) Schematic 
diagrams of CpG islands in the promoter regions of CBLN2 and TMEM220. (E) Representative images of immunohistochemistry staining of 
colon sections from colon adenocarcinoma (COAD) tissues (n = 46). Original magnification, ×100. (F) Prognostic significance of CBLN2 and 
TMEM220 expression in COAD patients. (G) Knockdown of RBM47 gene in sw480 cells. 
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Table 2. Clinical information of the study patients. 

Characteristics Number (N = 46) 

Age (years) 60.61±9.97 

Sex  

Male 29(63.04%) 

Female 17(36.96%) 

Smoking  

Yes 19(41.30%) 

No 27(58.70%) 

Drinking  

Yes 18(39.13%) 

No 28(60.87%) 

Tumor size (cm)  

< 5×4 19(41.30%) 

≥ 5×4 18(39.13%) 

Unknown 9(19.57%) 

TNM stage  

I 5(10.87%) 

II 13(28.26%) 

III 12(26.09%) 

IV 13(28.26%) 

Unknown 3(6.52%) 

 

Our risk prediction model consisted of four gene 

members, some of which have been reported to be 

regulated by DNA methylation in cancer and other 

diseases. RBM47 was previously described to act as a 

tumor-suppressive role in colorectal and breast cancer, 

and low RBM47 expression was significantly associated 

with poor OS in COAD and CRC patient cohorts [30, 31]. 

Meanwhile, compared with prediction using RBM47 

alone, we also found that a multi-marker signature could 

improve the diagnostic and prognostic value in COAD 

patients. Rokavec et al. found that RBM47 protein 

expression was higher in normal colonic mucosa than in 

adjacent tumor tissue in the majority of cases [30]. The 

hypermethylation of the promoter of RBM47 had been 

detected in nonfunctioning pancreatic neuroendocrine 

tumors [32]. We also found that CBLN2 and TMEM220 

expression were down-regulated and SLCO4C1 

expression was up-regulated in SW480 cells with RBM47 

knockdown, which suggested that CBLN2, SLCO4C1, 

and TMEM220 were involved in the development of 

COAD under the regulation of RBM47. A large number of 

previous studies have shown that mRNA expression 

levels are regulated by promoter methylation of SLCO4C1 

in cancers, such as colorectal cancer [33], prostate cancer 

[34] and head and neck cancers [35]. However, as the 

relationship between the expression of CBLN2 and 

TMEM220 and DNA methylation transcriptional silencing 

has not been previously reported in COAD, we conducted 

qPCR and MSP analysis in NCM460, SW480, and 

SW620 cells, and found a DNA methylation trans-

criptional silencing relationship for CBLN2 and 

TMEM220. Moreover, the low expression of CBLN2 and 

TMEM220 was associated with poor prognosis in COAD 

patients by immunohistochemistry. Buffart et al. found 

that the TMEM220 mRNA expression level in gastric 

cancer was regulated by the methylation status in the 

promoter region [36]. Wang et al. found significant 

mutations in CBLN2 in patients with esophageal small cell 

carcinoma [37], but its role in tumors has not been 

revealed yet. 

 

Although the performance of our risk prediction model 

and nomogram was quite favorable, our study still had 

limitations. First, the sample size in our verification set 

was not large enough. Therefore, in the future, it will be 

necessary to use an external data set with a large sample 

size comprising complete clinical information and 

multi-omics information for verification. Second, our 

experimental data was inadequate, and lacked some 

verification information on the differences in the 

expression and methylation of our four MDGs in 

COAD tissues. 

 

MATERIALS AND METHODS 
 

Materials acquisition and preprocessing 

 

DNA methylation data, transcriptome data and 

corresponding clinical data about COAD tissues were 

obtained from the TCGA (https://portal.gdc.cancer. 

https://portal.gdc.cancer.gov/
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gov/) and GEO (https://www.ncbi.nlm.nih.gov/geo/) 

databases in April, 2019. Gene methylation data from the 

TCGA dataset was generated using the Illumina Infinium 

HumanMethylation450 microarray, which included 310 

COAD and 37 adjacent non-tumor samples. If any gene 

had multiple cg sites, the empty sites were removed and 

the mean value of β was used to represent its methylation 

level [38]. Gene transcriptome data from the TCGA 

database (Level 3) was normalized and log2 scaled using 

the functions DEGList and calcNormFactors in the edgeR 

package for R [39], which included 473 COAD and 41 

adjacent non-tumor samples. Gene methylation data from 

the GSE48684 arrays was generated using the GPL13534 

platform (Illumina HumanMethylation450 BeadChip). 

Gene transcriptome data from the GSE39582 and 

GSE17536 arrays was generated using the GPL570 

platform (Affymetrix Human Genome U133 plus 2.0 

Array). The GSE48684 array consisted of 106 COAD and 

41 adjacent non-tumor samples. The GSE39582 array 

consisted of 566 COAD and 19 adjacent non-tumor 

samples. The GSE17536 array consisted of 177 COAD 

samples. We also retrospectively collected 46 cases of 

COAD tissues from patients who underwent surgical 

resection in the Fourth Hospital of Hebei Medical 

University, China (from December 2010 to December 

2013). All patients had resectable COAD, and none of 

them had received preoperative anticancer treatments. 

They were followed until June 2018. Ethical permission 

of this study protocol was granted by the ethical 

committee of Hebei Medical University. All patients were 

informed and signed informed consent forms prior to 

enrollment in the study. 

 

Identification of aberrantly methylated DEGs 

 

For TCGA transcriptome data, the EdgeR package was 

used to identify the DEGs between COAD and non-

tumor samples, and an absolute value of the log2 fold 

change (|log2FC|) >1 and false discovery rate (FDR) < 

0.05 were considered statistically significant. For GEO 

transcriptome data, the limma package was used to 

identify DEGs between COAD and non-tumor samples, 

with the thresholds of FDR < 0.01 and |log2FC| > 0.5. 

All methylation data was analyzed with the limma 

package. Herein, genes with FDR < 0.05 were 

considered as DMGs. Finally, aberrantly methylated 

DEGs were detected by overlapping DEGs and DMGs 

in Venny software 2.1 (http://bioinfogp.cnb.csic.es/tools 

/venny/). 

 

Correlation analysis of aberrantly methylated DEGs 

 

To study the transcriptional regulation of DNA 
methylation, we evaluated the Pearson coefficient 

between gene expression and the methylation data for 

aberrantly methylated DEGs. A total of 322 COAD 

samples with matching methylation data and expression 

data were used for correlation analysis. Aberrantly 

methylated DEGs with a Pearson coefficient < -0.3 and 

P < 0.05 were defined as MDGs [40]. Scatter plot of 

these MDGs was plotted using ggplot2 in R. 

 

Development of a risk prediction model 

 

Initially, univariate Cox regression analysis was used to 

evaluate the association between MDGs and the OS of 

COAD patients, and MDGs with a P < 0.05 were 

selected for further analysis. Based on the expression 

value of MDGs, the LASSO Cox regression models 

were used to develop a best-fit risk prediction model 

with the R package “glmnet”. The risk score for each 

COAD patient was calculated as follows: 

 

i

1

Risk score exp i,
n

i



=

=   

 
where n is the number of prognostic genes, expi is the 

expression value of each gene i, and βi is the weighted 

regression coefficient in gene i from multivariate Cox 

regression analysis. Then, time-dependent ROC curve 

and K-M analyses were used to evaluate the predictive 

ability of our model. In the validation phase, we verified 

the risk prediction model using the GSE17536 dataset, 

another COAD cohort. 

 

Construction and assessment of nomograms 

 

Stepwise and multivariate Cox proportional hazard 

regression models were used to distinguish 

independent prognostic parameters of COAD patients, 

based on which we developed a nomogram. K-M 

analysis, time-dependent ROC curve analysis, 

calibration plot and C-indices were used to evaluate 

the discriminative ability of our nomogram. A C-index 

was calculated to assess nomogram discrimination by 

means of the bootstrap method with 1000 resamples. 

We assessed the performance of our nomogram on 

predicting OS for COAD patients using traditional 

TNM stage as a control. Meanwhile, the GSE17536 

cohort was used to verify the new nomogram. 

 

Pathway enrichment analysis of MDGs 

 

GSEA was carried out to explore the underlying 

biological mechanisms of each marker. GSEA 

software was downloaded from the GSEA home 

(http://software.broadinstitute.org/gsea/index.jsp). “c2 

.cp.kegg.v7.2.symbols.gmt gene sets” was used as a 

reference gene set to enrich KEGG pathways for 

candidate genes in TCGA. Last, |NES| > 1 and P < 

0.05 were set as thresholds. 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
http://bioinfogp.cnb.csic.es/tools/venny/
http://bioinfogp.cnb.csic.es/tools/venny/
http://software.broadinstitute.org/gsea/index.jsp
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Validation experiments in colonic cells 
 

To verify the transcriptional silencing relationship of 

prognostic genes, we used three human colon cell lines 

(NCM460, SW480, and SW620) for validation. 

NCM460 and SW480 cells were cultured in RPMI 1640 

(Gibco, Carlsbad, CA, USA). SW620 cells were 

cultured in DMEM (Gibco, Shanghai, China). All cell 

culture medium was supplemented with 10% fetal 

bovine serum (Invitrogen, Carlsbad, CA, USA) and 1% 

penicillin/streptomycin. To investigate the effect of 5-

aza (Sigma, St. Louis, MO, USA) treatment, SW480 

cells were treated with 3 μM for 72 h [41]. Meanwhile, 

SW480 cells were transfected with control and RBM47 

siRNAs (Thermo Fisher, USA) according to the 

manufacturer's protocol. Cells were siRNAs were 

treated for 48 h and then switched to media lacking 

siRNA. Total RNA was then isolated from cells 

utilizing the Trizol method (Invitrogen, Shanghai, 

China). qPCR was performed on an ABI 7500 real-time 

PCR System (Applied Biosystems, Carlsbad, CA) using 

SYBR Green (Takara, Japan). GAPDH was used as an 

internal reference, and the relative expression level of 

each gene of interest was calculated with the formula 2-

ΔΔCt [42]. The methylation status of MDGs was tested in 

SW480 and SW620 cells by MSP. We predicted CpG 

islands and designed MSP primers with Methyl Primer 

Express software v1.0 (Thermo Fisher Scientific, 

Waltham, MA) based on the genomic sequence around 

the transcriptional start site (TSS) of each gene. qPCR 

and MSP primers are illustrated in Supplementary  

Table 6. 

 

Immunohistochemistry 
 

Paraffin-embedded specimens from colon tissues were 

sectioned to a 5 μm thickness. The sections were then 

deparaffinized in xylene and rehydrated through 

graded alcohol solutions. Antigen extraction was 

performed using citrate buffer (pH 6.0), and sections 

were stored in Tris buffered saline (TBS). Endo-

genous peroxidase activity was blocked by incubation 

in 3% hydrogen peroxide. The sections were 

incubated with the anti-CBLN2 antibody (1:100, 

Abcam, Shanghai, China) or anti-TMEM220 antibody 

(1:100, Abcam, Shanghai, China) overnight at 4° C. 

The reaction products were visualized with 

diaminobenzidine (Vector labs, Burlingame, CA, 

USA) as the chromogen and counterstained with 

hematoxylin. Finally, images were acquired with 

immunofluorescence microscopy. 

 

Statistical analysis 
 

All statistical analysis was performed in R 3.5.0 and 

GraphPad Prism 6.0 (GraphPad Software, La Jolla, CA, 

USA). A two-sample t-test was used to compare gene 

expression levels in colon cell lines. P < 0.05 was 

considered statistically significant. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. Comparison of prognostic accuracy between 4 gene signature and single mRNAs. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. A total of 97 MDGs were screened in COAD patients from TCGA data. 

 

Supplementary Table 2. KEGG pathway analysis for CBLN2 by GSEA. 

Expression GS follow link to MSigDB SIZE NES 
NOM 

p-vale 

RANK AT 

MAX 

High  KEGG_RENIN_ANGIOTENSIN_SYSTEM 17 2.04 0 2832 
 KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 233 1.72 0.006 3336 
 KEGG_TGF_BETA_SIGNALING_PATHWAY 85 1.64 0.012 4441 
 KEGG_PENTOSE_AND_GLUCURONATE_INTERCONVERSIONS 26 1.72 0.02 1987 
 KEGG_CALCIUM_SIGNALING_PATHWAY 170 1.58 0.029 3276 
 KEGG_THYROID_CANCER 29 1.5 0.042 2089 
 KEGG_HEDGEHOG_SIGNALING_PATHWAY 54 1.53 0.049 2207 

Low  KEGG_HOMOLOGOUS_RECOMBINATION 26 -1.81 0.014 3924 
 KEGG_NUCLEOTIDE_EXCISION_REPAIR 44 -1.74 0.014 2907 
 KEGG_RNA_POLYMERASE 28 -1.69 0.023 3300 
 KEGG_PROTEIN_EXPORT 23 -1.65 0.028 3135 
 KEGG_PYRIMIDINE_METABOLISM 96 -1.68 0.034 4569 
 KEGG_SPLICEOSOME 126 -1.72 0.036 4531 
 KEGG_ONE_CARBON_POOL_BY_FOLATE 17 -1.72 0.039 1513 
 KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 66 -1.69 0.049 4709 

 

Supplementary Table 3. KEGG pathway analysis for RBM47 by GSEA. 

Expression GS follow link to MSigDB SIZE NES 
NOM p-

vale 

RANK 

AT MAX 

High  KEGG_LONG_TERM_POTENTIATION 67 1.89 0 2756 

 KEGG_LYSINE_DEGRADATION 42 1.85 0.002 3723 

 KEGG_VASOPRESSIN_REGULATED_WATER_REABSORPTION 42 1.63 0.004 1880 

 KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION 43 1.89 0.006 2684 

 KEGG_PROPANOATE_METABOLISM 31 1.87 0.006 4217 

 KEGG_FATTY_ACID_METABOLISM 41 1.84 0.006 4437 

 KEGG_STARCH_AND_SUCROSE_METABOLISM 46 1.73 0.006 5073 

 KEGG_OOCYTE_MEIOSIS 107 1.77 0.008 3220 

 KEGG_TERPENOID_BACKBONE_BIOSYNTHESIS 14 1.75 0.008 3277 

 KEGG_COLORECTAL_CANCER 62 1.63 0.008 2099 

 KEGG_ONE_CARBON_POOL_BY_FOLATE 17 1.77 0.01 3855 

 KEGG_BUTANOATE_METABOLISM 32 1.79 0.012 2779 

 KEGG_CITRATE_CYCLE_TCA_CYCLE 29 1.75 0.012 3918 

 KEGG_THYROID_CANCER 29 1.72 0.012 1389 

 KEGG_CYSTEINE_AND_METHIONINE_METABOLISM 33 1.64 0.014 3674 

 KEGG_ASCORBATE_AND_ALDARATE_METABOLISM 23 1.82 0.016 5073 

 KEGG_PEROXISOME 77 1.74 0.019 3100 

 KEGG_AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_METABOLISM 42 1.67 0.022 2351 

 KEGG_P53_SIGNALING_PATHWAY 67 1.56 0.023 3298 

 KEGG_APOPTOSIS 84 1.61 0.024 3925 

 KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 128 1.65 0.027 3522 

 KEGG_INSULIN_SIGNALING_PATHWAY 132 1.5 0.031 4333 

 KEGG_CHRONIC_MYELOID_LEUKEMIA 73 1.5 0.031 1910 

 KEGG_PYRUVATE_METABOLISM 38 1.59 0.034 4217 

 KEGG_BETA_ALANINE_METABOLISM 22 1.56 0.037 2684 

 KEGG_GLYOXYLATE_AND_DICARBOXYLATE_METABOLISM 15 1.55 0.037 3855 
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Low  KEGG COMPLEMENT AND COAGULATION CASCADES 64 -1.96 0 3693 

 KEGG GLYCOSAMINOGLYCAN BIOSYNTHESIS CHONDROITIN SULFATE 22 -1.79 0.006 3857 

 KEGG ECM RECEPTOR INTERACTION 83 -1.83 0.011 3182 

 

Supplementary Table 4. KEGG pathway analysis for SLCO4C1 by GSEA. 

Expression GSfollow link to MSigDB SIZE NES NOM p-vale 
RANK AT 

MAX 

High  KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 233 1.81 0.004 4747 

 KEGG_JAK_STAT_SIGNALING_PATHWAY 131 1.71 0.012 2903 

 KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 235 1.8 0.014 5129 

 KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 64 1.74 0.018 4341 

 KEGG_HEMATOPOIETIC_CELL_LINEAGE 80 1.77 0.023 3856 

 KEGG_CALCIUM_SIGNALING_PATHWAY 170 1.59 0.025 1598 

 KEGG_ALDOSTERONE_REGULATED_SODIUM_REABSORPTION 40 1.55 0.026 2604 

 KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 110 1.63 0.028 3687 

 KEGG_ABC_TRANSPORTERS 43 1.54 0.04 1870 

 KEGG_CHEMOKINE_SIGNALING_PATHWAY 182 1.59 0.047 4352 

Low  KEGG_SPLICEOSOME 126 -2 0.002 4611 

 KEGG_RNA_POLYMERASE 28 -1.89 0.004 4331 

 KEGG_BASE_EXCISION_REPAIR 33 -1.79 0.004 3245 

 KEGG_PYRIMIDINE_METABOLISM 96 -1.73 0.016 4447 

 KEGG_NUCLEOTIDE_EXCISION_REPAIR 44 -1.71 0.017 3718 

 KEGG_RIBOSOME 87 -1.76 0.023 3104 

 KEGG_PENTOSE_PHOSPHATE_PATHWAY 26 -1.58 0.043 3562 

 

Supplementary Table 5. KEGG pathway analysis for TMEM220 by GSEA. 

Expression GS follow link to MSigDB SIZE NES NOM p-vale 
RANK AT 

MAX 

High  KEGG_CALCIUM_SIGNALING_PATHWAY 170 1.97 0 4043 
 

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 233 1.88 0 4071 
 

KEGG_LONG_TERM_POTENTIATION 67 1.8 0.002 3455 
 

KEGG_DRUG_METABOLISM_CYTOCHROME_P450 63 1.76 0.007 5236 
 

KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION 110 1.75 0.007 2795 
 

KEGG_ETHER_LIPID_METABOLISM 32 1.65 0.01 1224 
 

KEGG_STEROID_HORMONE_BIOSYNTHESIS 51 1.79 0.011 4850 
 

KEGG_HEMATOPOIETIC_CELL_LINEAGE 80 1.75 0.016 3753 
 

KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 110 1.67 0.016 3995 
 

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 64 1.74 0.019 4212 
 

KEGG_NITROGEN_METABOLISM 23 1.67 0.019 3231 
 

KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_GANGLIO_SERIES 15 1.63 0.025 2056 
 

KEGG_LONG_TERM_DEPRESSION 64 1.55 0.029 3150 
 

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 235 1.67 0.034 6138 
 

KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM 79 1.56 0.035 4984 
 

KEGG_ALDOSTERONE_REGULATED_SODIUM_REABSORPTION 40 1.53 0.035 3215 
 

KEGG_TASTE_TRANSDUCTION 40 1.65 0.037 3718 

Low  KEGG_NON_HOMOLOGOUS_END_JOINING 11 -1.82 0.002 3947 
 

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 22 -1.85 0.004 2245 
 

KEGG_SPLICEOSOME 126 -2.05 0.006 3198 
 

KEGG_RNA_POLYMERASE 28 -1.8 0.01 3617 
 

KEGG_NUCLEOTIDE_EXCISION_REPAIR 44 -1.81 0.014 4043 
 KEGG_CELL_CYCLE 124 -1.84 0.016 4208 
 KEGG_BASAL_TRANSCRIPTION_FACTORS 34 -1.72 0.022 3845 

 KEGG_BASE_EXCISION_REPAIR 33 -1.68 0.022 4083 
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 KEGG_RNA_DEGRADATION 53 -1.63 0.029 5314 

 KEGG_GLYOXYLATE_AND_DICARBOXYLATE_METABOLISM 15 -1.63 0.029 2112 

 

Supplementary Table 6. Primers used in this study. 

variable Gene name Primer 5’-3’Sequence size 

qPCR 

TMEM220 
Forward AGATGCAGAGGTGTGGGTG 169bp 

Reverse ACGATGCAAGAGGTAGGACG  

CBLN2 
Forward GCACCATGACCATCTATTTCGAC 266bp 

Reverse ATGCACTTTGTCTTCCCTTTCC  

 
SLCO4C1 

Forward GGAGTTGCACTTACGCTGAG 237bp 

 Reverse CTTTGGCTTCCTGTGTGCAA  

MSP 

TMEM220 M 
Forward TAAGGTATCGAAATCGAGGC 141bp 

Reverse CAACGCTAACGCCATAACT  

TMEM220 U 
Forward TTTTAAGGTATTGAAATTGAGGT 141bp 

Reverse CCACAACACTAACACCATAACT  

CBLN2 M 
Forward TGTGTAAACGTTGTGTCGAC 107bp 

Reverse CGCCTAATTTTCCGAATCT  

CBLN2 U 
Forward GTTTGTGTAAATGTTGTGTTGAT 107bp 

Reverse CCACCTAATTTTCCAAATCTTC  

 


