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INTRODUCTION 
 

Breast cancer (BC) is the most common malignancy in 

female patients worldwide. According to the latest 

report of the World Health Organization’s International 

Agency for Research on Cancer, approximately 2.7 

million women were diagnosed with BC and 

approximately 42, 170 patients died from the disease in 

the United States in 2020 [1, 2]. Although the overall 

survival rate has greatly improved over the past 

decades, most of BC-related deaths are still caused by 

tumor relapse with or without metastatic progression 

[3]. BC is a heterogeneous disease, and routine 

diagnosis and treatment often fail to achieve good effect 

in some patients. Hence, novel and more reliable 

molecular biomarkers for diagnosis, treatment, and, 

prediction of the prognosis of patients with BC are 

urgently required. 

 

Autophagy is an intracellular evolutionarily conserved 

catabolic degradation process that maintains cellular 
homeostasis by degrading senescent organelles and 

proteins. Studies have shown that autophagy affects the 

development of multiple cancers, either by recycling 
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ABSTRACT 
 

Despite a relatively low mortality rate, high recurrence rates represent a significant problem for breast cancer 
(BC) patients. Autophagy affects the development, progression, and prognosis of various cancers, including BC. 
The aim of the present study was to identify candidate autophagy-related genes (ARGs) and construct a 
molecular-clinicopathological signature to predict recurrence risk in BC. A 10-ARG-based signature was 
established in a training cohort (GEO-BC dataset GSE25066) with LASSO Cox regression and assessed in an 
independent validation cohort (GEO-BC GSE22219). Significant differences in recurrence-free survival were 
observed for high- and low-risk patients segregated based on their signature-based risk score. Time-dependent 
receiver operating characteristic (tdROC) analysis of signature performance demonstrated satisfactory accuracy 
and predictive power in both the training and validation cohorts. Moreover, we developed a nomogram to 
predict 3- and 5-year recurrence-free survival by combining the autophagy-related risk score and 
clinicopathological data. Both the tdROC and calibration curves indicated high discriminating ability for the 
nomogram. This study indicates that our ARG-based signature is an independent prognostic classifier for 
recurrence-free survival in BC. In addition, individualized survival risk assessment and treatment decisions 
might be effectively improved by implementing the proposed nomogram. 
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biosynthetic components to stimulate tumor growth 

(especially at advanced stages), or by triggering 

apoptosis to destroy cancerous or pre-cancerous cells 

[4–6]. Notably, autophagy can also affect the 

relationship between normal and tumor cells by 

alleviating cellular stress and suppressing antitumor 

immune responses [7]. Hence, in many cancers 

autophagy is closely correlated with drug resistance, 

tumor metastasis, and patient prognosis [8, 9]. 

 

Postoperative prognosis is traditionally based on the 

tumor-node-metastasis (TNM) staging system, a 

paradigm based on tumor size, depth of invasion, 

number of metastatic lymph nodes, and presence of 

distant metastasis. This system represents an excellent 

common language in the field of BC, but excludes 

prognostic factors such as age, Ki67 status, or 

expression of tumor-specific molecular markers. 

Therefore, comprehensive risk-stratified tools involving 

treatment selection and demographic factors should be 

created for BC. There is no information on the 

prognostic value of autophagy-related genes (ARGs) in 

patients with BC. Therefore, we used bioinformatics to 

identify candidate ARGs and construct a novel 

molecular-clinicopathological signature for BC 

recurrence. 
 

RESULTS 
 

Development and validation of an autophagy-related 

prognostic gene signature for breast cancer 

 

The study design is illustrated in Figure 1A. After the 

initial selection process, expression data from 303 and 

216 breast cancer patients (reported in the GSE25066 

and GSE22219 datasets, respectively) were used as the 

training and validation cohorts, respectively. After 

matching the mRNA expression data from the Human 

Autophagy Database’s autophagy gene list, a total of 

219 autophagy-related genes (ARGs) were identified in 

the training cohort. Baseline clinical features of the 

studied cases are shown in Table 1. 

 

To identify genes related to recurrence-free survival 

(RFS), univariate Cox analysis was performed on 145 

ARGs in the training cohort. We found that 18 ARGs 

 

 
 

Figure 1. Study workflow and parameter selection. (A) Workflow of the construction and validation of the signature. (B) Ten-time 

cross-validation for tuning parameter selection in the LASSO Cox regression model. (C) Coefficient profiles of 18 autophagy genes. 
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Table 1. Baseline characteristics of study patients. 

Variables 
Training cohort Validation cohort 

No. (%)  No. (%) 

No. of patients  303 216 

Age (years)  49 (26–75) 55 (26–80) 

ER status   

Negative 131 (43.2) / 

Positive 172 (56.8) / 

PR status   

Negative 162 (53.5) 82 (38.0) 

Positive 141 (46.5) 134 (62.0) 

HER2 status   

Negative 389 (95.4) / 

Positive 3 (1.00) / 

Unknown 11 (3.6) / 

Grade   

I 19 (6.3) 41 (19.0) 

II 114 (37.6) 87 (40.3) 

III 149 (49.2) 63 (29.2) 

Unknown 21 (6.9) 25 (11.5) 

T stage   

T1 22 (7.3) / 

T2 162 (53.5) / 

T3 71 (23.4) / 

T4 48 (15.8) / 

N stage   

N0 86 (28.4) / 

N1 149 (49.1) / 

N2 38 (12.5) / 

N3 30 (1.0) / 

Stage   

I 9 (3.0) / 

II 163 (53.8) / 

III 131 (43.2) / 

 

were correlated with RFS (P < 0.05). Then, we 

performed LASSO Cox regression analysis and 

identified, among those, 10 recurrence-related genes 

(ATF4, BAK1, BCL2, BIRC5, CCL2, DDIT3, HIF1A, 

PRKAB1, RPS6KB1, and TM9SF1). These ARGs were 

then used to establish a prognostic signature (Figure 1B 

and 1C). The risk score was defined by computing the 

products of the mean LASSO β-coefficients by the 

corresponding expression level for each gene: (0.31532 

× expression of ATF4) + (0.05986 × expression of 

BAK1) + (–0.013523 × expression of BCL2) + 

(0.183910 × expression of BIRC5) + (0.08745 × 

expression of CCL2) + (0.789860 × expression of 

DDIT3) + (0.008910 × expression of HIF1A) + (–

0.305302 × expression of PRKAB1) + (0.24959 × 

expression of RPS6KB1) + (–0.54193 × expression of 

TM9SF1). We then divided patients into high- and low-

score sub-populations and found that the ARG score 

was negatively related to prognosis in the training 

cohort (Figure 2). The signature’s risk score showed 

excellent ability (AUC = 0.815) in predicting breast 

cancer patients’ survival risk (Figure 2A). To validate 

the accuracy of the model in predicting OS, individual 

risk scores were calculated in patients from an 

independent dataset (GSE2219; validation cohort). This 

analysis demonstrated that patients in the high-risk 

group had worse RFS (p < 0.001; AUC = 0.77; Figure 

2B). Thus, concordant results were obtained in the 

training and validation cohorts. Moreover, 

immunohistochemistry data from the Human Protein 
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Atlas largely confirmed that the signature’s ARGs were 

dysregulated in BC samples. Specifically, expression 

levels of ATF4, BAK1, BCL2, CCL2, DDIT3, HIF1A, 

and RPS6KB1 were higher in BC than in normal breast 

tissue, whereas the opposite pattern was found for 

PRKAB1. In contrast, the expression of BIRC5 and 

TM9SF1 in tumor and normal tissues did not differ 

(Figure 3). 

Comparison with other prognostic signatures 

 

A comparison of our signature with 6 previously 

published BC prognostic models was next performed 

(Table 2). Time-dependent ROC curve analysis of our 

signature’s ability to predict 3- and 5-years RFS yielded 

AUC values of 0.815 and 0.765, respectively. These 

values were comparable to those reported for 9-TF [10] 

 

 
 

Figure 2. Analysis of candidate ARGs. Distribution of risk score, heatmap representation, Kaplan-Meier survival curves, and ROC curves 

for the autophagy-related signature in (A) the training cohort and (B) the validation cohort. 
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and 12-lncRNA [11] signatures, and superior in turn to 

the AUC values of another four signatures [12–15]. 

 

Correlation of the ARG signature with 

clinicopathological characteristics 

 

Correlation analysis between the signature risk score 

and seven clinicopathological factors revealed that the 

signature was not associated with age, but was instead 

significantly correlated with tumor grade, as well as T 

and N stage, in BC patients (Figure 4). These data 

suggest that our ARG signature may reliably predict 

tumor progression in BC patients. 

 

Construction of a predictive nomogram for BC 

 

Univariable Cox regression analyses revealed that risk 

score, grade, ER status, PR status, and T and N stage 

 

 
 

Figure 3. Immunohistochemistry of ARG expression. BC tumor and normal breast tissue images are shown for the signature’s ARG-
coded proteins. (A) ATF4 expression. (B) BAK1 expression. (C) BCL2 expression. (D) BIRC5 expression. (E) CCL2 expression. (F) DDIT3 
expression. (G) HIF1A expression. (H) PRKAB1 expression. (I) RPS6KB1 expression. (J) TM9SF1 expression. Images were obtained from the 
Human Protein Atlas database (https://www.proteinatlas.org/). 

https://www.proteinatlas.org/
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Table 2. The AUC of ROC curve show the sensitivity and specificity of the known signatures in predicting the 
prognosis of BC patients. 

Author Year Gene signature AUC for RFS 

Tang et al. 2019 13-miRNA signature 0.676 (5-year) 

Chen et al. 2020 9-TF signature 0.794 (1-year), 0.822 (3-year), 0.843 (5-year) 

Zhang et al. 2020 10-lncRNA signature 0.741 (1-year), 0.752 (3-year), 0.781 (5-year) 

Feng et al. 2021 5-gene metabolic signature 0.769 (3-year) 

Zhou et al. 2016 12-lncRNA signature 0.847 (5-year) 

Lai et al. 2019 5-miRNA signature 0.710 (5-year) 

 

were significantly associated with RFS. These 6 

variables were next subjected to multivariate Cox 

regression analysis, from which we constructed a 

nomogram to predict the RFS of patients by integrating 

T and N stage data with the risk score of the prognostic 

signature (Figure 5). By combining the scores 

associated with each variable and projecting the total 

score to the bottom scale, the estimated 3-year and 

 

 
 

Figure 4. Association between the ARG-based signature and clinicopathological characteristics. (A) Tumor grade. (B) T stage. 

(C) N stage. 
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5-year RFS probabilities can be easily calculated. The 

3-year and 5-year AUC values of the nomogram were 

0.829 and 0.795, respectively (Figure 6A). The ROC 

curves also indicated that compared with the signature 

only, the nomogram combining the signature and 

clinical variables had greater predictive accuracy. 

Calibration curves were then generated to graphically 

demonstrate the consistency between nomogram 

prediction and actual prognosis (Figure 6B). 

 

DISCUSSION 
 

Despite breakthrough advancements in BC treatment, 

some BC patients still have a poor prognosis, especially 

when metastasis is detected. Autophagy plays different 

roles in different stages of tumorigenesis and in 

response to anti-tumor treatments. Studies have shown 

that autophagy is induced by almost all conventional 

BC treatments and is thus considered a target for 

clinical pharmacological blockade [16–18]. BC is a 

multifactorial disease that involves the participation of 

numerous dysregulated ARGs in tumorigenesis and 

progression. Therefore, a signature model that 

capitalizes this important information might provide a 

more accurate and detailed diagnosis and prognosis 

prediction than single gene-based predictive models. 

 

In the present study, a total of 219 ARGs were 

identified in BC samples. Based on LASSO Cox 

analysis, we then established a 10-ARG-based signature 

to predict BC recurrence and observed significant 

differences in RFS for high- and low-risk score patients. 

The flexibility of LASSO Cox regression analysis 

allows to perform dimensional analyses more 

effectively, to construct more accurate genetic disease 

models and to improve the predictive ability of the 

corresponding molecular signatures [19]. We validated 

the predictive accuracy of the model in two independent 

GEO sets and confirmed the reliability of the model in 

the GSE22219 dataset. Then, a nomogram integrating 

risk score, T stage, and N stage was established in the 

training cohort. ROC curves and calibration plots 

showed excellent predictive ability for the model. By 

providing a visual, easily interpretable method for 

predicting individual RFS in BC patients, our novel 

nomogram may represent a valuable tool to guide 

individualized BC therapy. 

 

Our BC signature includes 10 autophagy-associated, 

recurrence-related genes (ATF4, BAK1, BCL2, BIRC5, 

CCL2, DDIT3, HIF1A, PRKAB1, RPS6KB1, and 

TM9SF1). Among these, several have been previously 

investigated in BC. ATF4, a basic region-leucine zipper 

transcription factor, belongs to the ATF/CREB 

(activating transcription factor/cyclic AMP response 

element binding protein) family [20]. ATF4 

overexpression was found to be associated with 

tumorigenesis in a variety of cancers, including BC 

[20–22]. During the integrated stress response (ISR), 

ATF4 regulates tumor growth, autophagy, drug 

resistance, and metastasis through the PERK and GCN2 

pathways [23–25]. Milani et al. found that resistance of 

 

 
 

Figure 5. Nomogram for predicting 3- and 5-year RFS of BC patients. The nomogram was constructed by integrating ARG 

signature’s risk score and patient’s T and N stage data. 
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BC cells to the 26S proteasome inhibitor bortezomib 

relies on proteasomal stabilization of ATF4, which 

upregulates LC3B to activate autophagy [26]. Similarly, 

apoptosis inhibition in paclitaxel-treated BC cells was 

also shown to result from ATF4-dependent autophagy 

activation [27]. These results suggest that ATF4 might 

be a reliable biomarker for poor prognosis in BC and 

that targeting ATF4-induced autophagy may overcome 

BC resistance to various chemotherapies. Gao et al. 

found that ATF4 expression is upregulated in ER-

negative BC and its expression is positively correlated 

with that of PSAT1, an enzyme involved in the serine 

synthesis pathway. Through in vitro and in vivo 

experiments, they showed that ATF4 silencing can 

reduce PSAT1 expression and inhibit cell proliferation 

and tumorigenesis by blocking GSK3β/β-catenin/cyclin 

D1 signaling [22]. In turn, Zeng et al. revealed that 

ATF4 is overexpressed in HER2-positive BC, where it 

upregulates ZEB1 and inhibits E-cadherin expression to 

promote cell migration [28]. 

 

C-C motif chemokine 2 (CCL2, also known as MCP-1) 

belongs to the CC chemokine family that recruits 

monocytes, memory T cells, and dendritic cells to sites 

of inflammation [29, 30]. Studies have shown that 

CCL2 in the tumor microenvironment promotes the 

progression and metastasis of different tumors, 

including BC [31, 32]. Indeed, CCL2 expression is 

often increased in BC tissues, and high CCL2 

expression is associated with early recurrence and 

 

 
 

Figure 6. Nomogram validation. (A) Time-dependent ROC analysis. (B) Calibration curves for predicting 3- and 5-year RFS in BC patients. 
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worse prognosis in BC [33, 34]. Fang et al. reported that 

CCL2 is significantly overexpressed in human luminal 

B BC specimens, as well as in MMTV-PyVmT and 

MMTV-Neu transgenic mammary tumors. 

Overexpression of CCL2 in luminal B cancer cells 

promoted cell growth and survival by inhibiting 

necrosis and autophagy [35]. DNA damage-inducible 

transcript 3 (DDIT3, also known as GADD153, or 

CHOP) is a member of the CCAAT/enhancer-binding 

proteins (C/EBPs). DDIT3 is regulated by ATF4 and 

acts as a multifunctional transcription factor during the 

ER-stress response [36, 37]. Block et al. indicated that 

properdin inhibited BC cell growth through testin-

mediated DDIT3 upregulation [38]. In turn, Tan et al. 

revealed that DDIT3 was significantly up-regulated in 

T-47D breast cancer cells, and its silencing inhibited the 

formation of ER vacuoles and autophagosomes [39]. 

 

In conclusion, we established an ARG signature that 

can accurately predict RFS in BC patients. In addition, 

our nomogram combining risk score and clinical 

parameters can provide visual individualized estimates 

of potential survival benefits, which may aid the design 

of patient-tailored therapies. There are some limitations 

in the current research. Our signature was established 

using a computational frame, and although our 

quantitative prognostic model proved to be robust, the 

mechanisms by which some of the signature genes may 

modulate BC progression have not yet been elucidated. 

Therefore, in vitro and in vivo functional experiments 

are required to verify their biological effects. 

 

MATERIALS AND METHODS 
 

Dataset acquisition and pre-processing 

 

The GSE25066 and GSE22219 gene expression profiles 

were acquired from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/). The GSE25066 

dataset is based on the GPL96 [HG-U133A] Affymetrix 

Human Genome U133A Array and includes data from 

310 breast cancer patients. The GSE22219 microarray 

dataset is based on the GPL6098 Illumina human Ref-8 

v1.0 expression beadchip and contains data from 216 

breast cancer patients. The GSE25066 dataset was used 

as training set and the GSE22219 dataset was used as 

validation set. The autophagy gene list was obtained 

from the Human Autophagy Database (HADb, 

http://autophagy.lu/clustering/index.html). This study 

did not require ethics approval as all data were 

downloaded from public databases. 

 

Signature development and validation 

 

Univariate Cox regression analysis was used to select 

RFS-related genes from the candidate gene list using 

the “survival” package in R software. Then, LASSO 

Cox regression analysis was performed to select 

optimal genes using the “glment”, “survminer”, and 

“survival” R packages. Thus, a prognostic ARG 

signature that calculates individual risk scores was 

developed based on the nonzero coefficients in the 

LASSO regression model. An autophagy-related 

signature for RFS was conducted based on expression 

levels for these genes and their corresponding 

coefficients (β). The risk score = (βmRNA1 × 

expression level of mRNA1) + (βmRNA2 × expression 

level of mRNA2) + (βmRNA3 × expression level of 

mRNA3) + (βmRNAn × expression level of mRNAn). 

BC patients were dichotomized into high- and low-risk 

groups based on the median value of the risk score. 

Survival outcomes of high- and low-risk score groups 

were then examined using a Kaplan-Meier survival 

plot. ROC curves were used to evaluate the 

performance of the FRG signature. The GSE22219 

cohort was used as validation set to examine the 

versatility and reliability of the signature in a similar 

way. To validate the signature genes at the protein 

level, immunohistochemistry (IHC) images of both 

normal and BC samples were downloaded from the 

Human Protein Atlas database 

(https://www.proteinatlas.org/). 

 

Correlation of the ARG signature with 

clinicopathological characteristics 

 

To explore the impact of the signature on the 

clinicopathological features of BC, we evaluated the 

correlation of the risk score with four 

clinicopathological factors (age, grade, and T and N 

stage). 

 

Nomogram construction  

 

Univariate and multivariate Cox regression analyses 

were performed to evaluate whether the risk scores are 

independent prognostic factors for OS. The variables 

examined included age, ER and PR status (negative and 

positive), tumor grade, T stage, and N stage. Using p < 

0.05 as the cut-off value, we performed univariate 

Cox’s proportional hazards regression analysis for these 

variables. Based on the backward stepwise method, we 

applied a multivariate Cox’s proportional hazards 

regression model to identify key variables. Then, a 

nomogram was constructed to predict 3- and 5-year 

RFS rates in BC patients. The nomogram thus obtained 

was validated by measuring its discrimination and 

calibration abilities. We used the area under the curve 

(AUC) to evaluate our model’s discrimination 
performance and to assess heterogeneities in its 

predicting ability (i.e. predicted vs observed results) 

using the “rms” R package. 

https://www.ncbi.nlm.nih.gov/geo/
http://autophagy.lu/clustering/index.html
https://www.proteinatlas.org/
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Statistical analyses 

 

Continuous variables were expressed as mean ± 

standard deviation (SD) as appropriate. Chi-squared and 

t-tests were used to compare differences between two 

groups. The accuracy of the prognostic nomogram was 

assessed by the AUC values of ROC curves using the 

package “survivalROC” in R. Statistical analyses were 

performed with R software (version 3.6.1, http://www.r-

project.org/). 

 

Availability of data and material 

 

The GSE25066 and GSE22219 datasets analyzed in the 

current study are available from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/). Additional 

information about results of this work is available from 

the corresponding author upon reasonable request. 
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