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ABSTRACT 
 

Background: Subarachnoid hemorrhage (SAH) is a life-threatening disease worldwide, and effective 
pharmaceutical treatment is still lacking. Celastrol is a plant-derived triterpene which showed neuroprotective 
potential in several types of brain insults. This study aimed to investigate the effects of celastrol on early brain 
injury (EBI) after SAH. 
Methods: A total of sixty-one male Sprague-Dawley rats were used in this study. Rat SAH endovascular 
perforation model was established to mimic the pathological changes of EBI after SAH. Multiple methods such 
as 3.0T MRI scanning, immunohistochemistry, western blotting and propidium iodide (PI) labeling were used to 
explore the therapeutic effects of celastrol on SAH. 
Results: Celastrol treatment attenuated SAH-caused brain swelling, reduced T2 lesion volume and ventricular 
volume in MRI scanning, and improved overall neurological score. Albumin leakage and the degradation of tight 
junction proteins were also ameliorated after celastrol administration. Celastrol protected blood-brain bairrer 
integrity through inhibiting MMP-9 expression and anti-neuroinflammatory effects. Additionally, necroptosis-
related proteins RIP3 and MLKL were down-regulated and PI-positive cells in the basal cortex were less in the 
celastrol-treated SAH group than that in untreated SAH group. 
Conclusions: Celastrol exhibits neuroprotective effects on EBI after SAH and deserves to be further investigated 
as an add-on pharmaceutical therapy. 
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INTRODUCTION 
 

Subarachnoid hemorrhage (SAH) is a life-threatening 

neurologic emergency with a mortality rate reaching 

nearly 50% around the world and accompanied by 

heavy burden on patients’ families and health care 

systems [1, 2]. Early brain injury (EBI) is considered 

the main cause of poor prognosis of SAH patients and is 

becoming a hot area of research [3, 4]. Although 

pharmacotherapies were actively developed and aimed 

to attenuate EBI after SAH, effective pharmaceutical 

drugs for SAH patients are still waiting to be found. 

 

In recent years, botanical compounds have drawn 

increasing attention in the management of SAH, such 

as curcumin [5] and resveratrol [6]. Celastrol (Cel) is a 

plant-derived triterpenoid which was isolated from the 

root bark of the traditional Chinese herb “Thunder of 

God Vine” (Tripterygium wilfordii Hook F.) [7]. 

Previous studies have demonstrated the promising 

effects of celastrol on auto-immune diseases and 

chronic inflammation [7–9]. Furthermore, researchers 

also discovered the anti-tumor activity of celastrol 

both in vitro and in vivo [10–12]. Celastrol’s 

neuroprotective effects were also observed in neuro-

degenerative diseases [13, 14], traumatic brain injury 

[15] and ischemic brain injury [16]. However, 

celastrol’s neuroprotective effects on EBI after SAH 

has not been reported yet. Luo et al. [17] demonstrated 

that celastrol could recover the transepithelial 

electrical resistance loss and protected tight junction 

proteins (ZO-1, occluding and claudin-5) from 

degradation in an in vitro oxygen glucose deprivation 

(OGD) model of endothelial bEnd3 cells. Blood-brain 

barrier (BBB) disruption was regarded as the main 

cause of brain edema in EBI and was associated with 

poor prognosis after SAH [18]. This study also aimed 

to investigate to ability of celastrol on suppressing 

BBB disruption in vivo and its neuroprotective role 

after SAH. 

 

Necroptosis, also known as programmed necrosis, was 

firstly discovered and named by Degterev et al. in 

2005, as a new form of cell death in ischemic brain 

injury [19]. After that, this kind of programmed cell 

death was also discovered in TBI [20], spinal cord 

injury (SCI) [21] and intracerebral hemorrhage [22]. 

Recent studies have discovered the existence of 

necroptosis after SAH [23]. Researchers also found that 

celastrol could inhibit necroptosis through suppressing 

the RIP3/MLKL signaling pathway in a mouse 

ulcerative colitis model [24]. Herein, we hypothesized 

that necroptosis could be a potential therapeutic target 

in EBI after SAH, and celastrol might exert 

neuroprotective effects by attenuating the RIP3/MLKL 

signaling pathway. 

In this study, we aimed to use a rat endovascular 

puncture model as well as MRI scanning to determine 

whether celastrol could suppress necroptosis and 

alleviate SAH-related symptoms after SAH. 

 

RESULTS 
 

SAH grade, mortality and neurological scores 

 

Representative brain images were shown in Figure 1A. 

No significant differences of the SAH grade scores were 

observed after the treatment of Cel, compared to the 

vehicle group (P>0.05, Figure 1B). The mortality rates 

were as follows: sham group 0% (0/14), SAH + vehicle 

group 41.7% (10/24) and SAH + Cel group 39.1% (9/23), 

which were comparable between SAH + vehicle group 

and SAH + Cel group (P>0.05, Figure 1C). The total 

neurological score of the SAH + vehicle group was 

dramatically lower than those in the sham group at 24, 48 

and 72h after SAH induction (P<0.01, Figure 1D). 

Treatment with celastrol markedly ameliorated the total 

neurological deficits at each time point after SAH (P<0.05 

vs SAH + vehicle, Figure 1D). As for the detailed 

neurological function (neurological subscores), celastrol 

significantly improved the symmetry in limb movement at 

each time point (P<0.05 vs SAH + vehicle, Figure 2B). 

 

Celastrol attenuated brain swelling, reduced T2 

lesion volume and ventricular volume after SAH 

 

The representative MRI T2 images were shown in 

Figure 3A. Experimental SAH resulted in a significant 

brain swelling of the left hemisphere at 72 h (P<0.01 vs 

sham, Figure 3B). Notably, Celastrol pretreatment 

decreased the symptom of brain swelling of the left 

hemisphere at 24 h (P<0.01 vs SAH + vehicle, Figure 

3B). No T2 lesion was observed in ipsilateral 

hemisphere in the sham group, but it was obvious in 

SAH + vehicle group (P<0.01 vs sham, Figure 3A). In 

addition, celastrol treatment significantly decreased the 

T2 lesion volume after SAH (P<0.05 vs SAH + vehicle, 

Figure 3C). The ventricular volumes of the rats were 

significantly enlarged because of SAH (P<0.01 vs sham, 

Figure 3D), while celastrol had the ability to prevent this 

process (P<0.05 vs SAH + vehicle, Figure 3D). 
 

Celastrol attenuated albumin leakage after SAH 
 

Western blotting (WB) and immunohistochemistry 

(IHC) and of albumin were performed to evaluate the 

disruption of BBB. SAH significantly facilitated  

the protein leakage of albumin at 72 h (P<0.01  

vs. sham, Figure 4A), while celastrol markedly  
prevented this process (P<0.01 vs. SAH + vehicle, 

Figure 4A). Representative photographs of albumin 

immunoreactivity were presented in Figure 4B. 
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Figure 1. Representative pictures of brains, SAH grade, mortalities and neurological scores at 72 h after SAH. (A) Typical brains 
of sham, SAH + vehicle, and SAH + Cel group. (B) The grade of SAH severity. (C) SAH-caused mortality rate. (D) Neurological scores at 24, 48 
and 72 h after SAH induction. Data were presented as mean±SEM. n = 14. *P < 0.05 versus sham, **P < 0.01 versus sham, #P < 0.05 versus 
SAH + vehicle. 
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Figure 2. Neurological subscores at 24, 48 and 72h after SAH induction. (A–F) Subscores of (A) spontaneous activity, (B) symmetry in 

limb movement, (C) forepaw outstretching, (D) climbing, (E) response to touch on either side of trunk, (F) response to vibrissae at each time 
point after SAH. Data were presented as mean±SEM. n = 14. *P < 0.05 versus sham, **P < 0.01 versus sham, #P < 0.05 versus SAH + vehicle. 
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Celastrol prevented tight junction protein disruption 

after SAH 

 

To evaluate the effects of celastrol treatment on tight 

junction proteins after SAH (72h), WB was performed 

to investigate the protein expression of occludin, ZO-1 

and claudin-5. Significant decrease of these proteins 

was detected in SAH + vehicle group (P<0.01 vs  

sham, Figure 5A–5D). And celastrol administration 

remarkably attenuated the decrease of occludin, ZO-1 

and claudin-5 (P<0.01 vs SAH + vehicle, Figure 5A–

5D). These results indicated that celastrol attenuated 

BBB disruption at 72h after SAH. 

 

Celastrol prevented the up-regulation of MMP-9 

after SAH 

 

BBB disruption resulted from tight junction  

protein degradation after stroke was mediated by 

matrix metalloproteases (MMPs) [25], especially  

MMP-9 [26]. MMP-9 expression was significantly  

up-regulated after SAH induction (P<0.01 vs.  

sham, Figure 6A, 6B), and treatment of celastrol  

attenuated this process (P<0.01 vs SAH + vehicle,  

Figure 6A, 6B). 

 

Celastrol attenuated neuroinflammation after SAH 

 

The neuroinflammatory response was considered to be 

one of the main causes of the up-regulation of MMP-9 

after SAH, as reported in previous studies [27, 28]. To 

further explore the mechanisms of the suppression of 

MMP-9 after celastrol treatment, we detected the 

expression of pro-inflammatory cytokines. As presented 

in Figure 7A–7D, the protein levels of IL-1β, TNF-α 

and IL-6 were dramatically up-regulated at 72 h after 

SAH induction (P<0.01 vs. SAH + vehicle), but the 

administration of celastrol prevented the increasing of 

 

 
 

Figure 3. Celastrol attenuated brain swelling, reduced T2 lesion volume and ventricular volume after SAH.  
(A) Representative T2-weighted MRI images (3.0T) of the brains of sham, SAH + vehicle, and SAH + Cel group. (B) Brain swelling was 
calculated as: ((volume of ipsilateral hemisphere - volume of contralateral hemisphere)/volume of contralateral hemisphere) × 100%. (C) 
T2 lesion volume was presented as the volume ratio to the ipsilateral hemisphere. (D) Ventricular volume was calculated as Σ(An + An + 1) × 
d / 2, and was presented as the volume ratio to the average volume of the sham group. Data were presented as mean±SEM. n = 6. *P < 
0.05, **P < 0.01. 
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these cytokines induced by SAH (P<0.05 vs SAH + 

vehicle). 

 

Celastrol down-regulated RIP3/MLKL-mediated 

necroptosis after SAH 

 

To further investigate the role of celastrol in 

necroptosis, WB was conducted to detect the protein 

expression of the RIP3/MLKL signaling pathway. We 

found that RIP3 and MLKL expression were 

significantly upregulated in SAH + vehicle group than 

that in sham group (P<0.01, Figure 8B, 8C), while 

celastrol administration exerted a prominent inhibitory 

effects on the expression of these proteins (P<0.05 vs 

SAH + vehicle, Figure 8B, 8C). Caspase-8 is a 

suppressor of the RIP1 - RIP3 complex and necroptosis 

can be triggered when caspase-8 level was decreased 

[24, 29]. Thus, we also tested the protein level of 

cleaved caspase-8. Compared to sham group, cleaved 

caspase-8 was significantly decreased after 72 h of 

SAH (P<0.01 vs sham, Figure 8D), but Celastrol 

treatment prevented the degradation of it (P<0.01, 

Figure 8D). 

 

Celastrol reduced the amount of PI-positive cells 

after SAH 

 

In order to evaluate the effects of celastrol in preventing 

neural cell death, PI was used to identify the plasma 

membrane-ruptured cells. As shown in Figure 9A–9B, 

the amount of PI-positive cells was notably increased in 

the basal cortex of the ipsilateral hemisphere at 72 h 

after SAH (P<0.01 vs sham). Treatment with celastrol 

significantly reduced the percentage of PI-positive cells 

(P<0.01 vs SAH + vehicle). 

 

DISCUSSION 
 

For the first time, our study found that celastrol, a 

botanical compound, could act as a neuroprotective 

agent on EBI after SAH by improving neurological 

function, alleviating brain swelling, reducing T2 lesion 

 

 
 

Figure 4. Celastrol decreased albumin leakage after SAH. (A) Protein levels of albumin in the ipsilateral basal cortex in sham, SAH + 

vehicle, and SAH + Cel groups at 72 h after SAH induction, detected by WB. (B) Representative histological slides of the albumin staining in 
the perivascular regions of the ipsilateral basal cortex in sham, SAH + vehicle, and SAH + Cel group. Data were presented as mean±SEM. n = 6. 
**P < 0.01. Scale bar = 2 mm. 
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Figure 5. Effects of celastrol treatment on tight junction proteins at 72 h after SAH induction. (A) Representative western blots 

showing levels of ZO-1, occludin and claudin-5 in the ipsilateral cortex at 72 h after SAH induction. (B–D) Quantification of band densities of 
ZO-1, occludin and claudin-5. The densities of the protein bands were analyzed and normalized to β-actin, and compared to the mean value 
of the sham group. Data were presented as mean±SEM. n = 6. **P < 0.01. 

 

 
 

Figure 6. Effect of celastrol treatment on MMP-9 expression at 72 h after SAH induction. (A) Representative WB showing levels of 

MMP-9 in the ipsilateral cortex of each group at 72 h after SAH induction. (B) Quantifications of band densities of MMP-9. The densities of 
the protein bands were analyzed and normalized to β-actin, and compared to the mean value of the sham group. Data were presented as 
mean±SEM. n = 6. **P < 0.01. 
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volume and ventricular volume. The possible 

mechanisms might be through preventing the 

distribution of tight junction proteins, alleviating BBB 

disruption, attenuating neuroinflammation and down-

regulating the level of MMP-9. Moreover, celastrol 

suppressed the RIP3/MLKL-mediated cell necroptosis 

after SAH. 

 

Nature compounds and their derivatives are good 

candidates for novel pharmacotherapies. Among them, 

triterpenoids comprise the largest group of botanical 

compounds [30]. Plant-derived triterpene celastrol has 

been proved to be a potent anti-tumor agent to a variety 

kind of malignant tumors, such as breast cancer [31], 

lung cancer [32], prostate cancer [7] and leukemia [33, 

34]. Besides, celastrol was also known to be effective in 

many autoflammatory diseases, such as adjuvant-

induced arthritis (AA) [35] and inflammatory bowel 

disease (IBD) etc [24]. The anti-tumor and anti-

inflammatory functions of celastrol are based on its 

multi-target effects on diverse oncogenic or immune 

signaling pathways. For instance, celastrol acts as 

inhibitor of heat shock protein (HSP) 90 and 

proteasome [36], affecting NF-κB signaling pathway 

[37], and inhibiting the phosphorylation of ERK, JNK 

and STAT3 [35]. In recent years, neuroprotective 

 

 
 

Figure 7. Celastrol decreased neuroinflammation after SAH induction. (A) Representative WB of protein levels of IL-1β, IL-6 and TNF-

α in the ipsilateral cortex in each group at 72 h after SAH induction. (B–D) The relative band densities of IL-1β, IL-6 and TNF-α. The densities of 
the protein bands were analyzed and normalized to β-actin, and compared to the mean value of the sham group. Data were presented as 
mean±SEM. n = 6. *P < 0.05, **P < 0.01. 
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effects of celastrol have been studied in several kinds of 

brain insults [13–15]. Nevertheless, to the best of our 

knowledge, there is no study reported about celastrol’s 

effects on SAH. Our study has discovered the 

neuroprotective attributes of celastrol after SAH, 

especially on attenuating brain swelling and protecting 

BBB from disruption. These results were consistent 

with previous study regarding celastrol’s effects of 

regulating tight junction integrity in murine brain 

endothelial bEnd3 cells [17]. 

 

As a fatal disease, there are very few effective 

pharmacotherapeutic strategies on treating SAH. 

Patients who suffer from SAH usually have a high 

mortality rate, or possible neurological deficits if 

survive [1, 2]. There are many animal models trying to 

simulate the pathological changes after SAH. Among 

them, the endovascular filament puncture model is the 

best to mimic the sudden increase of intracranial 

pressure when SAH happens due to a ruptured 

aneurysm [38, 39]. The high mortality rate (about 40%) 

in this study also reflects the severity of SAH caused by 

this method and also in line with reality. In the past, 

delayed cerebral vasospasm was considered as the 

major factor of unsatisfied prognostic outcome after 

SAH. Nonetheless, after the unsuccessful attempts of 

 

 
 

Figure 8. Celastrol down-regulated RIP3/MLKL signaling pathway after SAH induction. (A) Representative WB showing protein 

levels of RIP3, MLKL and cleaved caspase-8 in the ipsilateral cortex in each group at 72 h after SAH induction. (B–D) Protein quantification of 
RIP3, MLKL and cleaved caspase-8. The densities of the protein bands were analyzed and normalized to β-actin, and compared to the mean 
value of the sham group. Data were presented as mean±SEM. n = 6. *P < 0.05, **P < 0.01. 
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several clinical trials using anti-vasospastic drugs to 

treat SAH patients [40, 41], researchers turned their 

interests to EBI in the first 72 h after SAH [4]. The 

mechanisms of EBI include the sharp rise of intracranial 

pressure and the decrease of cerebral blood flow, which 

could cause BBB disruption, brain edema, neuro-

inflammation and cell death. Brain edema contributes to 

pathological changes including brain swelling and 

neuronal cell death [18], and has been recognized as an 

independent risk factor of poor prognosis after SAH 

[42]. Brain water content is widely used to access brain 

edema. But it is an invasive detection and only reflects 

the water content of the brain parenchyma. In this study, 

a 3.0-T MRI was used to evaluate the brain swelling 

levels, T2 lesion volumes and the ventricular volumes 

of rats in each group, because it was noninvasive and 

more accurate. Previous studies have illustrated that T2 

lesion volume and ventricular volume were associated 

with neurological functions and the severity of SAH 

[43, 44], which is in line with the results of our study. 

The celastrol-treated SAH group showed decreased T2 

lesion volume and ventricular volume as well as 

improved neurological scores than the vehicle group. 

These results consist with the decrease of brain water 

content and the improvement of neurological function 

after celastrol treatment in the present study and the 

previous studies about TBI and ischemic brain injury 

[15, 16]. Despite the obvious beneficial effects 

 

 
 

Figure 9. Effects of celastrol on cell injury in the ipsilateral basal cortex at 72 h after SAH induction. (A) Representative 
microphotographs showed the co-localization of DAPI (blue) with PI (red) positive cells in the ipsilateral basal cortex at 72 h after SAH 
induction. (B) Quantitative analysis of PI positive cells at 72 h after SAH induction. Data were presented as mean±SEM. n = 6. **P < 0.01. Scale 
bar = 100 μm. 
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of celastrol on improving neurological function, 

decrease of the mortality rate was not observed. Most 

death of the animals happened in the first 1 h after SAH 

induction because of the drastic uprising of the 

intracranial pressure, and obviously, celastrol had 

limited effects during this acute change. But it is still 

possible to be used as an add-on therapy to improve 

the life quality and long-term prognosis of SAH 

patients. 

 

Previous studies have found that celastrol also had the 

ability to down-regulate NF-κB-mediated MMP-9 level 

in breast cancer cells [45] and fibroblast-like syno-

viocytes in rheumatoid arthritis [46]. As BBB disruption 

caused by the degradation of tight junction proteins 

after stroke was mainly mediated by MMP-9 [26], and 

inflammatory cytokines were considered to be the main 

activators of MMP-9 [47]. Therefore, we also detected 

the level of MMP-9 and proinflammatory cytokines IL-

1β, IL-6 and TNF-α 72h after SAH. The results 

indicated that celastrol could also down-regulate MMP-

9 and inhibit neuroinflammation in EBI after SAH, so 

as to protect tight junction integrity. 

 

Necroptosis is a newly discovered form of 

inflammatory cell death mediated by RIP3/MLKL 

signaling pathway [48]. During programmed cell death, 

RIP1 binds with RIP3 to form the necrosome [48, 49]. 

MLKL also plays a pivotal role in this process. After 

phosphorylated by RIP3, it forms an oligomer and 

directly disrupts membrane integrity [50]. To 

investigate celastrol’s effect on necroptosis after SAH, 

we examined the protein levels of RIP3 and MLKL in 

the ipsilateral cortex in each group. Celastrol treatment 

significantly down-regulated RIP3 and MLKL levels, 

compared to SAH + vehicle group. PI was used to 

identify the necrotic cell death [23, 51]. PI-positive cells 

was much less in SAH + Cel group, which supports 

celastrol’s effect on protecting neuronal cells from 

necrotic cell death. The protein level of cleaved 

caspase-8 was also measured, as caspase-8 can suppress 

the RIP1 - RIP3 complex and necroptosis can be 

triggered when caspase-8 is degraded [24, 29]. In this 

study, celastrol markedly up-regulated cleaved caspase-

8 level after SAH, which was consistent with previous 

study in ulcerative colitis [24]. These data indicated that 

celastrol could act as a necroptosis suppressor in EBI 

after SAH. 

 

CONCLUSIONS 
 

Our study reported, for the first time, that celastrol had 

neuroprotective effects on EBI after SAH by attenuating 

brain swelling and protecting BBB, which might due to 

the inhibition of MMP-9 and neuroinflammation. 

Additionally, celastrol also prevented necroptosis after 

SAH by inhibiting the RIP3/MLKL pathway. Our data 

suggest that celastrol deserves to be further investigated 

in clinical trials and could be developed as a therapeutic 

agent in SAH management. 

 

MATERIALS AND METHODS 
 

Animal study design 

 

In total, 61 adult male Sprague-Dawley (SD) rats (300-

320g, Slac Laboratory Animal Co., Ltd., Shanghai, 

China) were utilised in this study. All animal 

experiments and procedures were in accordance with 

the Guide for the Care and Use of Laboratory Animals 

of the National Institutes of Health. This study was 

approved by the Institutional Animal Care and Use 

Committee of Zhejiang University. Sixty-one SD rats 

were randomly divided into three groups: the sham 

group (n=14), SAH + vehicle group (n=24) and SAH + 

Cel group (n=23). The rat SAH model (endovascular 

perforation) was established as previously described 

[39]. The sham group underwent the same modeling 

procedure as the SAH group but without the intracranial 

arterial perforation. The SAH + vehicle and SAH+Cel 

group were treated with vehicle and celastrol, 

respectively. Based on previous studies [22, 52–54] and 

our own data(unpublished) regarding the time course of 

RIP3 and MLKL protein level after SAH, all the end 

points in this experiment were set as 72 h after SAH. In 

every group, 6 rats were used for MRI scanning and 

measurement of protein levels, 6 animals were used for 

PI labeling, and the other two rats were used for IHC. 

 

Drug administration 

 

Celastrol purchased from Selleck Chemicals (Houston, 

TX, USA) was dissolved in DMSO and further diluted 

in sterile saline to a final concentration of 1%. 3 mg/kg 

celastrol (about 1 ml), which was then administrated 

through intraperitoneal injection immediately after SAH 

induction. The dose and time of celastrol treatment were 

based on a previous study [16]. Both sham group and 

SAH + vehicle group received the same amount of 

vehicle intraperitoneally as SAH+Cel group after SAH 

induction as study control. 

 

Neurological score and SAH grade evaluation 

 

Neurological score evaluation were based on a previous 

system on 24, 48 and 72 h respectively after SAH [55]. 

The evaluation system consisted 6 different tests, and 

each test was scored as either 0-3 or 1-3, with the total 

score ranging from 3 to 18. The detailed neurological 

function evaluation system was shown in Sup-

plementary Table 1. Randomized behavioral task 

sequence of the animals was used. When the rats were 
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sacrificed, the severity of SAH was graded using an 

SAH grading system [56]. All the tests and SAH grades 

were evaluated by the same observer. 

 

MRI and measurements 

 

At 72 h after SAH induction, MRI was performed with 

a 3.0-T GE Discovery MR750 scanner (General Electric 

Company, USA). Rats had T2 fast spin-echo sequences 

using a field of view of 60×60 mm, matrix of 256×256 

and 9 coronal slices (2-mm-thick). All the MRI data 

was analyzed and evaluated by the same observer using 

ImageJ software. Brain swelling measurement was 

based on all 9 sections [57], and the value was 

calculated using the following formula: ((ipsilateral 

hemisphere volume - contralateral hemisphere volume)/ 

contralateral hemisphere volume) × 100% [58]. 

Ventricular volume was measured from the frontal horn 

of lateral ventricle to the foramen of Luschka as 

previously described [43], and was calculated using the 

following formula: Σ(An + An + 1) × d / 2, where A is the 

ventricular area while d is the distance between 

sections. T2 lesion volume was identified as previously 

described [44]. In brief, a pixel was considered as 

abnormal if the value was larger than the mean plus 

twice the standard deviation of the mean value of 

contralateral hemisphere, and the T2 lesion volume was 

presented as the volume ratio to the ipsilateral 

hemisphere. 

 

Western blot analysis 

 

WB was conducted as previously described [59]. The 

rats’ brains were resected and the left basal cortical 

samples containing blood clots were weighed and 

homogenized. After that, these samples were 

centrifuged for 10 minutes at 1000 g (4° C). The 

precipitate was discarded while supernatants were 

further centrifuged. Protein concentration was 

quantified by the detergent-compatible protein assay kit 

(Bio-Rad, Hercules, CA, USA). Equal amount of 

protein (40 μg) was mixed well with loading buffer, 

respectively, and denatured for 5 min at 95° C. After 

that, protein samples were loaded into SDS-PAGE gels 

for separation then transferred on polyvinylidene 

fluoride (PVDF) membranes. The membranes were 

subsequently blocked and probed with the primary 

antibodies overnight at 4° C. Antibodies used in this 

study and the dilutions were as follows: Albumin 

(Bethyl Laboratories A90-134A, 1:5000), ZO-1 (Santa 

Cruz SC-10804, 1:2000), Occludin (Santa Cruz SC-

5562, 1:2000), Claudin-5 (Santa Cruz SC-28670, 

1:800), MMP-9 (Abcam ab38898, 1:5000), IL-1β 
(Santa Cruz SC-23459, 1:800), IL-6 (Abcam ab9324, 

1:2500), TNF-α (Abcam ab6671, 1:1000), RIP3 (Novus 

NBP1-77299, 1:1000), MLKL (Santa Cruz SC-165025, 

1:500), caspase-8 (GeneTex GTX-110723, 1:3000), and 

β-actin (Abcam ab8226, 1:5000). The membranes were 

incubated with secondary antibodies (1:5000) for 1 h at 

room temperature (RT). The protein bands were 

visualised using X-ray film, quantified by ImageJ 

software (NIH) and normalized to β-actin. 

 

Immunohistochemistry 
 

IHC was performed as previously described [60]. The 

rats’ brains were removed then dehydrated. Coronal 

frozen sections (7 μm thick) were obtained as described 

previously. The sections were incubated with goat anti-

mouse albumin antibody (Bathyl Laboratories A90-

134A, 1:500) for 2 h at RT and washed with PBS, then 

incubated with secondary antibody for 1h at RT. 

Immuno detection was performed using a DAB 

peroxidase substrate kit SK-4100 (Vector Laboratories, 

Inc., Burlingame, CA, USA). Images were acquired by 

Olympus BX41 microscope (Olympus, Tokyo, Japan). 

 

PI labeling 
 

At 71 h after SAH induction, PI (10 mg/mL; Sigma-

Aldrich, St Louis, MO, USA) was diluted in sterile 

normal saline and injected intraperitoneally (30mg/kg). 

The rats were sacrificed 1 h thereafter and brains were 

removed and soaked in 4% formaldehyde for 48 h at 4° 

C, then dehydrated in 30% sucrose solution until the 

brain sank to bottom (approximately 2 days). Coronal 

frozen sections (7 μm thick) were cut with the use of 

tissue-freezing media at 150-200 μm intervals near the 

optic chiasma. PI-positive cells were quantitated in the 

left basal cortex from 200× cortical fields in three brain 

sections per rats under a fluorescence microscope 

(Olympus, Tokyo, Japan), which were then evaluated 

by the same observer. 

 

Statistical analysis 
 

Statistical analyses were performed using SPSS (version 

22.0) and Prism (version 6.0) software. Data were 

expressed as mean ± SEM. Comparison among the 

groups were analyzed using one-way analysis of 

variance (ANOVA) followed by Tukey’s multiple 

comparison test. P value less than 0.05 was considered 

as statistically significance. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Table 
 

Supplementary Table 1. Evaluation of the neurological score after SAH. 

Test 
Score 

0 1 2 3 

Spontaneous activity 

(in cage for 5 min) 
No movement Barely moves 

Moves but does not approach at 

least three sides of cage 

Moves and approaches at 

least three sides of cage 

Symmetry in limb 

movement 

Right side: no 

movement 

Right side: slight 

movement 
Right side: moves slowly 

Both sides: move 

symmetrically 

Forepaw 

outstretching 

Right side: no 

outreaching 

Right side: slight 

movement to outreach 

Right side: moves and outreaches 

less than left side 
Symmetrical outreach 

Climbing \ Fails to climb Right side is weak Normal climbing 

Response to touch on 

either side of trunk 
\ No response on right side Weak response on right side Symmetrical response 

Response to vibrissae 

touch 
\ No response on right side Weak response on right side Symmetrical response 

 


