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SUPPLEMENTARY METHODS 
 

INTRODUCTION 
 

In this appendix we outline an approach to estimating 

the genetic correlation between males and females for a 

phenotype which has genetic contributions both from 

additive and dominance deviations to its variance. 1. 

Using the biometric model in a simplified two-allelic 

locus with equal allele frequencies, we will derive  

the resulting correlation between genetic contributions 

in males and females with different additive  

and dominance deviation contributions genotypic 

expression. 2. We then show that the resulting 

correlation depends on allele frequencies. 3. Finally, we 

suggest an intuitive solution for estimation of the 

genetic correlation between males and females, and 

compare its performance with other possible solutions 

in a series of simulations. 

 

As outlined below, our suggested model for the 

covariance between twins in opposite sexed DZ pairs is 
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where 2

X  represent contributions to variance and 

covariance from source X. X are A, additive genetic 

contributions, D, dominant genetic contributions, and 

E, individually unique contributions. The sub-indexes 

are also complemented with f and m to indicate  

female and male sources. Below we show that this 

model, although not uniformly unbiased, has some 

features which makes it suitable for situations where 

additive and dominance contributions to variance of the 

phenotype exists in both sexes (possibly in different 

proportions). 

Derivation of correlation due to genetics from 

biometric model 

 

Following the set-up of the biometric model in Neale 

and Maes [1] we define one autosomal locus having 

allele A and a at equal ½ frequencies in a population. 

We define the genotypic effect on Y to be −d for allele 

combination aa, h for allele combination Aa, and d for 

allele combination AA (see Supplementary Figure 7). 

Note that the definition of genotypic effect is somewhat 

arbitrary, see e.g. Neale and Maes [1]. 

 

 
 

Supplementary Figure 7. Graphical representation of the genotypic effect. (Adapted from Neale and Maes [1]). 
 

Here h indicates the deviation from additivity; we 

assume h to be bounded between −d and d to keep a 

biologically feasible interpretation of additivity vs 

dominance/recessiveness. The ½ frequencies means 

that a random individual has a ¼ probability of having 

allele combination aa, a ½ probability of having Aa, 

and a ¼ probability of having AA. The mean genotypic 

contribution can be written as (using the law of total 

expectation). 
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The variance can be calculated as 
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Now, let the same locus contribute to two phenotypes, 

Y1 and Y2 (e.g., same phenotype in males and females), 

possibly with different additivity and dominance 

deviation. Define the genotypic effects to be {−d1, h1, 

d1} and {−d2, h2, d2} for Y1 and Y2, respectively. Using 

the frequencies of allele combination in full siblings (or 

DZ twins), following Neale and Maes [1], we can create 

a table indicating the contributions to the covariance 

from each combination of allele in the two siblings 

(Supplementary Table 11). 

 

Supplementary Table 11. Contributions to covariance, and expected frequency, between two DZ twins. 

Sibling 1 

alleles 

Sibling 2 

alleles 

Genotypic effect 

minus mean, 

sibling 1 

Genotypic effect 

minus mean, 

sibling 2 

Contribution to covariance Frequency 

AA  AA  1 1

1

2
d h  2 2

1

2
d h  1 2 1 2 1 2 1 2

1 1 1

2 2 4
d d d h h d h h    

9

64
 

AA  Aa  1 1

1

2
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1

2
h  1 2 1 2

1 1

2 4
d h h h  

6
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1
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1

2
d h   1 2 1 2 1 2 1 2
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1

2
h  2 2

1

2
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2 4
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6
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1

2
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1

2
h  1 2

1

4
h h  
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1

1

2
h  2 2

1
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2 4
h d h h   

6
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1
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1
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1

2
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1

2
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2 4
d h h h   
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1
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1

2
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9
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We can thus calculate the contribution to covariance from 

this locus between phenotypes and between DZ twins as 
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And thus, the expected correlation in this locus is 
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 (5) 

 

We may investigate how the correlation will depend on 

dominance deviations by varying the h’s between +  

and – the d’s. In Supplementary Figure 8 we have 

plotted expected correlations over varying degrees of 

dominance deviations in the two genotypic effect for  

the different phenotypes, the d’s have value 1. An 

assumption is that d1 and d2 have same sign, thus the 

correlation is positive. 

 

 
 

Supplementary Figure 8. Contour plot of deviations from additivity, when h’s are at ±1 there is maximal dominance deviation. 
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From the derivation and plot we may notice several 

things: 1. When one genotypic effect is at maximum 

dominance, and the other at perfect additivity, the 

correlation is 
1

0.4082
6
 . 2. When both genotypic 

effects have maximum deviation, in the same ± direction, 

the correlation is 
5

0.4167
12

 . 3. When both genotypic 

effects are purely additive the correlation is 0.5. 4. When 

the genotypic effects are at maximum deviation, but in 

opposite ± direction, the correlation is 0.25. 

 

Thus, the contribution to correlation between two 

phenotypes in different DZ twins depends on the 

amount and direction (i.e., dominance or recessiveness) 

of dominance deviation. 

 

The correlation depends on the allele frequencies 

 

If we want to expand on previous simplified equal allele 

frequency and allow any allele frequency, we quickly 

generate a complex expression. Therefore, we set up a 

simulation with a larger number of alleles and a large 

number of DZ twins, where we vary the dominance 

deviations, to assess the impact of varying allele 

frequencies.  

 

We simulated 100,000 DZ pairs and 100 assumed 

contributing loci under different scenarios. In all 

scenarios we assumed that the sign and maximal 

genotypic effect were the same for both phenotypes. 

Additional assumptions were non-assortative mating 

(i.e., parents were treated as two random individuals in 

the population), no association between minor allele 

frequency (MAF) and genotypic effect, no interactions 

between loci, and no interactions with any 

‘environmental’ (i.e., non-genetic) variable. The 

genotypic effects were drawn randomly from a standard 

normal distribution. Each scenario is based on different 

MAF; 

 

1. MAF = 0.5 for all loci.  
 

2. MAF drawn from a uniform distribution between 0 

and 0.5. 
 

3. MAF drawn from a uniform distribution between 0 

and 0.1. 
 

4. MAF drawn from a random distribution between 0 

and 0.5 with an ‘L’-shape (a situation with MAF 

pushed towards 0 but still covering the full range). 

 

The MAF distribution in point 4 is presented in 

Supplementary Figure 9, and was found through 
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2
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1
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 (6) 

 

 
 

Supplementary Figure 9. A specific scenario for minor allele frequency distribution. 
 

From the each of the four simulations with different 

MAF distributions we produce three separate series of 

estimates over varying dominance deviation: scenario 

A, varying degree of dominance deviation in one 

phenotype, and fixed additive genotypic effect in other 

phenotype, scenario B, varying degree of dominance 

deviation in one phenotype, and maximal dominance 

deviation genotypic effect in other, and Scenario C, 

varying dominance deviation vs maximal recessive 

deviance. Note that dominance in the minor allele 

corresponds to recessiveness in the major allele, and 

vice versa. These simulations serve to investigate the 

impact of MAF on correlation due to genetic effects 

between DZ twins (and full siblings) in the scenario 

where genotypic expression with regard to dominance 

deviations differ between the twins, results are 

presented in Supplementary Figure 10. 
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Supplementary Figure 10. Simulated correlation (y-axis) due to genetics with different MAF, and where one phenotype’s 
genotypic effect varies in dominance deviation (the h as proportion of d; x-axis) while the other’s is fixed as purely additive 
or with maximal dominance or recessive deviation. Negative values indicate that the minor allele is recessive, positive that it is 

dominant. 
 

We observe allelic frequency affect in all simulated 

correlations except where both individual’s genotypic 

expression is completely additive (where the correlation 

between individuals is 0.5 for all MAF distributions). 

Further, we can see that scenario A has a higher 

correlation than scenario B and C, except for when the 

dominance deviation goes towards its extremes, 

greater/lesser than approximately ±0.8. This is most 

clearly seen for Scenario B, where the minor allele is 

recessive.  

 

In reality, we would not have any way of knowing the 

MAF distributions for contributing loci, nor would we 

know the dominance deviations (which would vary 

between loci). 

 

Suggested intuitive solution 

 

We suggest that estimation of genetic correlation based 

on twin data based on an intuitive solution. We have 

observed that correlating a phenotype with varying 

dominance deviation between twins will produce a 

resulting correlation which lies between pure additivity 

(i.e., correlation = 0.5) and maximal dominance 

deviation for either the major or minor allele (varying 

resulting correlation depending on MAF) – except for 

when the dominance deviations are nearing its maxima 

or minima. Hence, if the classic twin model correctly 

captures the additive genetic effects (A) and dominance 

deviations (D) for each trait separately, we can suggest 

an intuitive modeling approach to estimate the genetic 

correlation between the two which relies on placing the 

resulting correlation in between that of A and D alone.  

 

Expected genetic correlation 

To be able to assess the performance of an estimating 

procedure of the genetic correlation we need to know 

the genetic correlation if both phenotypes were 

expressed in one individual. Since the solution when 

allele frequencies are unequal quickly become unruly, 

we simulate this is a similar fashion as in Section 2 

above, using the same ‘L’-shaped MAF. We simulated 

using 100,000 individuals per each combination of 

values from −1 to 1 by steps of 0.1 – in Supplementary 

Figure 11 the result is presented. 
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Supplementary Figure 11. Simulation for estimating genetic correlation. The contour plot shows resulting genetic correlation under 

different amounts of dominance deviation (positive) and recessive deviations (negative) for the minor allele. 
 

We can observe that produced correlations deviate from 

1 as the dominance deviations (or recessive ditto) 

moves away from 0 differently in the two phenotype’s 

genotypic effects. The genetic correlation becomes 

lowest when one phenotype has more dominance 

deviation for the minor allele and the other has more 

recessive deviations. We can also see that it matters 

which of the major or minor allele is more dominant, 

where the minor allele being dominant is less 

problematic.  

 

Suggested estimating procedure 

Per the classic twin model – with A, without D and C 

(the ‘shared environment’ contribution), but with E, the 

individually unique contributions to variance not shared 

between individuals (often referred to as an AE-model) 

– we may model the covariance between opposite sexed 

DZ twins (osDZ) as (see e.g. Neale and Maes [1]; here 

sub-index ending with f indicated the female twin and 

sub-index ending with m indicated the male twin): 
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 (7) 

 

The model fitting would estimate the rfm as the genetic 

correlation between males and females, appropriately 

bounded between −1 and 1. A direct translation into 

situation where the model is an ADE model is 
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 (8) 

 

However, in this setup the estimated genetic correlation 

is not allowing D to contribute to estimation of rfm. A 

natural expansion with the inclusion of D is 
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The assumption implicitly encoded here is that the same 

subset of loci having dominance deviations in one sex’s 

genotypic expression also has dominance deviation 

expression in the other sex, while additive effects in one 

sex does not correlate with dominance deviations in the 

other sex. As shown above, if we deviate from this 

assumption, we will have different resulting correlations 

due to genetic effects. As an extreme example, from a 

twin modelling view-point, suppose the female trait has 

an estimated 0 A contribution according to the model 

and some D contribution, while the male has only A 

contribution and no D; the result would be that there’s 

no way the model could ascribe any correlation between 

sexes to genetics (and the modelled rfm would take on 

any value between -1 and 1 with equal likelihood). This 

is obviously not appropriate, since the same locus could 

contribute in a pure additive way for one sex’s 

phenotype and a dominant way for the other sex’s 

phenotype. We therefore suggest that the correlation can 

be modelled as (note, same equation as in Introduction) 
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 (1) 

 

This suggestion is based on the observed simulated 

correlations behavior towards the extremes of the 

dominance deviation (Supplementary Figure 10), where 

correlation due to genetics between DZ twins seem to 

be most affected by differences in dominance 

deviations. Not allowing genetics to contribute to the 

correlation across individuals A and D sources, may 

cause bias; and, towards the extremes, the correlation 

between additive and dominant/recessive genetic effects 

resemble that of dominance-to-dominance correlation 

behavior (although, not an exact correspondence 

between the two). As such, we expect the performance 

of the estimating procedure to be most suitable for 

scenarios where the A and D contributions to 

phenotypic variance differ considerable between males 

and females. 

 

To investigate the performance of this suggested 

modelling approach we performed a series of 

simulations. For each simulation we used the above 

approach of simulating parental alleles and drawing 

offspring alleles, and then we created same sexed MZ 

and DZ twin pairs in addition to the opposite sexed DZ 

pairs. We assumed 7000 pairs for each sex-zygosity 

combination. Additionally, we estimated the resulting 

genetic correlation, to be able to compare the produced 

correlation with. We added an individually unique 

variation (the E), drawn from a random normal 

distribution with the same variance as the simulated 

genetic variance separately by sex, and used the classic 

twin methodology with sex-limitation models to the 

data. We fitted the models using equations (1) (our 

suggestion), (9), (8), and (7), to provide an overall 

picture of the performance of different approaches. We 

a. investigated the full range of dominance deviations 

(all combinations of the h’s between −1 and 1 by 0.25 

steps), b. investigated the situation where one phenotype 

is additive and the other has dominance deviations (the 

h1 in −1.0 to −0.8 and 0.8 to 1.0 in 0.05 steps, the h2 

fixed at 0), and c. did a more thorough investigation on 

the extreme values (the h1 in −1.0 to −0.8 and h2 in 1.0 to 

0.8 in 0.05 steps) – for each combination the simulation 

was run 10 times. In the simulation we used the same 

‘L’-shaped MAF as above. In Supplementary Figures 

12a, 12b, and 12c the results of these three sets of 

simulations are shown. We plot the difference between 

estimated rfm and calculated true rG as an estimate of bias 

in the separate estimating approaches. 

  



www.aging-us.com 8 AGING 

 
 

Supplementary Figure 12. Performance of different estimation procedures in a simulation. A locally smoothed polynomial 

regression line is fitted to each scenario (using ‘loess’ function in R). (A) Full range of dominance deviations. (B) Dominance deviations 
versus additive. (C) Dominance deviations towards extreme. 
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We summarize the behavior of the four different 

estimating approaches in Supplementary Table 12. We 

observe the following features of the four different 

estimating approaches: 

 

1. Neither estimating approach has as good 

performance throughout the dominance deviation 

range. 

 

2. Our suggested estimating approach has best 

performance in the most extreme scenarios. 

 

3. Our suggested estimating approach has a negative 

bias for most scenarios, and only slightly positive 

bias when dominance deviations are towards the 

very extremes. 

 

4. All standard estimating approach (i.e., the three 

simulated estimating approach except our suggestion) 

generally has a upwards bias, towards    . 

 

5. The modelling approach of the   -model perform 

better than other estimating approach, except for the 

very extremes, with regard to bias (low mean 

squared error) but precision may be overestimated, 

i.e. too low standard errors (with relatively lower 

coverage probability compared with standard 

approaches). 

 

Supplementary Table 12. Performance over different scenarios for the investigated estimating procedures. 

 

a. Full range of 

dominance 

deviations 

b. Dominance 

deviations 

versus additive 

c. Dominance 

deviations 

towards 

extreme  

Mean squared error    

 0.5 0.25 0.25 0.25fm Af Am Df Dm Af Dm Df Amr             0.029 0.015 0.003 

0.5 0.25fm Af Am Df Dmr       0.016 0.020 0.038 

 0.5 0.25fm Af Am Df Dmr       0.020 0.021 0.063 

0.5fm Af Amr    from AE -model 0.007 0.002 0.021 

Mean error    

 0.5 0.25 0.25 0.25fm Af Am Df Dm Af Dm Df Amr             -0.126 -0.103 0.024 

0.5 0.25fm Af Am Df Dmr       0.074 0.100 0.178 

 0.5 0.25fm Af Am Df Dmr       0.086 0.105 0.242 

0.5fm Af Amr    from AE -model -0.001 0.001 0.134 

Proportion negative bias    

 0.5 0.25 0.25 0.25fm Af Am Df Dm Af Dm Df Amr             0.872 0.935 0.318 

0.5 0.25fm Af Am Df Dmr       0.234 0.112 0.008 

 0.5 0.25fm Af Am Df Dmr       0.229 0.096 0.000 

0.5fm Af Amr    from AE -model 0.499 0.463 0.000 

Coverage probability    

 0.5 0.25 0.25 0.25fm Af Am Df Dm Af Dm Df Amr             0.602 0.721 0.895 

0.5 0.25fm Af Am Df Dmr       0.862 0.895 0.448 

 0.5 0.25fm Af Am Df Dmr       0.755 0.841 0.054 

0.5fm Af Amr    from AE -model 0.768 0.965 0.192 
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CONCLUSIONS 
 

In a scenario with diverging dominance and additive 

contributions to phenotypic variance in males and 

females using the classic twin model, the standard 

estimating approaches has the feature that they 

overestimate the genetic correlation between males and 

females (which we here call rfm). Thus, even if there is a 

genetic correlation lower than 1.0 the estimating 

approaches will have a lower likelihood of detecting it 

since they are biased upwards. In contrast, using our 

suggested approach will produce an estimate which, if it 

is biased at all, will be biased downwards. Therefore, if 

a model fitted with our estimating approach produces a 

rfm which is not statistically significant, it is likely a true 

null finding. Additionally, if fitting an AE-model is not 

appropriate (e.g., due to poor model fit), our suggested 

estimating approach has a lower mean squared error 

than standard estimating approach in extreme scenarios 

(with a larger proportion of negative bias). 
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