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SUPPLEMENTARY METHODS 

Supplementary Methods 1. The proportion of variance and f-statistic calculations 

The proportion of variance 

The proportion of variance (conceptually similar to the 

R2) for each single-nucleotide polymorphism (SNP) was 

calculated using the formula below [1]. The pooled 

variance of the SNPs was calculated in an additive 

model assuming no interaction between the individual 

SNPs.  
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where β is the effect size (beta coefficient) for each SNP; 

MAF is the minimum allele frequency; SE(β) is the 

standard error of effect size, and N is the sample size. 

F-statistic

The F-statistic of instrument variable was calculated 

using the formula below [2]. 

2
S E ( )

F







where β is the effect size (beta coefficient) for each 

SNP; SE(β) is the standard error of effect size. 
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Supplementary Methods 2. Details of studies and participants 
 

The reproductive genetics (reprogen) consortium 
 

The ReproGen consortium is an international network 

of investigators interested in better understanding the 

genetic basis of reproductive aging. They use large-

scale meta-analyses of Genome-wide Association Study 

(GWAS) data to highlight genetic variants and genes 

that impact reproductive timing in humans. 

 

Age at menarche 

We used the summary data for age at menarche 

HapMap 2 GWAS meta- analysis results from Perry et 

al. [3] released by the ReproGen consortium. They 

meta-analyzed for self-reported age at menarche in a 

total of 182,416 women of European ancestry from 58 

GWAS datasets. Women with self-reported age at 

menarche of 9-17 years old were included in the 

analysis, and birth year as the only covariates to allow 

for the secular trends in menarche timing. The mean 

age of participants ranged from 15.8 to 79.08 years 

old, along with the self-reported mean age at 

menarche ranged from 12.4 to 13.7 years old. 

Genome-wide SNP array data were available on up to 

132,989 women from 57 studies. Each study imputed 

genotype data based on HapMap Phase II CEU build 

35 or 36. SNPs were excluded from individual study 

datasets if they were poorly imputed or were rare 

(minor allele frequency, MAF < 1%). Test statistics 

for each study were adjusted using study-specific 

genomic control inflation factors and where 

appropriate individual studies performed additional 

adjustments for relatedness. Association statistics for 

each of the 2,441,815 autosomal SNPs that passed 

quality control (QC) in at least half of the studies 

were combined across studies in a fixed effects 

inverse-variance meta-analysis implemented in 

METAL. On meta-analysis, 3,915 SNPs reached the 

genome-wide significance threshold (P<5×10-8) for 

association with age at menarche, and they identified 

23 independent signals for age at menarche at 106 

genomic loci, and including 11 loci containing 

multiple independent signals using GCTA. The 

overall GC inflation factor was 1.266, consistent with 

an expected high yield of true positive findings in 

large-scale GWAS meta-analysis of highly polygenic 

traits. 

 

Age at menopause 

We used the summary data for age at menopause 

HapMap 2 GWAS meta-analysis results from Day et al. 

[4] released by the ReproGen consortium. They meta- 
analyzed for self-reported age at natural (non-surgical) 

menopause (ANM) involving up to 69,360 women of 

European ancestry from 33 GWAS datasets. Age at 

menopause was defined as the age at last naturally 

occurring menstrual period followed by at least 12 

consecutive months of amenorrhea. The women with 

age at natural menopause of 40-60 years old were 

included, excluding those with menopause induced by 

hysterectomy, bilateral ovariectomy, radiation or 

chemotherapy, and those using hormone replacement 

therapy (HRT) before menopause. Studies were asked 

to use the full imputed set of HapMap Phase 2 

autosomal SNPs, and to run an additive model including 

top principal components and study specific covariates. 

SNPs were filtered out if the MAF was less than 1%, or 

if the imputation quality metrics were low (imputation 

quality < 0.4). Studies and SNPs passing QC were 

combined using an inverse-variance weighted meta-

analysis, implemented using METAL. Again, this meta-

analysis was run by two analysts independently, who 

then separately used PLINK clumping commands to 

identify the most significant SNPs in associated regions 

(termed “Index SNPs”), using only those SNPs which 

had data from more than 50% of the studies. Finally, 

they reported 1,208 SNPs reached the genome-wide 

significance threshold (P < 5×10-8) for association with 

ANM, and identified independent signals located in 44 

genomic regions using approximate conditional analysis 

implemented in GCTA. 

 

International genomics of Alzheimer's project 

(IGAP)  

 

We used the largest summary statistics from the 2013 

meta-analysis of GWAS data in Alzheimer's disease 

(AD) released by the IGAP [5]. Details on the design 

of the arrays, sample processing and QC have been 

previously described in the original studies. In brief, 

the IGAP is a large two-stage GWAS study based on 

individuals of European ancestry. AD cases were 

confirmed by autopsy- or clinical diagnosis according 

to National Institute of Neurological and 

Communicative Disorders and Stroke and the 

Alzheimer's Disease and Related Disorders 

Association (NINCDS-ADRDA) criteria, and age, sex 

and principal components were adjusted for in genetic 

association analysis. In stage 1, IGAP genotyped and 

imputed data on 7,055,881 SNPs consisting of 17,008 

AD cases and 37,154 controls from four GWAS 

datasets (the Alzheimer Disease Genetics Consortium 

[ADGC], the Cohorts for Heart and Aging Research 

in Genomic Epidemiology consortium [CHARGE], 

the European Alzheimer's disease Initiative [EADI], 

and the Genetic and Environmental Risk in AD 
consortium [GERAD]). The average age of 

participants was 71 years, with 58.4% were women. 

In stage 2, 11,632 SNPs were genotyped and tested 
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for association in an independent set of 8,572 AD 

cases and 11,312 controls. In our MR study, we only 

extracted the AD GWAS summary datasets from stage 

1 of the IGAP.  

 

The investigators within the IGAP contributed to the 

design and implementation of IGAP and/or provided 

data. IGAP was made possible by the generous 

participation of the control subjects, the patients, and 

their families. The i–Select chips was funded by the 

French National Foundation on AD and related 

disorders. EADI was supported by the LABEX 

(laboratory of excellence program investment for the 

future) DISTALZ grant, Inserm, Institut Pasteur de 

Lille, Université de Lille 2 and the Lille University 

Hospital. GERAD was supported by the Medical 

Research Council (Grant n° 503480), Alzheimer's 

Research UK (Grant n° 503176), the Wellcome Trust 

(Grant n° 082604/ 2/07/Z) and German Federal 

Ministry of Education and Research (BMBF): 

Competence Network Dementia (CND) grant n° 

01GI0102, 01GI0711, 01GI0420. CHARGE was partly 

supported by the NIH/NIA grant R01 AG033193 and 

the NIA AG081220 and AGES contract N01–AG–

12100, the NHLBI grant R01 HL105756, the Icelandic 

Heart Association, and the Erasmus Medical Center and 

Erasmus University. ADGC was supported by the 

NIH/NIA grants: U01 AG032984, U24 AG021886, U01 

AG016976, and the Alzheimer's Association grant 

ADGC–10–196728. 

 

AD-relevant traits 

 

Cognitive performance 

We extracted the GWAS summary data of cognitive 

performance, measured by the respondent’s score on a 

test of verbal cognition, from a sample-size-weighted 

meta-analysis (N = 257,841) based on healthy 

individuals of European ancestry performed by Lee JJ et 

al. [6]. They combined a published study of general 

cognitive ability (N = 35,298) conducted by the 

Cognitive Genomics Consortium (COGENT) with new 

genome-wide association analyses of cognitive 

performance in the UKB (N = 222,543). The COGENT 

consortium meta-analyzed 24 cohort studies (comprised 

of 35 sub-studies) from the general population in North 

America, the United Kingdom and the European 

continent. Briefly, each COGENT sub-study 

administered an average of 8 (SD ± 4) 

neuropsychological tests. Participant included in 

COGENT at least had one neuropsychological measure 

across at least three domains of cognitive performance 

(for example, digit span for working memory; logical 

memory for verbal declarative memory; and digit 

symbol coding for processing speed), or the use of a 

validated g-sensitive measure was required. Finally, Lee 

JJ et al. identified 225 genome-wide significant SNPs 

for cognitive performance.  

 

Genetic investigation of anthropometric traits 

(GIANT) consortium 

We used the largest summary statistics from the 2015 

meta-analysis of GWAS data in body mass index (BMI, 

kg/cm2) released by GIANT consortium [7]. Briefly, it 

is a large two-stage GWAS meta-analysis study based 

on individuals of European ancestry. In stage 1 they 

performed meta-analysis of 80 GWAS (N = 234,069); 

and stage 2 incorporated data from 34 additional studies 

(N = 88,137) genotyped using Metabochip, and adjusted 

for age, age squared, and any necessary study-specific 

covariates (for example, genotype-derived principal 

components) in a linear regression model. Details on the 

design of the arrays, sample processing and QC have 

been previously described in the original studies. 

Finally, this analysis identified 97 BMI-associated loci 

(P < 5×10-8), accounting for~2.7% of BMI variation, 

and genome-wide estimates suggest that common 

variation accounts for >20% of BMI variation. 

 

The tobacco and genetics (TAG) consortium 

We used the largest summary statistics from the 2010 

meta-analysis of GWAS data for smoking behavior 

within the cohorts of the TAG consortium, involving up 

to 74,053 individuals of European ancestry [8]. The 

TAG consortium conducted GWAS meta-analyses 

across 16 studies originally designed to evaluate other 

phenotypes (for example, cardiovascular disease and 

type 2 diabetes). The 16 TAG studies performed their 

own genotyping, quality control, and imputation, and 

study sample size ranged from 585 to 22,307, with the 

mean age varied from 39.6 to 70.5 years old. In this 

TAG meta-analysis, four smoking phenotypes-smoking 

initiation (ever versus never been a regular smoker), age 

of smoking initiation, smoking quantity (number of 

cigarettes smoked per day, CPD) and smoking cessation 

(former versus current smokers) were carefully 

examined and harmonized. Finally, they performed 

genotype imputation resulting in a common set of ~2.5 

million SNPs, and identified three loci associated with 

CPD, eight SNPs exceeded genome-wide significance 

for smoking initiation, and one SNP significantly 

associated with smoking cessation.  

 

UK biobank (UKB) 

We extracted the summary data of self-reported alcohol 

consumption from a GWAS performed by UKB, 

comprising of 112 117 white British individuals [9]. 

UKB is a population-based sample involving 502 629 

individuals age of 40 to 69 years resident in the United 

Kingdom. In this study, participants were asked to 

report their current drinking status (never, previous, 

current, prefer not to say) and average weekly and 
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monthly alcohol consumption of a range of drink types 

(red wine, white wine, champagne, spirits, beer/cider, 

fortified wine). After excluding all former drinkers from 

the analysis, alcohol consumption was derived an 

average intake of alcohol consumption in units per week 

(mean = 15.13, SD = 16.56), and was then log (units 

+1) transformed, this left 112 117 individuals with data 

on both alcohol consumption and genome-wide 

genotype data. Consideration of the mean alcohol intake 

in males was significantly higher than in females, they 

regressed age and weight in kg onto weekly units of 

alcohol consumed in males and females separately. 

Finally, the sample comprised 52.7% of females, with 

the SNP-based heritability of alcohol consumption in 

females was estimated to be 13%, and sex-specific 

analyses found largely overlapping GWAS loci and the 

genetic correlation between male and female alcohol 

consumption was 0.90. 
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Supplementary Methods 3. Sample size and power calculations 
 

We estimated MR power for binary and continuous 

outcomes at a two-sided α of 0.05, using the mRnd 

power calculation tool (https://shiny.cnsgenomics. 

com/mRnd/). MR power calculation given a desired 

sample size (outcome) relies on the following 

parameters: the proportion of variance (R2) explained 

by genetic instruments in the exposure; the causal effect 

of the exposure on the outcome, which can be projected 

across plausible values to investigate impact on 

statistical power; and the ratio of cases to controls (for 

binary outcome). While the required sample size for 

MR given a desired power also relies on several 

parameters mention above.  

 

The sample size and power calculations for MR 

analyses are presented in Supplementary Table 1. 
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