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INTRODUCTION 
 

Aging can be defined by the gradual decline of 

physiological capacities, resulting in impaired functions 

and susceptibility for diseases and death. This biological 

deterioration is considered a major risk factor for 

Alzheimer’s disease, cardiovascular disease, diabetes 

mellitus, cancer among others. The aging rate is 

partially determined, by genetics and other evolutionary 

conserved biochemical processes [1]. 

Gene expression (whole transcriptome) interrogation is 

widely used to explore differences between individual 

young and old, and diseased and healthy populations [2–

4]. Significant transcriptional changes related to aging 

have been suggested with respect to inflammation, 

oxidative stress, mitochondrial and lysosomal degradation 

pathways associated genes [3]. Moreover, these gene 

expression changes can alter activity in defined age-

related molecular pathways leading to cellular aging and 

increased susceptibility to aging diseases. 
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ABSTRACT 
 

Introduction: Aging is characterized by the progressive loss of physiological capacity. Changes in gene 
expression can alter activity in defined age-related molecular pathways leading to cellular aging and increased 
aging disease susceptibility. The aim of the current study was to evaluate whether hyperbaric oxygen therapy 
(HBOT) affects gene expression in normal, non-pathological, aging adults. 
Methods: Thirty-five healthy independently living adults, aged 64 and older, were enrolled to receive 60 daily 
HBOT exposures. Whole blood samples were collected at baseline, at the 30th and 60th HBOT session, and 1–2 
weeks following the last session. Differential gene expression analysis was performed. 
Results: Following 60 sessions of HBOT, 1342 genes and 570 genes were differently up- and downregulated 
(1912 total), respectively (p < 0.01 FDR), compared to baseline. Out of which, five genes were downregulated 
with a >1.5-fold change: ABCA13 (FC = −2.28), DNAJ6 (FC = −2.16), HBG2 (FC = −1.56), PDXDC1 (FC = −1.53), 
RANBP17 (FC = −1.75). Two weeks post-HBOT, ABCA13 expression was significantly downregulated with a 
>1.5fold change (FC = −1.54, p = 0.008). 
In conclusion, for the first time in humans, the study provides direct evidence of HBOT is associated with  
transcriptome changes in whole-blood samples. Our results demonstrate significant changes in gene expression 
of normal aging population. 
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Hyperbaric oxygen therapy (HBOT) utilizes pure 

oxygen (100%) at high barometric pressure (>at least 

over one absolute atmospheres (ATA)) to enhance the 

body’s tissues oxygen content. Specific HBOT 

protocols which utilize repeated intermittent hyperoxic 

exposures induce physiological effects which are 

classically associated with hypoxia, only using the 

hyperoxic environment instead. This has been 

previously referred as the hyperoxic-hypoxic paradox 

[5–8]. Clinically, HBOT has been used for non-healing 

ischemic wounds and post-radiation injuries by 

promoting angiogenesis and wound healing [9]. In our 

previous study, our group provided evidence HBOT 

HBOT can induce significant cognitive improvement in 

the healthy aging population, mediated by cerebral 

blood flow changes [10]. This indicates that HBOT’s 

pleiotropic regenerative effects are mediated by 

activating various genetic pathways. Previous studies 

evaluated HBOT’s effects on isolated cell cultures and 

identified different genes sensitive to pressure and 

oxygen changes including inflammatory, growth, repair, 

angiogenesis, tumor suppressors, stress, cellular stress 

and apoptosis associated genes [11–14]. So far, HBOT 

effects on gene expression in-vivo has yet to be 

explored in clinical studies. 

 

The aim of the current study was to evaluate whether 

HBOT affects gene expression in the normal aging 

population (excluding pathological aging). 

 

METHODS 
 

Subjects 

 

Thirty-five aging independent adults good functional 

and cognitive status over 64 years old were enrolled. 

The clinical study was performed in the Shamir (Assaf-

Harofeh) Medical Center, Israel between 2016–2020. 

All included participants ruled out any history of 

cardiac or cerebrovascular ischemia for at least one year 

prior to inclusion. Patients with previous HBOT 

exposure in the last three months prior to inclusion, 

known malignancy in the year prior to inclusion, 

pathological cognitive decline, uncontrolled diabetes 

mellitus (HbA1C>8, fasting glucose>200), severe 

chronic renal failure (GFR <30), immunosuppressants, 

MRI contraindications or active smoking or pulmonary 

diseases were excluded. 

 

Study design 

 

The study protocol was approved by the Shamir 

Medical Center’s Institutional Review Board. All 

patients signed an informed consent followed by 

baseline evaluations, HBOT protocol and post therapy 

evaluations. Measurement points were evaluated at 

baseline, 2nd baseline control following 60–100 days, 

last (60th) HBOT session and 7–14 days following the 

last HBOT session.  

 

The study cohort included only HBOT treated patients, 

who are part of a larger cohort of normal ageing 

population studied at the Shamir Medical Center, Israel 

(NCT02790541 [10]). 

 

Interventions 

 

The HBOT protocol was provided using a multiplace 

chamber (Starmed-2700, HAUX, Germany). The 

protocol included 60 daily sessions, during a three-

month period with five sessions per week. Each session 

comprised of 100% oxygen provided by mask at 2ATA 

for 90 minutes and intermittent air breaks for five 

minutes every 20 minutes of oxygen. Compression and 

decompression rates were controlled at 1 meter/minute. 

During the study, lifestyle and diet changes and 

medication adjustments were not allowed.  

 

Blood samples 

 

Whole blood samples were collected into Tempus™ 

blood RNA tubes containing a stabilizing reagent using 

a standard technique following overnight fasting, at 

baseline, at the second control following 60–100 days, 

the day of the last HBOT session (60th session) and 10–

14 days following HBOT protocol. 

 

RNA extraction 
 

RNA was extracted using a Tempus™ Spin RNA 

Isolation Kit (LifeTechnologies, Warrington, UK). 

Spectrophotometer (NanoDrop 1000, Thermo Fisher 

Scientific, Waltham, MA, United States) was used to 

quantify total RNA samples followed by integrity 

confirmation with the Agilent Bioanalyzer 2100 with an 

RNA Nano-Chip Kit (Agilent Technologies, 

Waldbronn, Germany). One hundred nanograms of 

RNA were used for the Clariom S assay (Affymetrix) 

following manufacturer’s standardized protocol. The 

Clariom assay interrogates over 22,000 annotated genes, 

each consisting of 6–10 probes exactly matching the 

target transcript sequence. 

 

In brief, 100 ng total RNA and dNTP-T7 random 

primers were used for reverse transcription (RT). 

Amplified cRNA was made using Second strand 

synthesis and in vitro transcription amplified cRNA. 

Subsequent reverse transcription produced cDNA, 

followed by fragmentation. Fragments were labeled 

with biotin for hybridization to the replication and 

transcription activator (RTA). Array processing was 

done using an Affymetrix GeneChip® Hybridization, 
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Wash, and Stain kit. Initially, 5.2 µg biotin-labeled 

fragmented ss-cDNA was added to 1× hybridization 

buffer containing oligo B2, hybridization controls, and 

DMSO. Following incubation at 95°C and 45°C for 5 

minutes each, 200 µL hybridization mix was loaded 

onto each array. Arrays were incubated for 16th in a 

GeneChip 645 hybridization oven (Affymetrix) at 45°C 

while rotating at 60 rpm. Wash/stain procedures were 

performed on an Affymetrix 450 Fluidics Station using 

manufacturer specified instrument protocol settings. To 

remove the unbound sample, arrays were washed with 

non-stringent wash-Buffer A. GeneChips® were then 

stained 10 min in Stain Cocktail 1. Excess stain was 

removed by a subsequent wash in Buffer A. Arrays 

were incubated 10 min with Stain Cocktail 2 followed 

by 10 min incubation with Stain Cocktail 1 for signal 

amplification. GeneChips were washed with Buffer B 

then filled with Array Holding Buffer prior to removal 

from the fluidics station and scanned using the 

GeneArray® 3000 scanner (see Affymetrix target 

hybridization protocol). 

 

Transcriptome analysis 

 

The Affymetrix Transcriptome Analysis Console 

software (TAC) ver. 4.0.1.36 (ThermoFisher Scientific) 

was used for primary data analysis. Data were 

normalized using the TAC Robust Multiarray Average 

module. The Limma Bioconductor package was used 

for differential expression analysis using an empirical 

Bayesian correction approach. Gene expression data 

were log-transformed. 

 

Both baseline measurements were combined as one 

factor to exclude non-HBOT related changes. A 

repeated measures one-way ANOVA was used to 

compare differentially expressed genes (DEG) FC 

between the 60th session measurement and baseline, 

post-treatment measurement and baseline. Then a 

Benjamini-Hochberg method [15] was applied on the 

calculated p-values to correct for false discovery rate. A 

change was considered significant if met the criterion P 

< 0.01 following a false discovery rate correction. 

 

Functional terms were extracted using the Gene 

Ontology (GO) terms and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathways. The Expander 

software was used for both GO and KEGG pathway 

enrichment analyses [16]. False discovery rate (FDR) 

below 0.05 threshold was used for statistically 

significant KEGG pathways and GO terms. 

 

Quantitative real-time PCR (qPCR) 

 

In order to confirm microarray results RT qPCR reactions 

were performed. The RT reaction process of mRNA was 

done with oligo dT primers. The SYBR Green PCR kit 

(Toyobo, Osaka, Japan) was used to perform qPCR on 

LightCycler480 real-time PCR system (Roche 

Diagnostics). HPRT and ABCA13 were the main 

reference targets of mRNA. The following primers 

were used: HPRT forward 5′ 

TTGTTGTAGGATATGCCCTTGA 3′ and HPRT reverse 

5′ GCGATGTCAATAGGACTCCAG 3′, ABCA13 

forward 5′ GCTTTCTGTATCCTAGTTCTTCTGT 3′ and 

ABCA13 rev 5′ GATGTACTCTCGCCTCCTAGAT 3′. 

 

Statistical analysis 

 

Unless otherwise specified (see above for transcriptome 

analysis), demographic continuous data are expressed as 

means ± standard-deviation. The Kolmogorov-Smirnov 

test was used to determine normal distribution for all 

variables. 

 

Demographics categorical data are expressed in 

numbers and percentages. Univariate analyses were 

performed using either chi-square or Fisher’s exact 

tests, as appropriate. Correlation was performed using 

Pearson’s correlation coefficient. 

 

RESULTS 
 

Thirty-five individuals were assigned to HBOT. Five 

patients were excluded since they did not complete 

baseline assessments. All other 30 patients completed 

baseline evaluations the HBOT protocol. Three blood 

samples did not include RNA tubes and were excluded 

from analysis (Figure 1). The average age was 70.39 ± 

3.72 and 51.9% were males. The baseline characteristics 

and comparison of the cohorts following exclusion of 

the patients are in Table 1. 

 

Following 60 sessions of HBOT, 1342 genes and 570 

genes were differently up- and downregulated (1912 

total), respectively (p < 0.01 FDR) compared to baseline 

(Figure 2). Out of which, five genes were downregulated 

with a >1.5-fold change: ABCA13 (FC = −2.28), DNAJ6 

(FC = −2.16), HBG2 (FC = −1.56), PDXDC1 (FC = 

−1.53), RANBP17 (FC = −1.75) (Table 2). The full list 

of obtained DEGs are in Supplementary Table 1. 

 

Two weeks post-HBOT, 11 genes and 8 genes were 

differently up- and downregulated (19 total), 

respectively (p < 0.01, FDR) compared to baseline 

(Figure 3). Out of which, ABCA13 expression was 

significantly downregulated with a >1.5-fold change 

(FC = −1.54, p = 0.008). The full list of obtained DEGs 

are in Supplementary Table 2. 

 

The overlap of the two timepoints (Last HBOT session 

vs baseline, and two weeks post last HBOT sessions vs 
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baseline) consisted of nine differentially expressed 

genes (DEGs), including ABCA13, RNF13, BOC, ARL2, 

MRPS52, ATP5J2, C20orf27, SYNGAP1, RHOBTB2. 
However the only gene with more than 1.5-fold change 

was ABCA13 (Table 3). 

 

To validate this finding, RT-qPCR was performed for 

ABCA13 gene on all available samples (16/27) with an 

average fold change of −3.89 ± 4.45, where in 12/16 the 

absolute fold change was higher than 1.5. The 

correlation between RT-qPCR-based fold change and 

microarray-based fold change of ABCA13 was r = 

0.782, p < 0.0001 (Figure 4). 

 

Due to the low number of significant DEGs (<10), 

functional enrichment and pathway enrichment could 

not be completed. 

DISCUSSION 
 

This longitudinal study of HBOT in healthy aging 

subjects demonstrates that HBOT strongly associated 

with blood cells gene expression profiles, as estimated 

by RNA microarrays. To the best of our knowledge, this 

serves as the first study assessing human in vivo HBOT-

mediated changes in RNA expression. Most of the 

significant changes occurred during the HBOT program 

and normalized two weeks post-HBOT. However, 19 

genes were significantly different even two weeks after 

the last HBOT session. 

 

Multiple previous studies have demonstrated the effects 

of HBOT on single gene products in isolated cells [17–

25]. Recently, gene array analyses have demonstrated 

differential gene expression of isolated cells exposed to 

 

 
 

Figure 1. Patient flowchart. 
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Table 1. Baseline characteristics. 

N  27 

Age (years)  70.39 ± 3.72 

BMI  26.55 ± 3.06 

Males  14 (51.9%) 

Complete blood count   

 Hemoglobin 13.98 ± 1.39 

 White blood cells 6.48 ± 1.22 

 Platelets 245.05 ± 45.4 

Chronic medical conditions  

 Atrial fibrillation 4 (14.8%) 

 Hypothyroidism 4 (14.8%) 

 Obstructive sleep apnea 3 (11.1%) 

 Asthma 1 (3.7%) 

 BPH 7 (25.9%) 

 GERD 3 (11.1%) 

 Osteoporosis 5 (18.5%) 

 Rheumatic arthritis 0 (0%) 

 Osteoarthritis 4 (14.8%) 

 Diabetes mellitus 3 (11.1%) 

 Hypertension 6 (22.2%) 

 Dyslipidemia 14 (51.9%) 

 Ischemic heart disease 0 (0%) 

 History of smoking 9 (33.3%) 

Chronic medications  

 Anti-aggregation 6 (22.2%) 

 ACE-Inhibitors/ARB blockers 4 (14.8%) 

 Beta blockers 4 (14.8%) 

 Calcium blockers 2 (7.4%) 

 Alpha blockers 5 (18.5%) 

 Diuretics 2 (7.4%) 

 Statins 8 (29.6%) 

 Oral hypoglycemic 1 (3.7%) 

 Bisphosphonates 1 (3.7%) 

 Proton pump inhibitors 2 (7.4%) 

 Hormones 2 (7.4%) 

 Benzodiazepines 2 (7.4%) 

 SSRI 5 (18.5%) 

Abbreviations: BMI: body mass index; BPH: benign prostate hyperplasia; GERD: gastroesophageal reflux disease; ACE: 
angiotensin converting enzyme; ARB: angiotensin receptor blocker; SSRI: selective serotonin reuptake inhibitor. 
 

either single hyperoxic exposure and/or high 

atmospheric pressure exposure  [11–14]. Upregulated 

genes included anti-inflammatory and growth and repair 

hormones genes, while downregulated genes included 
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Table 2. Top DEG following the last HBOT session (fold change>1.5). 

ID 
Baseline 

Avg (log2) 

60th HBOT 

Avg (log2) 

Fold 

Change 
P-val FDR Q-val 

Gene 

Symbol 
Description 

TC0700007480.hg.1 8.39 7.2 –2.28 1.73E-13 1.86E-09 ABCA13 
ATP Binding Cassette Subfamily A 

Member 13 

TC0100008620.hg.1 11.85 10.74 –2.16 4.4E-12 3.15E-08 DNAJC6 
DnaJ (Hsp40) homolog, subfamily 

C, member 6 

TC0500009411.hg.1 8.67 7.86 –1.75 1.57E-10 2.60E-07 RANBP17 RAN binding protein 17 

TC1100013133.hg.1 15.56 14.92 –1.56 7/62E-14 1.63E-09 
HBG2; 

HBG1 

hemoglobin, gamma G; hemoglobin, 

gamma A 

TC1600007007.hg.1 12.09 11.48 –1.53 4.55E-11 1.08E-07 PDXDC1 
pyridoxal-dependent decarboxylase 

domain containing 1 

 

apoptosis and pro-inflammation genes. However, 

isolated cell studies have significant disadvantages. 

First, in vitro oxygen diffusion is considerably different 

than in vivo diffusion. Obtaining rapid changes in PO2 

within the cells/tissue culture medium proves to be 

difficult and limits a precise correlation between 

cellular processes/events and in environmental oxygen 

concentration changes  [26, 27]. Second, the oxygen 

partial pressure that cells are truly exposed in vitro is 

significantly different than what is used in in vivo 

studies  [28, 29]. Third, in vitro studies lack the 

microsystem interactions which occur in vivo. Fourth, 

gene expression was evaluated following a single 

hyperoxic exposure. The current clinical study, provides 

 

 
 

Figure 2. Alterations in gene expression profile following the last HBOT session. Volcano plot showing the distribution of gene 

expression following 60 HBOT sessions compared to baseline. Significance versus log2 fold change is plotted on the y and x, respectively. 
Red dots represent the significant upregulated DEGs, green dots represent the significant downregulated DEGs. 
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Table 3. Overlapping differentially expressed genes following the last session and two weeks post-HBOT. 

ID 
Baseline 

Avg (log2) 

60th HBOT 

Avg (log2) 

2 weeks post 

HBOT Avg (log2) 

60th session 

Fold Change 

2 weeks post 

HBOT Fold 

Change 

P-val 
Q-val 

(FDR) 

Gene 

Symbol 
Description 

TC0700007480.hg.1 8.39 7.2 7.76 –2.28 –1.54 1.73e-13 1.86E-09 ABCA13 

ATP Binding 

Cassette 

Subfamily A 

Member 13 

 

DEG, for the first time in humans, following 60 

repeated hyperoxic exposures, both within 24 hours and 

two weeks after the last exposure. 

 

HBOT is a well-established treatment modality for 

non-healing wounds, radiation injuries as well as 

different hypoxic or ischemic events (such as carbon 

monoxide toxicity, infections, etc.). In recent years, a 

growing body of evidence from preclinical as well as 

clinical trials demonstrates HBOT’s efficacy for 

neurological indications including post-stroke and post-

traumatic brain injury [30–36], idiopathic sudden 

sensorineural hearing loss [37] central sensitization 

syndromes such as fibromyalgia [38, 39], age related 

cognitive decline [10] and animal models of 

Alzheimer’s disease [40]. For the first time, the current 

study aimed to evaluate the effects of HBOT on the 

transcriptome of aging humans without any functional 

limiting diseases. 

 

With regards to ageing, Peters et al. identified 1497 

genes that are differentially expressed as we 

 

 
 

Figure 3. Alterations in gene expression profile two weeks after completion of 60 HBOT sessions. Volcano plot showing the 

distribution of gene expression two weeks following 60 HBOT sessions compared to baseline. Significance versus log2 fold change is 
plotted on the y and x axes, respectively. Red dots represent the significant upregulated DEGs, green dots represent the significant 
downregulated DEGs. 
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chronologically age [2], out of which, 240 (16%) were 

differentially expressed in our study following the last 

HBOT session. For instance, polymorphism in the 

FOXO3 gene, which encodes forkhead box O-3 

transcription factor has been associated with longevity 

in different human populations [41–43]. In the current 

study, FOXO3 gene expression changed by 1.22. 

RUNX3, a hematopoietic stem and progenitor cell 

factor whose levels decline with aging [44] increased by 

1.29. It is important to note that these age genetic 

signatures generated by different groups show relatively 

little overlap with each other. 

 

Whole blood transcriptomes are dynamic per definition 

and represent the cellular state at a certain point. 

Therefore, it is expected that most of the DEGs 

occurred during the repeated intermittent hyperbaric 

exposures, and gradually returned to their previous state 

two weeks following the last exposure. Previous studies 

have shown long-term systemic and cellular effects of 

HBOT, including angiogenesis, stem cells proliferation 

and mobilization and mitochondrial biogenesis [45] 

which may be partially explained by these DEGs. The 

effects last in the protein, tissue and system level 

compared with the temporal transcription level. 

ABCA13 is a member of the ATP binding cassette gene 

subfamily A (ABCA). High expression of ABCA13 has 

been demonstrated in prostate cancer, leukemia 

colorectal cancer, as well as several tumor cell lines in 

central nervous system [46–48]. Additionally, both 

schizophrenia and bipolar disorder were associated with 

ABCA13 high expression [48]. Interestingly, expression 

increases following an ischemic stroke. Lastly, 

ABCA13 has been shown to decrease significantly in 

bone-marrow derived mesenchymal stem cells [49]. It 

has been previously shown HBOT can induce 

significant recruitment and migration of bone-marrow 

derived stem cells, both hematopoietic [50] and 

mesenchymal types [51], which may partially explain 

the significant down regulation of ABCA13. ABCA13 

was the single DEG which remained significant even 

two weeks following the last HBOT sessions. 

 

The main limitations of the study are related to the lack 

of a placebo group, required for definitive causality of 

the observed transcriptome changes, and the relatively 

small sample size. Additionally, further study with 

longer observation time would shed better light on

 

 
 

Figure 4. ABCA13 gene expression validation with PCR. 
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additional factors such as subject-specific expression 

levels differences and their relation to treatment 

response. These limitations are partially mitigated by 

the longitudinal design of the study with both the first 

and second baseline samples from each individual being 

combined to detect major changes associated with 

HBOT, rather than temporal/retest effects. 

 

CONCLUSIONS 
 

For the first time in humans, the study provides direct 

evidence of HBOT is associated with transcriptome 

changes in whole blood samples. Our results have 

demonstrated significant changes in specific gene 

expressions of normal aging adults. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. List of differentially expressed genes following the last HBOT session. 

 

Supplementary Table 2. List of differentially expressed genes two weeks following the last HBOT session. 

ID Baseline Avg (log2) 2 weeks post HBOT Avg (log2) Fold Change FDR P-val 

TC0700007480.hg.1 8.39 7.76 −1.54 0.0079 

TC0600007092.hg.1 12.17 11.87 −1.23 0.0029 

TC0300009147.hg.1 14.86 14.62 −1.18 0.0004 

TC0300008355.hg.1 4.66 4.47 −1.14 0.0066 

TC0300010643.hg.1 11.54 11.36 −1.14 0.008 

TC1400010619.hg.1 14.01 13.84 −1.13 0.0027 

TC0200013096.hg.1 13.78 13.67 −1.08 0.0024 

TC0200014971.hg.1 13.56 13.47 −1.07 0.009 

TC1300008837.hg.1 12.61 12.76 1.11 0.008 

TC1100013037.hg.1 9.74 9.9 1.12 0.006 

TC0900009164.hg.1 9.99 10.17 1.13 0.0058 

TC1500007093.hg.1 10.92 11.1 1.14 0.009 

TC0800011171.hg.1 12.39 12.59 1.15 0.0027 

TC0700013591.hg.1 12.34 12.55 1.16 0.0051 

TC0800012147.hg.1 11.28 11.51 1.17 0.0008 

TC2000008230.hg.1 8.56 8.79 1.17 0.0058 

TC0300007387.hg.1 9.39 9.66 1.2 0.0058 

TC0600014111.hg.1 8.26 8.54 1.21 0.0004 

TC0800007004.hg.1 7.19 7.48 1.22 0.0051 

 

 


