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INTRODUCTION 
 

AD (Alzheimer's disease) is the most frequent 

neurodegenerative disease and is characterized by 

progressive cognitive impairment and decline [1–4]. 

However, available therapeutic methods for AD are still 

lacking because of the unclear pathogenesis and 

etiology of this disease [5–7]. NSCs (neural stem cells) 

are multipotent and self-renewing cells found in the 

central nervous system of adults and developing 

mammals [8–10]. These stem cells differentiate into 

oligodendrocytes, astrocytes and neurons and serve as 

beneficial and promising adjuncts to treat neurological 

diseases such as spinal cord injuries, Parkinson’s 

disease, brain trauma and AD [11–14]. However, many 

challenges must be solved before the clinical use of 

NSCs. 

MiRNAs are a family of 19- to 24-nucleotide noncoding 

endogenous RNAs that modulate gene expression at the 

posttranscriptional level by binding to the 3’-UTR of 

target mRNA [9, 15–18]. miRNAs are critical 

regulators of abundant biological processes such as 

apoptosis, differentiation, and chemoresistance [19–22]. 

Several miRNAs are regulated in many diseases, 

including AD, Parkinson’s disease, spinal cord injuries, 

brain trauma and tumors [23–27]. Recently, miRNAs 

were also reported to participate in the differentiation 

and proliferation of NSCs [12, 28, 29]. For example, 

Wu et al. [30]. illustrated that miR-374b modulated 

NSC differentiation and growth by regulating Hes1. 

Chen et al. [31]. noted that miR-132 acted as a 

moderator of neurite outgrowth, cell differentiation and 

self-renewal of NSCs. Recently, growing evidence has 

suggested that miR-153-3p induces immune 
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dysregulation by suppressing PELI1 expression in 

MSCs (mesenchymal stem cells) that are separated from 

systemic lupus erythematosus patients [32]. However, 

the potential functional role of miR-153-3p in the fate 

of NSCs remains unclear. 

 

In our study, we illustrated that miR-153-3p  

inhibited NSC differentiation and proliferation and 

proinflammatory cytokine release by targeting GPR55 

expression in NSCs. 

 

MATERIALS AND METHODS 
 

Cell culture and transfection 

 

NSCs were separated and cultured as described previously 

[33]. Cells were separated from five rat embryos and 

placed in medium supplemented with N2, bFGF and 

EGF. Our study was approved by The Affiliated Yan’An 

Hospital of Kunming Medical University in accordance 

with the Helsinki Declaration. The miR-153-3p control, 

inhibitor and their control plasmids were obtained from 

GenePharma and transfected into cells with 

Lipofectamine 3000 at a concentration of 10 nmol/l. 

 

qRT-PCR 

 

Total RNA, including small RNA and mRNAs, was 

separated from NSCs using a TRIzol kit (Thermo, Inc.). 

The miRNA and mRNA levels were determined by RT-

qPCR. RT-qPCR analysis was performed using a SYBR 

Premix kit (Takara, China) and the 7900HT system. U6 

was used as an internal control for miRNA, and GAPDH 

was used as a control for mRNA. The 2−ΔΔCT method 

was performed to determine the relative expression of 

target genes. The primer sequences were as follows: 

Tuj1, 5’-AGCAA GGTGC GTGAG GAGTA-3’ 

(forward) and 5’- AAGCC GGGCA TGAAG AAGT-3’ 

(reverse); Nestin 5’- GATCT AAACA GGAAG 

GAAAT CCAGG-3’ and 5’- TCTAGT GTCTC 

ATGGC TCTGGT TTT-3’; GFAP 5’-CAACG TTAAG 

CTAGC CCTGG ACAT-3’, and 5’-CTCAC CATCC 

CGCAT CTCCA CAGT-3’ and GAPDH 5’-ATTCC 

ATGGC ACCGT CAAGG CTGA-3’, and 5’-TTCTC 

CATGG TGGTG AAGAC GCCA-3’. 

 

Dual luciferase assay 

 

The wild-type 3’-UTR and mutant 3’-UTR of GPR55 

containing the predicted binding site of miR-153-3p 

were amplified by PCR and inserted into the pMIR-

REPORT luciferase plasmid. Lipofectamine-2000 was 

utilized for transfection with miR-153-3p control or 

mimic and the wild-type and mutant 3’-UTRs of GPR55 

as described previously. Luciferase activity was 

detected using a luciferase reporter kit (Promega, USA). 

ELISA 

 

After treatment, the cell culture supernatant was 

obtained to measure the levels of proinflammatory 

cytokines such as TNF-α, IL-1β and IL-6 by using 

ELISA kits (Cambridge, UK). 

 

Proliferation assay 

 

Cells were plated in 96-well dishes and were allowed 

to continue growing for 0, 1, 2 and 3 days after 

treatment. Cell growth was detected using Cell 

Counting Kit-8 (Dojindo), and the cells were incubated 

with CCK-8 reagent (10%) for 3 hours at 37° C. The 

absorbance was measured using a microplate reader at 

450 nm. 

 

Immunofluorescence 

 

Cells were fixed in paraformaldehyde (4%) for half an 

hour at room temperature and then washed in PBS 

(phosphate-buffered saline) 3 times. After 1 hour of 

blocking in Triton X-100 (0.2%) and goat serum (3%) 

in PBS, the cells were incubated with anti-nestin, anti-

Tuj1 and anti-GFAP (1:400; Millipore) at 4° C 

overnight. After washing 3 times in PBS, the cells were 

incubated with secondary antibodies. The cells were 

visualized with fluorescence microscope. 

 

Statistical analysis 

 

Experimental statistics were presented as 

means±standard deviation. Statistical significance 

(P<0.05) was analyzed by ANOVA or Student's t-test 

using the SPSS software system (Chicago, USA). 

 

RESULTS 
 

NSC identification and culture 

 

Isolated rat NSCs self-proliferated and then formed 

several neurospheres, and the neurospheres expressed 

the NSC-specific marker nestin (Figure 1A). After 

removal of bFGF and EGF, NSCs were then 

differentiated into astrocytes and neurons. These rat 

cells expressed the neuron-specific marker Tuj1 (Figure 

1B) and astrocyte marker GFAP (Figure 1C). Thus, the 

extracted NSCs were viable and suitable for further 

experiments. 

 

miR-153-3p is decreased and GPR55 is 

overexpressed during NSC differentiation 

 

qRT-PCR data showed that miR-153-3p was decreased 

during NSC differentiation (Figure 2A). Moreover, 

GPR55 was upregulated during NSC differentiation 
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(Figure 2B). IL-1β (50 ng/ml) induced miR-153-3p 

expression in NSCs by two-fold (Figure 2C, p<0.01), 

and GPR55 was downregulated in NSCs after treatment 

with IL-1β compared with that in the control group by 

two-fold (Figure 2D, p<0.01). 

GPR55 is a direct gene target of miR-153-3p 

 

qPCR illustrated that miR-153-3p was overexpressed in 

NSCs after treatment with the miR-153-3p mimic 

compared with that in the miR-NC group (Figure 3A, 

 

 
 

Figure 1. NSC identification and culture. (A) Immunocytochemical staining of purified neural stem cells with Nestin. (B) 

Immunocytochemical staining of neurons with Tuj1. (C) Immunocytochemical staining of astrocytes with GFAP. 

 

 
 

Figure 2. miR-153-3p is decreased and GPR55 is overexpressed during NSC differentiation. (A) The expression of miR-153-3p was 

measured by qRT-PCR. (B) The expression of GPR55 was measured by qRT-PCR. (C) IL-1β induces miR-153-3p expression in NSCs. (D) The 
expression of GPR55 is determined by qRT-PCR. *p<0.05, **p<0.01 and ***p<0.001. Error bars represent the s.d. of relative experiment from 
n=3 replicates. 
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p<0.001). This result suggested that the efficiency of 

miR-153-3p was high. By searching bioinformatic 

TargetScan 7.2 (http://www.targetscan.org/vert_72/), 

we identified one potential target site between miR-153-

3p and the GPR55 3’-UTR (Figure 3B). We also 

showed that these sequences were conserved among 

different species (Figure 3B). Ectopic miR-153-3p 

expression suppressed GPR55 expression in NSCs 

(Figure 3C, p<0.01). Luciferase reporter analysis noted 

that elevated expression of miR-153-3p significantly 

inhibited the luciferase value of the WT reporter 

plasmid but did not change the luciferase value of the 

mut reporter plasmid (Figure 3D, p<0.01). 

 

miR-153-3p suppresses NSC differentiation and 

proliferation 

 

The expression of miR-153-3p was downregulated in 

NSCs after treatment with the anti-miR-153-3p mimic 

(Figure 4E, p<0.001). Ectopic expression of miR-153-

3p inhibited NSC proliferation (Figure 4A, p<0.001), 

and miR-153-3p suppression increased NSC  

growth (Figure 4F, p<0.01). Additionally, miR-153-3p 

overexpression decreased nestin expression (Figure 

4B, p<0.01) and miR-153-3p knockdown induced 

nestin expression (Figure 4G, p<0.01) in NSCs. 

Furthermore, we illustrated that ectopic miR-153-3p 

expression suppressed Tuj1 (Figure 4C, p<0.01) and 

GFAP (Figure 4D, p<0.01) and that miR-153-3p 

suppression enhanced Tuj1 (Figure 4H, p<0.01) and 

GFAP (Figure 4I, p<0.01) in NSCs. Taken together, 

these data showed that miR-153-3p inhibited cell 

differentiation and proliferation in NSCs. 

 

miR-153-3p induces proinflammatory cytokine 

release 

 

The concentrations of TNF-α, IL-1β and IL-6 were 

upregulated in NSCs after treatment with the miR-153-

3p mimic (Figure 5A, p<0.001). However, the 

knockdown of miR-153-3p suppressed the levels of 

TNF-α, IL-1β and IL-6 in NSCs (Figure 5B, p<0.01). 

These data suggested that miR-153-3p induced 

proinflammatory cytokine release. 

 

 
 

Figure 3. GPR55 is a direct gene target of miR-153-3p. (A) The expression of GPR55 was determined by qRT-PCR. (B) One potential 

target site was found between miR-153-3p and GPR55. These sequences were conserved between different species. (C) The expression of 
GPR55 was determined by qRT-PCR. (D) Luciferase reporter analysis noted that elevated expression of miR-153-3p significantly inhibited the 
luciferase value of the WT reporter plasmid but did not change the luciferase value of the mut reporter plasmid. **p<0.01 and ***p<0.001. 
Error bars represent the s.d. of relative experiment from n=3 replicates. 

http://www.targetscan.org/vert_72/


www.aging-us.com 5 AGING 

miR-153-3p inhibits NSC differentiation and 

proliferation by targeting GPR55 expression 

 

Because GPR55 is an NSC regulator, we speculated that 

miR-153-3p might act on these functions by regulating 

GPR55 expression. To prove this hypothesis, several 

gain and loss function experiments were performed. The 

GPR55 agonist O-1602 promoted cell proliferation 

compared with the vehicle group (Figure 6A, p<0.01), 

and the GPR55 antagonist ML-193 inhibited cell 

growth compared with the vehicle group (Figure 6F, 

p<0.01) in miR-153-3p-treated NSCs. The GPR55 

agonist O-1602 increased nestin (Figure 6B, p<0.05), 

Tuj1 (Figure 6C, p<0.05) and GFAP (Figure 6D, 

p<0.05) expression compared with the vehicle group, 

and the GPR55 antagonist ML-193 decreased nestin 

(Figure 6G, p<0.05), Tuj1 (Figure 6H, p<0.05) and 

GFAP (Figure 6I, p<0.05) expression compared with 

the vehicle group in miR-153-3p-treated NSCs. These 

data were also confirmed using immunocytochemical 

staining (Figure 6E). These results showed that miR-

153-3p inhibited NSC differentiation and proliferation 

by targeting GPR55 expression. 

 

DISCUSSION 
 

Previous studies have illustrated that miRNAs  

regulate NSC differentiation, neuronal maturation and 

proliferation [10, 34, 35]. For example, Wu et al. [30]. 

illustrated that miR-374b modulates NSC differentiation 

and growth by regulating Hes1. Chen et al. [31]. noted 

that miR-132 acts as a moderator of neurite outgrowth, 

cell differentiation and self-renewal of NSCs. Xue et al. 

[36]. indicated that miR-145 protects NSC function by 

regulating the MAPK signaling pathway to remediate rat 

cerebral ischemic stroke. Channakkar et al. [37]. showed 

that miR-137 modulates NSC fate via the regulation of 

mitochondrial dynamics. However, the potential 

functional role of miR-153-3p in the fate of NSCs 

remains unclear. miR-153-3p modulates cisplatin 

resistance and cell growth through Nrf-2 in esophageal 

carcinoma [38]. Li et al. [39]. illustrated that miR-153-3p 

 

 
 

Figure 4. miR-153-3p suppresses NSC differentiation and proliferation. (A) Ectopic expression of miR-153-3p inhibited NSC proliferation. 

(B) Overexpression of miR-153-3p decreased nestin expression. (C) The expression of Tuj1 was detected by qRT-PCR. (D) The expression of GFAP 
was measured by qRT-PCR. (E) The expression of miR-153-3p was measured by qRT-PCR. (F) The suppression of miR-153-3p increased NSC 
growth. (G) Nestin expression was measured by qRT-PCR. (H) The expression of Tuj1 was detected by qRT-PCR. (I) The expression of GFAP was 
measured by qRT-PCR. *p<0.05, **p<0.01 and ***p<0.001. Error bars represent the s.d. of relative experiment from n=3 replicates. 
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modulates ovarian carcinoma progression by regulating 

MCL1 expression. Sun et al. [40]. indicated that miR-

153-3p promotes glioma cell radiosensitivity by 

modulating BCL2. A previous study showed that IL-1β 

induces miR-153 expression in beta cells and that IL-1β 

plays critical roles in the fate of NSCs [41–43]. In the 

present study, we noted that miR-153-3p is decreased 

during NSC differentiation and that IL-1β induces miR-

153-3p expression in NSCs. Ectopic expression of miR-

153-3p inhibited NSC growth and differentiation into 

 

 
 

Figure 5. miR-153-3p induces proinflammatory cytokine release. (A) The concentration levels of TNF-α, IL-1β and IL-6 were 

upregulated in NSCs after treatment with the miR-153-3p mimic. (B) Knockdown of miR-153-3p suppressed the concentration levels of TNF-
α, IL-1β and IL-6 in NSCs. **p<0.01 and ***p<0.001. Error bars represent the s.d. of relative experiment from n=3 replicates. 

 

 
 

Figure 6. miR-153-3p inhibits NSC differentiation and proliferation by targeting GPR55 expression. (A) Cell proliferation was 

measured using CCK-8 analysis. (B) Nestin expression was determined by qRT-PCR. (C) The expression of Tuj1 was detected by qRT-PCR. (D) The 
expression of GFAP was measured by qRT-PCR. (E) The GPR55 antagonist ML-193 inhibited cell growth compared with the vehicle group in miR-
153-3p-treated NSCs. (F) Nestin expression was determined by qRT-PCR analysis. (G) The expression of Tuj1 was detected by qRT-PCR. (H) The 
expression of GFAP was measured by qRT-PCR. *p<0.05 and **p<0.01. Error bars represent the s.d. of relative experiment from n=3 replicates. 
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astrocytes and neurons. Elevated expression of miR-153-

3p induced the release of proinflammatory cytokines, 

such as TNF-α, IL-1β and IL-6, in NSCs. These results 

indicated that miR-153-3p plays critical roles in the cell 

differentiation and self-renewal of NSCs. 

 

GPR55 is a lipid-sensing receptor that plays important 

roles in cell mobilization, invasion and cell cycle 

progression in tumor development. Wang et al. [44]. 

indicated that CID16020046 (GPR55 antagonist) 

protects against inflammation induced by ox-LDL in 

HAECs (aortic endothelial cells). Saliba et al. [45]. 

illustrated that several compounds with antagonistic 

activities of GPR55 suppress PGE2 release in microglia. 

Recently, Hill et al. [46]. showed that GPR55 activation 

promotes NSC proliferation and differentiation into 

neuronal cells. Moreover, they found that a GPR55 

agonist defends against neurogenesis rate reductions in 

NSCs induced by IL-1β. GPR55 activation suppresses 

inflammatory cytokine expression in NSCs [47]. In our 

study, we searched for bioinformatic targets and 

identified one potential target site between miR-153-3p 

and the GPR55 3’-UTR. Luciferase reporter analysis 

noted that the elevated expression of miR-153-3p 

significantly inhibited the luciferase value of the WT 

reporter plasmid but did not change the luciferase value 

of the mut reporter plasmid. Moreover, we showed that 

ectopic expression of miR-153-3p suppresses GPR55 

expression in NSCs. Furthermore, miR-153-3p inhibited 

NSC differentiation and proliferation by targeting 

GPR55 expression. However, more experiments must be 

performed on human NSCs in the future. These results 

provide novel insights into the modulation of GPR55 

and its cell function in the development of NSCs. 

 

In summary, our results noted the involvement of miR-

153-3p in modulating the differentiation and growth of 

NSCs. It also illustrated that miR-153-3p inhibits NSC 

differentiation and proliferation and proinflammatory 

cytokine release by targeting GPR55 expression in NSCs. 

These data suggest that miR-153-3p acts as a clinical 

target for neurodegenerative disease therapeutics. 
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