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INTRODUCTION 
 

As a common health threat, osteoporosis is characterized 
by reduced bone mineral density (BMD) and bone 

architecture deterioration, consequently weakening  

the bones and conferring a higher fracture risk [1]. 

Currently, osteoporosis is not considered to be only a 

natural phenomenon occurring in older women, as it 

occurs throughout all stages of life, regardless of age or 

sex [2]. 
 

Various genetic components and environmental factors 

may contribute to the pathogenesis of osteoporosis  

[3, 4]. Preventing low BMD during early menopause is 
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ABSTRACT 
 

Osteoporosis is a severe chronic skeletal disorder that affects older individuals, especially postmenopausal 
women. However, molecular biomarkers for predicting the risk of osteoporosis are not well characterized. The 
aim of this study was to identify combined biomarkers for predicting the risk of osteoporosis using machine 
learning methods. We merged three publicly available gene expression datasets (GSE56815, GSE13850, and 
GSE2208) to obtain expression data for 6354 unique genes in postmenopausal women (45 with high bone mineral 
density and 45 with low bone mineral density). All machine learning methods were implemented in R, with the 
GEOquery and limma packages, for dataset download and differentially expressed gene identification, and a 
nomogram for predicting the risk of osteoporosis was constructed. We detected 378 significant differentially 
expressed genes using the limma package, representing 15 major biological pathways. The performance of the 
predictive models based on combined biomarkers (two or three genes) was superior to that of models based on a 
single gene. The best predictive gene set among two-gene sets included PLA2G2A and WRAP73. The best 
predictive gene set among three-gene sets included LPN1, PFDN6, and DOHH. Overall, we demonstrated the 
advantages of using combined versus single biomarkers for predicting the risk of osteoporosis. Further, the 
predictive nomogram constructed using combined biomarkers could be used by clinicians to identify high-risk 
individuals and in the design of efficient clinical trials to reduce the incidence of osteoporosis. 
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a crucial concern for decreasing the risk of osteoporosis 

[5]. Age and obesity have been proposed as risk 

factors of fracture, and clinical nomograms have  

been constructed including these factors to predict the 

risk of osteoporosis and fracture [6, 7]. Further, BMD 

is a significant factor of fracture risk, and is thus 

widely used in clinical practice as an indicator of 

osteoporosis [8–10]. However, the detailed 

pathogenesis of osteoporosis has yet to be elucidated, 

and there is still no effective therapeutic strategy. 

Identifying a novel therapeutic target for osteoporosis 

may help to establish a new therapeutic strategy [8]. 

Toward this end, microarray gene expression analysis 

could be used to identify essential targets and related 

signaling pathways involved in the pathogenesis of 

osteoporosis [11]. 

 

Artificial intelligence (AI) simulates human intelligence 

using machines, especially computer systems. AI  

can be used to analyze and improve the predictive 

performance of models in various research areas. 

Machine learning (ML), a major branch of AI,  

has been used in conjunction with bioinformatic 

functional analysis to identify predictive markers of 

osteoporosis [12, 13]. Kim et al. [14] and Shim et al. 

[15] developed machine learning models to accurately 

identify the risk of osteoporosis in postmenopausal 

women. 

In the current study, we analyzed public gene expression 

data related to osteoporosis to identify putative 

combined biomarkers for the prediction of osteoporosis 

risk. We also performed functional annotation of 

osteoporosis-related genes to establish a systematic 

approach to discover new molecular targets for the 

treatment of osteoporosis. Further, we constructed a 

nomogram for the prediction of osteoporosis risk in 

clinical practice, which can be used as an objective 

guideline for assessing a high risk of osteoporosis. We 

further anticipate that the identification of individuals at 

high risk of osteoporosis will allow for the design of 

more efficient therapeutic trials to ultimately reduce the 

incidence of osteoporosis. 

 

RESULTS 
 

We merged three microarray gene expression datasets 

from postmenopausal women with high and low  

BMD (GSE56815, GSE13850, and GSE2208) (see 

Materials and Methods for details). The merged dataset 

contained gene expression data for 6354 genes from  

45 postmenopausal women with high BMD and 45 

postmenopausal women with low BMD. We compared 

the predictive accuracies of the ML algorithms  

for predicting the risk of osteoporosis using the 

identified combined biomarkers. The study overview 

is schematically shown in Figure 1. 

 

 
 

Figure 1. Study design. Data for duplicated genes in each gene expression dataset were averaged. The datasets were then merged based 

on gene name. Finally, osteoporosis-predictive genes were identified, as indicated. BMD: bone mineral density; GO: Gene Ontology; KEGG: 
Kyoto Encyclopedia Genes Genomes; ML: machine learning; HTML: Hypertext Markup Language format. 
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Identification of differentially expressed genes 

 

We used the limma package (see Materials and Methods) 

to detect 378 differentially expressed genes between the 

high and low BMD groups. The expression patterns of 

6354 genes and the identified 378 differentially expressed 

genes are shown in Figure 2A, 2B, respectively. 

 

The identified genes showed highly divergent expression 

patterns between the high and low BMD groups in the 

GSE13850 dataset, but not in the GSE56815 and 

GSE2208 datasets (Figure 2B). The upregulated gene set 

included TMEM53, DRP2, ARHGAP44, RPS6KA2, 

CEBPE, E2F1, ASXL2, CNTD2, GGTLC1, SLC22A14, 

and APOE. 

 

Gene ontology (GO) analysis of differentially 

expressed genes 

 

We next performed GO term annotation and pathway 

enrichment analysis of the differentially expressed 

genes at the functional level using the Database for 

Annotation, Visualization and Integrated Discovery 

(DAVID) (https://david.ncifcrf.gov/) tool. The results 

are summarized in Table 1. 

 

The most significantly enriched GO term was 

“phosphoprotein” (Table 1). The other significantly 

enriched terms were protein binding, acetylation, 

nucleus, nucleoplasm, cytoplasm, alternative splicing, 

Ubl conjugation, DNA damage, methylation, coiled 

coil, ATP binding, isopeptide bond, and DNA repair. 

Each term comprised 17–239 genes. 

 

Identification of combined predictive markers of 

osteoporosis risk 

 

To select the optimal number of combined biomarkers 

for risk prediction, we tested random sets of 1–5 genes, 

with 1000 replicates, and evaluated associations between 

the number of genes and predictive model accuracy 

(Figure 3). 

 

The prediction accuracy indicates the probability of 

concordance between predicted and observed responses. 

The accuracy increased with an increasing number of 

combined genes. We focused on identifying a prediction 

model based on the least number of genes and selected a 

two-gene set for further analysis. Among the various 

two-gene sets, the set including PLA2G2A and WRAP73 

showed the highest accuracy, at almost 0.9. Ten 

combined biomarker sets of two or three genes each 

identified by simulations shown in Figure 3 are listed in 

Table 2. 

 

Performance comparison of risk predictive models 

for osteoporosis 

 

We then compared the performance of the risk 

predictive models for osteoporosis using different ML 

 

 
 

Figure 2. Gene expression patterns in the three datasets analyzed. (A) Gene expression pattern in the merged microarray dataset, 

which includes 6354 genes and data from 90 experiments. (B) Gene expression pattern of significant differentially expressed genes (n = 378) 
in high-BMD and low-BMD groups. The genes were identified using the limma package in R; among them, 191 genes were down-regulated 
and 187 genes were up-regulated. 

https://david.ncifcrf.gov/
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Table 1. Summary of GO terms identified using the DAVID annotation database. 

Category Term Count p-valuea Benjaminib 

UP_KEYWORDS Phosphoprotein 239 7.3E-22 2.5E-19 

GOTERM_MF_DIRECT Protein binding 247 2.2E-13 1.2E-10 

UP_KEYWORDS Acetylation 113 3.4E-11 5.8E-9 

UP_KEYWORDS Nucleus 151 9.1E-11 1.0E-8 

GOTERM_CC_DIRECT Nucleoplasm 101 2.0E-10 7.5E-8 

GOTERM_CC_DIRECT Cytoplasm 155 1.0E-9 2.0E-7 

UP_KEYWORDS Alternative splicing 240 1.2E-7 1.1E-5 

UP_KEYWORDS Ubl conjugation 60 7.4E-7 5.0E-5 

GOTERM_CC_DIRECT Nucleus 147 1.7E-6 2.2E-4 

UP_KEYWORDS DNA damage 21 6.4E-6 3.6E-4 

UP_KEYWORDS Methylation 38 2.7E-5 1.3E-3 

UP_KEYWORDS Coiled coil 87 4.2E-5 1.6E-3 

UP_KEYWORDS ATP binding 47 4.3E-5 1.6E-3 

UP_KEYWORDS Isopeptide bond 40 7.4E-5 2.5E-3 

UP_KEYWORDS DNA repair 17 8.5E-5 2.6E-3 

ap-value: modified Fisher’s exact test p-value. 
bBenjamini: Benjamini–Hochberg false discovery rate (FDR)-adjusted p-value. 

 

algorithms. For this experiment, the dataset was 

randomly split into training (70% of data) and testing 

(30% of data) datasets. Random dataset spilt was 

processed repeatedly 100 times, and the model 

performance is summarized according to mean values 

and standard deviations calculated for all processing 

cycles in Table 3. 

 

 
 

Figure 3. Comparison of prediction accuracies of 
combinations of different numbers of genes. The specific-
number gene sets were selected from 378 significant 
differentially expressed genes identified by the merged 
microarray dataset using the limma package. Vertical and 
horizontal axes represent the prediction accuracy and the 
number of genes considered in combination, respectively. 

We compared the performance of two model types: one 

predicting the risk probability of osteoporosis based on 

a single gene and the other predicting risk based on 

combined biomarkers (two or three genes). The 

performance of models based on combined biomarkers 

was superior to that of models based on single genes 

(Table 3). For single-gene models, the predictive 

accuracies were 0.667–0.999 with the training dataset 

and 0.603–0.662 with the testing dataset. For models 

based on combined biomarkers, random forest (RF) was 

the best-performing model with the training dataset 

(accuracy = 1.0). Performances with the test dataset 

tended to depend on the combined biomarkers used. 

Although RF exhibited the best performance with the 

training dataset, its performance with the testing dataset 

was worse than that of other models. When two genes 

were considered in a model, the best predictive gene set 

was PLA2G2A and WRAP73. When three genes were 

considered, the best predictive gene set was LPN1, 

PFDN6, and DOHH. 

 

Nomogram construction 

 

A nomogram was constructed using the gene set of 

PLA2G2A and WARP73 (Figure 4A), as the best 

combination of two genes for predicting the risk of 

osteoporosis (Table 3). 

 

The risk probability of osteoporosis increased when the 

calculated point total decreased. For the point total of 

95, the risk probability was 9.2% and for the point total 

of 40, the risk probability was 95% (Figure 4A). For 

practical application, we constructed the nomogram in 
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Table 2. Overview of the 10 sets of combined genes (two or three genes) tested. 

Gene set Genes Description 

1 
PLA2G2A Phospholipase A2, membrane associated 

WRAP73 Human WD repeat containing, antisense to TP73 

2 
DOHH Deoxyhypusine hydroxylase 

SLC22A14 Solute carrier family 22, member 14 

3 
OXTR Oxytocin receptor 

FURIN Furin, paired basic amino acid cleaving enzyme 

4 
SLC41A3 Solute carrier family 41, member 3 

BBIP1 BBSome interacting protein 1 

5 
TBP TATA-binding protein 

TICAM1 Toll-like receptor adaptor molecule 1 

6 

MGRN1 Mahogunin ring finger 1 

PDGFB Platelet-derived growth factor subunit B 

ZNF764 Zinc finger protein 764 

7 

PSPC1 Paraspeckle component 1 

MPI Mannose phosphate isomerase 

EIF5 Eukaryotic translation initiation factor 5 

8 

WDR6 WD repeat-containing protein 6 

PFDN6 Prefoldin subunit 6 

PSPC1 Paraspeckle component 1 

9 

ADM2 Adrenomedullin 2 

MFSD10 Major facilitator superfamily domain containing 10 

PAFAH1B1 (LIS1) Platelet-activating factor acetylhydrolase 1b regulatory subunit 1 

10 

LPIN1 Lipin-1 

PFDN6 Prefoldin subunit 6 

DOHH Deoxyhypusine hydroxylase 

 

Hypertext Markup Language (HTML) format and 

populated it with the calculated total scores and 

probabilities (Figure 4B). The calculated point total can 

also be used for stratification according to the risk 

probability of osteoporosis. 

 

DISCUSSION 
 

In this study, we analyzed merged microarray datasets of 

gene expression in postmenopausal women with high and 

low BMD. Using ML methods, we identified PLA2G2A 

and WRAP73 as the optimal combined biomarker set  

for predicting the risk of osteoporosis, and constructed  

a related nomogram for practical use. The devised 

nomogram will help clinicians to identify patients at high 

risk of osteoporosis, allowing timely treatment or a 

prevention strategy. Further, the obtained data provide 

insights into the development of osteoporosis. 

 

In addition to biomarker set identification, the current 
study sheds light on the molecular processes involved  

in osteoporosis. We identified 378 genes that are 

significantly differentially expressed in postmenopausal 

women with high and low BMD. These include APOE, 
PRKAA1, and MAP3K1, which were previously reported 

to be associated with Alzheimer’s disease (AD) [16–18]. 

As a common degenerative disease, AD and osteoporosis 

mainly occur in the elderly population [19, 20]. 

Woodman [21] and Xiong et al. [22] reported that both 

decreased BMD and fractures are common phenomena in 

AD patients, and that AD target genes might be risk 

factors for osteoporosis. These observations coincide 

with the osteoporosis-related genes identified herein, 

which could also be AD biomarkers. 

 

Among the combined gene sets identified in this study 

(Table 2), PLA2G2A and WRAP73 constituted the 

optimal identified biomarker set. PLA2G2A is associated 

with osteosarcopenia, and PLA2G2A overexpression is 

reported to be a valuable finding for the clinical 

management of sarcopenia in elderly women with 

osteoporosis [23, 24]. Further, PLA2G2A influences 

osteoclastic bone resorption by facilitating the 

production of prostaglandin, a key modulator of bone 

remodeling [25, 26]. WRAP73 encodes a member of the 

WD repeat protein family that is implicated in many 
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Table 3. Comparison of predictive accuracies of models with training and testing datasets. 

  Training dataset Testing dataset 

Single genes 

  LDA KNN SVM RF LDA KNN SVM RF 

  
0.667 0.731 0.740 0.999 0.662 0.650 0.641 0.603 

0.057 0.049 0.055 0.003 0.093 0.095 0.092 0.102 

Combined biomarkers 

Gene set Genes LDA KNN SVM RF LDA KNN SVM RF 

1 
PLA2G2A 0.893 0.888 0.899 1.000 0.873 0.859 0.864 0.841 

WRAP73 0.026 0.035 0.031 0.000 0.077 0.060 0.055 0.088 

2 
DOHH 0.802 0.879 0.882 1.000 0.800 0.852 0.826 0.829 

SLC22A14 0.026 0.026 0.028 0.000 0.071 0.057 0.070 0.062 

3 
OXTR 0.860 0.840 0.879 1.000 0.851 0.783 0.808 0.789 

FURIN 0.027 0.038 0.030 0.000 0.061 0.065 0.061 0.073 

4 
SLC41A3 0.887 0.889 0.935 1.000 0.881 0.838 0.852 0.799 

BBIP1 0.028 0.028 0.022 0.000 0.055 0.060 0.055 0.065 

5 
TBP 0.854 0.867 0.881 1.000 0.827 0.815 0.803 0.782 

TICAM1 0.041 0.030 0.029 0.000 0.071 0.066 0.070 0.066 

6 

MGRN1 0.863 0.880 0.894 1.000 0.834 0.827 0.819 0.842 

PDGFB 0.025 0.027 0.026 0.000 0.065 0.049 0.067 0.057 

ZNF764         

7 

PSPC1 0.832 0.866 0.889 1.000 0.810 0.854 0.853 0.829 

MPI 0.046 0.023 0.025 0.000 0.072 0.057 0.060 0.059 

EIF5         

8 

WDR6 0.853 0.856 0.869 1.000 0.843 0.786 0.805 0.798 

PFDN6 0.030 0.033 0.027 0.000 0.059 0.069 0.059 0.071 

PSPC1         

9 

ADM2 0.834 0.817 0.858 1.000 0.799 0.734 0.771 0.789 

MFSD10 0.028 0.034 0.029 0.000 0.070 0.075 0.082 0.060 

PAFAH1B1         

10 

LPIN1 0.869 0.885 0.927 1.000 0.858 0.860 0.873 0.920 

PFDN6 0.036 0.026 0.015 0.000 0.037 0.020 0.048 0.036 

DOHH         

LDA: Linear discriminant analysis; KNN: k-Nearest neighbors; SVM: Support vector machine; RF: Random forest. 
ML methods are indicated, and values are the mean (top) and standard deviation (bottom) calculated from 100 reiterations. 

 

 
 

Figure 4. Nomogram for predicting the probability of osteoporosis risk. (A) Identification of the probability of osteoporosis risk for 
an individual patient. (B) Practical use of the nomogram, available in Hypertext Markup Language (HTML) format. 
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essential biological functions and pathological processes. 

Specifically, BIG-3, Wdr5, and Wdr8, members of  

the WD repeat protein family, have been implicated  

in osteoblast differentiation and osteogenesis in vivo 

[27–30]. We therefore propose that PLA2G2A and 

WRAP73 may influence the development of osteoporosis 

by regulating bone remodeling. 

 

Considering the other identified genes, targeting OXTR, 

which encodes a protein that mediates anabolic skeletal 

recovery [31, 32], has been suggested as a possible 

therapeutic target for osteoporosis and obesity. Indeed, 

Tamma et al. [33] reported that high levels of circulating 

oxytocin can activate osteoclast OXTR to prevent bone 

resorption by mature osteoclasts. Another differentially 

expressed gene, FURIN, was reported as a hub gene in 

postmenopausal women with low BMD, as indicated by 

the analysis of regulatory patterns of genes potentially 

associated with osteoporosis risk uncovered using 

Bayesian network analysis [34]. PDGFB, another gene 

identified herein, encodes a well-known growth factor 

required for various crucial biological processes such as 

embryonic development [35]. In mouse models, bone 

strength was increased under hematopoietic stem cell-

based PDGFB therapy [36]. Moreover, as a homodimer 

of PDGFB, plasma PDGF-BB levels are maintained  

by estrogen in healthy young women and play a major 

role in postmenopausal osteoporosis [37]. Furthermore, 

several studies highlighted PDGFB as possible 

therapeutic target for osteoporosis [38–40]. Finally, Ye 

et al. [41, 42] reported that PAFAH1B1 (LIS1), another 

gene identified to be differentially expressed in the 

current study, can promote osteoclastogenesis via 

regulating both the differentiation and survival of 

osteoclast progenitors. 

 

In the current study, phosphorylation was the pathway 

that was the most significantly enriched in osteoporosis-

related genes, according to the GO DAVID annotation. 

Phosphorylation plays an essential role in bone 

metabolism in humans. For instance, phosphorylation of 

extracellular bone matrix proteins has been suggested as 

a risk factor of bone fragility [43]. Further, osteopontin, 

one of the key representative phosphoproteins in the 

bone matrix, is considered an early diagnostic biomarker 

of osteoporosis in postmenopausal women [44]. 

 

Although ML methods easily identify trends and 

patterns in a dataset, they require massive datasets to 

train on. Considering the small sample size, the first 

limitation of the current study is that the dataset used 

does not represent the entire population of individuals 

with osteoporosis. A model trained on a random sample 
of a dataset might have poor generalizability and 

perform poorly outside of that sample. Indeed, the use 

of large training and testing sets yields predictions that 

are more accurate and reliable than those obtained using 

small datasets [45]. The second limitation of the current 

study is that the subjects were all postmenopausal 

women. Osteoporosis and its major complication, 

osteoporotic fracture, affect both men and women, and 

cause substantial morbidity and mortality worldwide. 

Although the risk of osteoporosis is higher for women 

than for men, men suffer greater morbidity and 

mortality rates following osteoporotic fractures, 

especially at an advanced age, than women [46]. 

 

We presented the implemented a prediction model in 

the form of a nomogram, i.e., a graphical representation 

of a statistical model that indicates the probability  

of a particular clinical outcome. The nomogram 

constructed herein can serve as an objective guideline 

for the assessment of osteoporosis in high-risk 

individuals. The identification of individuals at high 

risk of osteoporosis would facilitate the design of 

efficient clinical trials to reduce the incidence of 

osteoporosis. The constructed nomogram could be 

used as a test version. As the next step, predictive 

model incorporating clinical variables and based on 

specific gene expression in a large dataset relevant to 

an aging population should be devised. 

 

MATERIALS AND METHODS 
 

Data preparation 

 

Three publicly available gene expression datasets  

for blood monocytes (GSE56815, GSE13850, and 

GSE2208) were used in the current study. These 

datasets are accessible from the public Gene 

Expression Omnibus (GEO) microarray database 

(https://www.ncbi.nlm.nih.gov/geo/). GSE56815 and 

GSE13850 each consist of data for 20 postmenopausal 

women with high BMD and 20 postmenopausal 

women with low BMD (for a total of 22,283 probes). 

GSE2208 includes data for five postmenopausal 

women with high BMD and five postmenopausal 

women with low BMD (for a total of 8623 probes). 

The three datasets were acquired using the same 

platform, GPL96 Affymetrix GeneChip Human 

Genome U133 Array Set. The GSE13850 and 

GSE56815 datasets contain expression data for 13,516 

unique genes, and GSE2208 contains expression data 

for 8623 unique genes. Since these expression datasets 

contain duplicated gene symbols, mean expression 

values for duplicated genes in each dataset were 

combined and used for downstream analysis. The three 

datasets were merged according to gene name, to 

obtain a combined dataset for 45 postmenopausal 

women with high BMD and 45 postmenopausal 

women with low BMD with a total of 6354 gene 

symbols. The study design is shown in Figure 1. 

https://www.ncbi.nlm.nih.gov/geo/
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GO functional annotation 

 

The GO [47] project is a model structured to address the 

molecular function, biological process, and cellular 

component for individual genes by large-scale gene 

annotation. DAVID is a comprehensive functional 

annotation tool to provide a functional interpretation of 

a large gene set derived from genomic studies by a 

clustering algorithm [48]. In the current study, the 

DAVID online tool was used for pathway enrichment 

analysis of differentially expressed genes. 

 

A modified Fisher’s exact test p-value was used in this 

study. DAVID can be used to examine thousands of 

gene sets and test multiple hypotheses. DAVID 

provides a Benjamini–Hochberg false-discovery rate 

(FDR)-adjusted p-value, with a smaller p-value 

indicating more significant enrichment. The p-value and 

Benjamin–Hochberg FDR were both used to determine 

the significance of term enrichment for each annotation. 

 

ML methods 

 

The following ML algorithms were used in the current 

study [49]. 

 

Linear discriminant analysis (LDA) 

LDA is a generalization of Fisher’s linear discriminant, 

which is used to find a linear combination of features 

that characterize or separate two or more classes of 

objects or events. The resulting combination might be 

used as a linear classifier or for dimensionality 

reduction before classification. LDA is a dimension-

reduction technique that is commonly applied to 

supervised classification problems. It is mainly used to 

model differences between groups (i.e., separating two 

or more groups from each other) [50]. 

 

k-Nearest neighbors (KNN) algorithm 

The KNN algorithm is one of the simplest techniques 

used in ML [9], which is used for both classification 

and regression. The KNN algorithm works by finding 

the distance between data points based on the Euclidean 

distance. KNN computes the distance between each data 

point and the test data and then calculates the 

probability that the points are similar to the test data, 

finally classifying the data points based on the shared 

highest probabilities [51]. 

 

Support vector machine (SVM) 

As one of the representative supervised learning 

models for pattern recognition and data analysis, SVM 

is mainly used for classification and regression 
analysis [52]. The objective of the SVM algorithm is 

to find a hyperplane in N-dimensional space (where N 

is the number of features) that distinctly classifies data 

points. Support vectors are data points that are closer 

to the hyperplane, which influence the position and 

orientation of the hyperplane. Using these support 

vectors, the margin of the classifier is maximized. 

Deleting the support vectors changes the position of 

the hyperplane. 

 

RF 

RF is an ensemble learning method for classification, 

regression, and other tasks. It operates by constructing a 

multitude of decision trees in the training phase. The 

output is the mode of classes (classification) or mean/ 

average prediction (regression) of individual trees [53]. 

The RF algorithm can be used to solve both regression 

and classification problems. 

 

All ML models were implemented using the R 

programming language, version 4.1.0 (R Foundation for 

Statistical Computing, Vienna, Austria) [54], including 

the GEOquery and limma packages for downloading 

GEO datasets and identification of significant 

differentially expressed genes. The nomogram for 

predicting the risk of osteoporosis was created based 

on the selected genes. 
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