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INTRODUCTION 
 

Chronic aging associated disease (AAD) remains one of 

the defining medical challenges of our time, 

representing 95% of direct health costs for seniors and 

driving expected Medicare spending to over $1.2 trillion 

by 2024 [1, 2]. Further, patient care is complicated by 

the convolution of systemic factors, multiple diseases, 

and conflicting treatment plans. Indeed, patients co-

presenting two or more AADs are common and costly, 

with patients managing 2 or more chronic conditions 

representing over 70% of healthcare spending [3]. This 

complexity is reflected at the molecular level, with 
numerous mechanisms implicated in the aging process. 

These mechanisms prominently include inflammation, 

oxidation, metabolic and mitochondrial dysfunction, 

telomere shortening, and cellular senescence; we direct 

readers to other reviews on the molecular drivers of 

aging [4, 5]. Despite strong research efforts, connecting 

the host of molecular changes to development of 

effective treatments for AAD remains challenging. 

Identifying and intervening in early stages of chronic 

disease remains difficult with the slow degeneration 

distributed over years, evaluation of molecular markers 

occurring long after pathogenesis, and convolution of 

many subtle pathway dysregulations. A major 

contributor to these challenges is the limitations of 

commonly used in vivo and in vitro models. 

 

Animal models of aging broadly follow the phenotypes 

of human aging and can be used to model specific AAD 

[6]. However, specific mechanisms (e.g., immune 
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function or telomere regulation) differ in important 

ways [7]. Further, many human AAD lack analogs in 

naturally occurring animal disease, especially in more 

cost-effective rodent models. Prime examples of this are 

cardiovascular disease [8], primary open angle 

glaucoma [9–11], and neurodegeneration [12]. While 

animal studies will remain an essential component of 

biomedical research for the foreseeable future, there is 

longstanding recognition of their limitations [13] and 

consideration of reduction strategies [14, 15]. 

 

Similarly, conventional two-dimensional in vitro culture 

has been indispensable in understanding the molecular 

mechanisms associated with aging [16]; advantages 

include cost-effectiveness, replicability, ease of 

chemical and genetic manipulation, and accessibility to 

analytical and imaging methods [17, 18]. Unfortunately, 

these advantages come with a number of known 

limitations including modified sensitivity to 

pharmacological agents, distorted expression profiles, 

abnormal morphology, and altered differentiation 

schema [7, 19, 20]. To address these limitations in both 

conventional in vitro and in vivo animal models, there 

has been increasing development of more 

physiologically representative in vitro models. Ideally, 

these models incorporate human cells and more 

accurately reflect the mechanical, physicochemical, 

biochemical, and cellular context of in vivo tissue. 

Models that mimic the heterogeneous cell composition 

and organization of native tissue are generally referred 

to as organotypic, a category that includes both ex vivo 

and in vitro models. Key examples of 
in vitro organotypic models include organoid, organ-on-

a-chip, organotypic tissue slice, and tissue engineered 

organotypic models. 

 

Organoid models are generated by a number of different 

source materials including tissue fragments and 

explants, reconstituted primary cells, and stem cells [7, 

18]. While there is no single definition of organoid 

models, broadly speaking, they are constructed through 

the self-assembly of patient, primary, or stem cells; 

exhibit cellular and matrix organization mimetic of the 

in vivo environment; and a heterogeneous cell 

population mimetic of native tissue. Organ-on-a-chip 

models generally possess these same advantages, with 

additional potential features consisting of defined 

structural patterning of the cells, microfluidic or 

environmental control of the system, and incorporation 

of sensors or physiological readouts [21–23]. 

Organotypic tissue slice cultures use thinly sliced 

sections of tissue, preserving the cellular micro-

environment and tissue organization; these have been 
used in a range of tissues, including heart, lung, liver, 

and most prominently, brain [24–30]. These model 

classes have enabled significant contributions to 

research and drug discovery, including in the aging 

field. A notable example is in brain, where organoids 

and organotypic slices have been used to research aging 

associated degeneration, Alzheimer’s, dementia, and 

Parkinson’s; the progress in brain organotypic models 

has been extensively reviewed by others [31, 32]. These 

model classes have enabled significant contributions to 

research and drug discovery, yet have notable 

limitations. For example, organoids and organ-on-a-

chip models are typically small (sub-mm) due to the 

lack of vasculature and diffusion limits of oxygen and 

metabolites [33–35], although organ-on-a-chip models 

sometimes address this issue through microfluidic 

perfusion. Further, organoid and slice models often 

require patient or freshly isolated animal tissue that can 

be difficult to acquire; organ-on-a-chip models often 

rely on specialized microfabrication techniques that not 

all aging research labs can easily implement. Another 

culture category and topic of this review, tissue 

engineered organotypic culture, leverages the progress 

in tissue engineering to create tissue-scale and 

physiologically relevant in vitro models. 

 

Tissue engineering, a term first coined over three 

decades ago, has long held promise for the in vitro 

creation of fully functional tissue grafts [36, 37], 

however, numerous challenges have limited 

development. In vitro development of skin grafts, one of 

the initial targets of the field [37], is only just now 

entering medical use as an adjunct to traditional therapy 

[38], with fully functional engineered skin still 

unavailable [39]. This is broadly representative of the 

current state of the field, which, despite significant 

research progress, have demonstrated limited clinical 

application of grafts. However, for the past two 

decades, researchers have repurposed engineered tissues 

towards research questions [14, 40–42]. Similar to 

organoid and organ-on-a-chip cultures, these models are 

constructed from organotypic cell populations, but 

typically offer a greater degree of control over the tissue 

architecture and included cell populations. Cells and 

structures can be patterned or allowed to self-assemble 

depending on the needs of the research [43, 44]; 

similarly, cell populations and sub-populations can be 

easily controlled or replaced to reflect tissue health and 

disease. Leaders in tissue engineering have urged the 

simplicity and cost-effectiveness of design [34, 45], and 

this is reflected into the increasing number of methods 

papers and decreasing costs of biomaterials [14, 40]. 

These models represent a powerful and accessible set of 

tools for aging research; and are likely to become 

increasingly relevant as the field moves towards 

bridging cellular and tissue-scale hallmarks of aging. 
 

In this review, we summarize research efforts and 

potential for utilizing organotypic and tissue engineered 
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models for aging and AAD. To streamline the review, it 

is broken into independent sections for skin, intestine, 

and skeletal muscle; which represent well-developed 

fields and are important tissues in physiological aging 

and AAD. Each section briefly covers important facets 

of the aging physiology in the tissue system, before 

describing current and emerging organotypic techniques 

and their application to aging. In each tissue section, we 

describe the advantages (and limitations) of organotypic 

models in elucidating aging mechanisms at the cellular 

and tissue scales, as well as highlighting the key 

methodological and accessibility factors. 

 

Demonstrative organotypic models relevant to 

aging tissue 
 

Skin 

 

Native skin aging 

Skin is one of the largest organs of the body and has 

functional roles in immune response, physical 

protection, and thermal regulation [46]. A simplification 

of skin anatomy is shown in Figure 1A. As aging 

occurs, skin function and healing capacity is reduced, 

with key aging changes summarized in Table 1. Skin 

aging is frequently divided into two related processes: 

intrinsic and extrinsic aging [47–50]. Intrinsic aging, 

also referred to as chronological aging, includes genetic 

and hormonal changes and the progression from cell 

maturity to cellular senescence [47, 50]. Extrinsic aging, 

also referred to as environmental aging, represents the 

impact of the environment, including: photoaging 

associated with sun exposure [47, 51, 52], cigarette 

smoking, pollution, chemical exposure, and trauma 

[50]. Due to the different underlying mechanisms, 

characteristics of each type of aged skin are different. 

Chronologically (intrinsically) aged skin presents as 

unblemished, smooth, pale, dry, lower elasticity, and 

has fine wrinkles while environmentally (extrinsically) 

aged skin has coarse wrinkling, rough textures, 

pigmentation changes, and lower elasticity [50, 53]. 
 

Structural changes in intrinsically aged skin include 

decreased dermal vasculature [62]; changes in dermal 

elasticity and increased collagen disorganization [70, 

71]; build-up of advanced glycation end products 

(AGEs) and changes in glycosaminoglycan (GAG)  

and proteoglycan (PG) concentrations/organization 

contributing to stiffening of dermal structure and frailty, 

and decreased hydration [49, 53, 55–61]; imbalance of 

tissue inhibitors and matrix metalloproteinases (MMPs) 

resulting in imbalance between collagen deposition and 

breakdown [50, 72]; and flattening of the dermal 
epidermal junction/loss of rete ridges [50, 52, 63, 64, 

73]. Aging also contributes to variations in epidermal 

and dermal thickness [63, 64, 74, 75] and reduced 

subcutaneous fat volume [50]. There are also many 

changes related to cell population in all three main skin 

compartments (epidermal, dermal, hypodermal) 

including reduced epidermal cell turnover [50, 73], drop 

in number of active melanocytes [50]; decreases in 

dermal fibroblast concentrations [64], decreases in 

immune cells [63, 64] and immune function. 

Abnormalities of skin barrier (a major function of the 

epidermis) occur during aging and often present as 

dryness or skin irritation. In aged skin, barrier function 

has been studied in the context of decreases of filaggrin 

[65], increases in pH (5 to ~5.6), altered lipid presence 

[66, 67], and changes in cornified envelope arrangement 

[63, 68, 69, 76]. These changes add to fragility of older 

skin and increase chances of infection [54], it remains 

unclear exactly how these changes take place and what 

mechanisms are controlling them. 

 

On the molecular scale, expression levels of soluble 

factors, proteins, and vitamins are both effects and 

contributors to aging phenotypes. Examples include 

upregulation of stress regulatory proteins (hypoxia-

inducible factors, nuclear factor kappa-light chain-

enhancer) [63], increases in AP-1 (leading to increased 

collagen breakdown via MMP activity) [52, 72], and 

declines in vitamin D production by the epidermis [63]. 

These changes are largely attributed to increases in 

reactive oxygen species (ROS) [52, 63], DNA 

mutations (including mitochondrial DNA), telomere 

shortening [63], increased cell senescence, and 

hormonal changes [49, 63]. Changes in skin aging have 

been associated with fluctuations in expression patterns 

of integrins including α6 and ß1 integrins [57, 59, 71, 

77, 78]. In healthy human skin, α6 and ß1 (and other α/ß 

subunits) integrin expression are localized on the basal 

side of basal keratinocytes [57, 78]. Defects in integrin 

expression are present in human blistering skin diseases 

with supporting evidence in knockout mice [78] and 

also in aged human skin [57, 59], although further work 

is necessary to understand how integrin expression 

changes in aging. 

 

Aging in the skin has sex-related differences as well, 

specifically, sex is linked to faster thinning of the dermis 

and collagen density decline in males as opposed to 

females [50, 79]. Males undergo a decline in androgen 

levels while estradiol levels are constant, these changes 

result in a linear decline of skin thickness and collagen 

content in men [70]. Women experience both androgen 

and estrogen decline linearly and an additional post-

menopausal estrogen decline which is linked to lower 

collagen content, lower skin moisture and capacity to 

hold water, lessened wound healing response, thinner 
skin, and lower skin elasticity [50, 53, 70, 80]. Detailed 

summary and discussion of sex-related changes in skin 

aging have been previously reviewed [70]. 
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These intrinsic mechanisms are compounded by 

environmental skin aging (extrinsic aging) [49, 52, 63]. 

A key example is the effects of ultraviolet (UV) 

irradiation (an extrinsic aging mechanism), which 

accelerates telomere shortening and DNA damage 

present with intrinsic aging [50, 81]. Other extrinsic 

aging and examples of compounding UV effects are 

discussed in previous literature [49, 71, 82–88]. Overall, 

skin aging at the molecular, cellular, and tissue levels 

continues to be a field of active research. While in vivo 

and traditional cell culture models remain important 

tools, there is increasing interest in more 

physiologically relevant culture models, and there is a 

growth in recent studies employing organotypic skin 

models (OSCs). 

 

Tissue engineered skin models 

Researchers have used organotypic models to study skin 

biology since the 1980s [89, 90], and the methodology 

are increasingly accessible. OSCs are also commonly 

referred to as human skin equivalents (HSEs) or full-

thickness skin models; they typically have dermal and 

properly stratified epidermal layers (Figure 1B). These 

models have proven useful for studying skin 

development, evaluating cytotoxicity, studying wound 

healing, and more recently as disease and aging models. 

OSCs are highly customizable and allow for control of 

organotypic cell populations, genotypes, and culture 

conditions to enable carefully controlled studies on 

tissue-level biology. OSCs have the capacity to be used 

for in depth aging studies without the dangers of human 

trials or expensive animal models; with long-term 

culture stability for chronic studies (typical culture 

lengths of 8–12 weeks) [91–93]. Most commonly, 

OSCs contain dermal fibroblasts and keratinocytes and 

are cultured at an air-liquid interface for epidermal 

differentiation and stratification. However, with the 

growth of interest in heterogeneous cell-cell 

communication, an increasing number of models have 

been demonstrated with additional cell populations 

 

 
 

Figure 1. Organotypic models of skin aging. (A) Simplified skin anatomy and aging phenotypes. Skin can be separated into epidermal, 

dermal, and hypodermal layers. The epidermis is composed of Stratum Basale, Spinosum, Granulosum, and Corneum, composed of 
increasingly differentiated epidermal cells. The dermal-epidermal junction (DEJ) connects the basement membrane of the Stratum Basale 
to the upper (papillary) dermis, and is characterized by small dermal extensions (or papilla) into the epidermis. The DEJ flattens with age. 
The dermis is a collagen rich tissue supported by dermal fibroblasts. The subdermis (or hypodermis) is an important adipose compartment 
that contributes to overall metabolic function; this tends to thin with age. Both the dermis and subdermis are highly vascularized, 
important for thermal regulation; in age vascularization is reduced. The above schematic is simplified to focus on the level of current 
organotypic models, nerves, melanocytes, immune cells, and other components of in vivo skin are not pictured. (B) Organotypic skin 
models, also referred to as Human Skin Equivalents (HSE), typically consist of a dermal/subdermal culture grown on a permeable culture 
support (left), followed by seeding and differentiation of epidermis at the air-liquid interface (ALI). Benefits of this style is the accessibility 
of the culture format, ready customization of the specific cell populations (both immortalized or primary, patient specific, or transgenic 
disease models), and customization of the matrix and media formulations. 
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Table 1. Prominent phenotypes of aging skin. 

Prominent Aging Phenotypes References 

Lower elasticity, increased fragility, and wrinkle formation [47, 50, 53, 54]  

Increased collagen disorganization, accumulation of advanced glycation end products, and changes 
in (GAG) and (PG) concentrations/organization 

[49, 53, 55–61] 

Flattening of the dermal epidermal junction [50, 52] 

Decreased dermal vasculature [62] 

Reduced subcutaneous fat volume [50] 

Increased cellular senescence [49, 63] 

Decreased cell population and turnover, including melanocytes, epidermal cells, dermal fibroblasts, 
and immune cells 

[50, 63, 64] 

Reduced barrier function coupled with changes in the stratum corneum, lipid composition, and 
filaggrin expression 

[65–69] 

 

[71, 94, 95]. These include vascular endothelial cells 

[92, 93, 96–101], immune cells [102–105], adipose 

derived stem cells and adipocytes from adipose derived 

stem cells [106–108], embryonic stem cells [71], 

melanocytes [109–111] and melanocytes derived from 

induced pluripotent stem cells [112]. With this 

customizability and a growing number of accessible 

protocols, OSCs represent a useful tool for studying 

skin aging; exemplar applications are discussed below, 

first for disease generally and then with aging 

specifically. 

 

OSCs have been used in a number of disease studies, 

both directly and as “hybrid” studies where a 

humanized OSC is grafted onto immunodeficient mice. 

Additionally, models have been shown useful for testing 

potential therapeutic techniques for debilitating skin 

disorders or injuries [113]. OSC skin disorder models 

include: psoriasis [114–116], recessive dystrophic 

epidermolysis bullosa [117, 118], lamellar ichthyosis 

[119], Netherton syndrome [120], congenital 

pachyonychia [121], Junctional epidermolysis bullosa 

[71, 122], and fibrosis [123–125]. Of these disease 

models, the fibrosis model by Varkey et al. is especially 

interesting for its potential to be adapted to use as an 

aging model. In this study, OSCs were generated using 

either deep dermal fibroblasts or superficial dermal 

fibroblasts in combination with normal human 

keratinocytes [123]. They found that the antifibrotic 

properties of deep dermal fibroblasts and the fibrotic 

properties of superficial fibroblasts influence OSC 

characteristics. Authors found that when compared to 

constructs with superficial or mixed fibroblast 

populations, OSCs with deep fibroblasts had higher 

levels of IL-6, reduced TGF-β1 production, higher 
PDGF expression, and epidermal formation was less 

defined and less continuous [123]. This model is 

potentially interesting as a platform for aging research, 

as TGF-β is implicated in skin aging through regulation 

of matrix metalloprotease activity [126, 127]. The work 

of Varkey et al. highlights the usefulness of OSCs to 

study signaling between specific cellular subpopulations 

in a controlled way; this approach could be readily 

adapted to aging studies. Given this potential, it is 

unsurprising that several research groups have used 

OSCs in aging research, which we highlight in the next 

section. 

 

Tissue engineered skin models to study aging 

As OSCs are stable for long culture periods (>17 

weeks), using the extended culture time to study 

intrinsic aging is perhaps one of the most 

straightforward techniques and can be combined with 

other aging models and/or cell types [73]. With this 

model, authors demonstrated that extended culture 

(using a non-traditional matrix of collagen-

glycosaminoglycan-chitosan porous polymer) exhibited 

several age-related aspects similar to those that occur 

with in vivo aging, including decreases in epidermal 

thickness, decreases in hyaluronan expression, increases 

of the aging biomarker p16Ink4a, decreases in 

keratinocyte proliferation over time, loss of expression 

of healthy epidermal markers, and basement membrane 

alterations. Another straightforward application of 

OSCs in aging is studying the impact of senescent cells. 

A number of studies have incorporated senescent 

fibroblasts into OSCs to generate models that 

recapitulate many of the features of in vivo aged skin. 

[74, 128, 129]. Diekmann and colleagues induced 

senescence in human dermal fibroblasts and 

keratinocytes using Mitomycin-C (MMC) treatment and 

incorporated the cells into OSCs [129]. When compared 

to mitotic OSCs, the senescent models demonstrated 
changes similar to aged in vivo skin, including a more 

compact stratum corneum (outer layer of the 

differentiated epidermis), reduced dermal fibroblast 
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population, decreased collagen type I and III content, 

decreased elastin expression and looser elastin 

structures, increases in MMP1, and disordered 

epidermal differentiation. A similar study involving 

senescent fibroblasts used healthy fibroblasts that were 

exposed to H2O2 to induce senescence and then cultured 

the senescent fibroblasts in skin equivalents with 

healthy keratinocytes [128]. Aging phenotypes were 

characterized by changes in proliferation, differentiation 

of suprabasal epidermal layers, impairments of skin 

barrier function, and surface property modification. 

Further, authors found that fibroblasts exhibited 

senescence-associated secretory phenotype (SASP) 

markers including IL-6, GmCSF, and IL-1α. 

Interestingly, Weinmüllner et al. observed more Ki67 

positive epidermal cells when senescent fibroblasts 

were present. More research is required to understand 

senescence in the dermis and how it may effect 

keratinocyte homeostasis [128]. Serial passaging of 

fibroblasts has also been employed to simulate aging in 

OSCs, showing that constructs generated with late 

passage fibroblasts were similar to in vivo aged skin 

[74]. OSCs were generated with 15-20% SA-β-gal 

positive fibroblasts cells in 2D culture prior to 3D 

seeding. Authors observed few changes in the epidermal 

compartment while the dermal component of OSCs 

presented a thinner dermis and increased MMP1, 

similar to in vivo aged skin [74]. Defects in epidermal-

dermal junction in these OSCs were not observed and 

keratinocytes exhibited a healthy phenotype. Although 

not shown, authors noted that when greater than 30% 

SA-β-gal positive fibroblast cells in 2D were used to 

generate OSCs, the fibroblasts did not produce 

sufficient extracellular matrix (ECM) and constructs 

were not viable [74]. As Janson et al. found, generating 

an OSC using senescent cells is technically challenging 

since the percentage of senescent cells used to generate 

an OSC can alter skin structure and long-term culture 

health [74]. 

 

Other studies focused on the aging of the keratinocyte 

population. In OSCs generated from primary cells 

isolated from donors, cell donor age is an option for 

simulating intrinsic aging in vitro [71]. OSCs generated 

with either keratinocytes isolated from aged individuals 

or serially passaged keratinocyte cells have been used to 

examine the effects of replicative senescence [130]. 

Constructs generated with older keratinocytes (61 or 35-

year-old donors) exhibited thinner epidermis compared 

to OSCs generated from 1-year old donor cells. 

Additionally, there were differences in epidermal 

organization, where constructs generated with young 

keratinocytes exhibiting more consistent organization 
and stratification than OSCs with older cells. This study 

also investigated the expression of epidermal stem cell 

markers. They found that when keratinocytes were 

passaged over six times (modeling in vitro cellular 

senescence), there was a decrease of stemness, indicated 

by high expression of α6 integrin and low expression of 

CD71 (a proliferation-associated cell surface marker) 

[130]. Likewise, in constructs generated with young 

(infant) keratinocytes, α6 integrin expression was 

observed in basal cells of epidermis while in constructs 

generated with adult and elderly cells there was faint 

and absent α6 integrin expression (respectively). These 

OSC findings demonstrated in both intrinsic aging 

(simulated from aged donor cells) and in vitro 

senescence induced by serial passaging results in 

depletion of epidermal stemness markers [130]. 

 

Epidermal changes associated with aging have also 

been shown in models generated through genetically 

altering expression of key components, for example 

p16Ink4a [131]. In vivo chronological human aging 

markers, p16Ink4a and its repressor BM1, are established 

markers of in vitro aging tissue [71, 73, 131, 132]. 

p16Ink4a is an inhibitor of cyclin-dependent kinases that 

blocks the progression from G1 phase to S phase of the 

cell cycle and promotes senescence onset. In vitro aged 

skin models can be generated from young donor 

keratinocytes cells by p16Ink4a overexpression [131]. 

Conversely, aging phenotypes observed in old donor 

keratinocytes can be rescued through silencing p16Ink4a. 

Aged models (both from older donors or p16Ink4a 

overexpression) resulted in thinner epidermis, loss of 

stratum corneum (the terminal epidermal layer), and 

atrophy [131]. 

 

OSCs also allow for studies of matrix and cell-matrix 

interactions in aging skin. Expression patterns of 

glycosaminoglycans (GAGs) and proteoglycans (PGs) are 

important in skin tissue mechanical integrity, and aging-

related changes contribute to frailty in both intrinsically 

and extrinsically aged skin [53, 55, 133–137]. Glycation 

and the presence of advanced glycation end products 

(AGEs) increase in aging skin, and this has been leveraged 

in OSCs to create an aged skin model [57, 59]. In this 

model, collagen was glycated in vitro prior to construction 

of the OSC. This simulated intrinsic aging of the construct, 

resulting in modified integrin patterns in the suprabasal 

epidermal layers, activation of the dermal fibroblasts to 

increase the production of metalloproteinase, type III 

procollagen, and type IV collagen [57, 79]. Authors found 

that these morphological and molecular changes in the 

epidermis and dermis could be partially rescued by 

antiglycation agents such as aminoguanidine [57]. More 

investigation is necessary to understand exactly how 

GAGs and PGs are affected during skin aging. Open 

questions include how sex specific hormones may affect 
concentrations [53] and what downstream effects GAGs 

and PGs have on the expression of cytokines and growth 

factors [138]. As an accessible platform that can be 
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customized with specific cell lines, biomolecules, and 

materials, OSCs are uniquely suited to elucidate aging 

mechanisms including detailed molecular studies 

regarding GAGs and PGs in skin. 

 

In addition to researching aging biology, OSCs can also 

be employed as a testing platform for aging therapeutics 

[135, 138]. C-Xyloside is a xyloside derivative that has 

been investigated as therapeutic to improve dermal-

epidermal junction (DEJ) morphology in aging skin 

[139, 140]. Sok et al. exposed OSCs to C-Xyloside and 

investigated the resulting DEJ morphology. C-Xyloside 

exposure resulted in higher basement membrane protein 

concentrations, specifically collagen IV, laminin 5, and 

collagen VII, and organization more similar to the 

microanatomy of healthy human skin. Further, C-

Xyloside increased concentrations of dermal proteins 

such as pro-collagen I and fibrillin, which are key ECM 

proteins for the maintenance of skin elasticity. Since 

defects in the basement membrane, DEJ, or elasticity 

contribute to skin fragility in aging, this model has 

potential as a test bed for other aging therapeutics [135]. 

 

In the context of skin, tissue engineering has provided 

accessible and customizable models both for the direct 

research of aging phenotypes as well as models that can 

be readily adapted to aging questions. Further, there is 

demonstrated potential for therapeutic testing. 

Importantly, the cited models (or variants thereof) rely 

on commonly available cells, reagents, and techniques 

adaptable to many lab environments. Increasing use of 

these models in aging research holds promise to 

accelerate discovery and therapeutic goals. Despite this 

promise, there remain challenges to the use of OSCs in 

aging research, discussed below. Most notably, the 

power of OSCs comes from their intermediate status 

between simple in vitro models and in vivo models; 

there is an explicit tradeoff between increasing the 

complexity of the culture system and its cost or ease of 

use. While OSCs do allow customization by the 

researcher to focus on factors most important to their 

question, the tradeoff can be difficult to make for aging 

research. Some examples of OSC limitations relevant to 

aging research are provided below. 

 

Limitations 

The most predominant limitation of using tissue 

engineered organotypic models is that they typically do 

not match all cellular populations found in vivo. Nerves, 

sweat glands, stem cell niches, immune cells, 

subcutaneous adipose, and vasculature are important 

aspects of aging skin biology that are frequently missing 

in OSCs. While in many cases there is no strict 
technical reason for the absence of a specific 

component, any increase in complexity provides more 

challenge and cost. For example, inclusion of nerves 

requires a source of nerve cells, they must be 

maintained in culture while not losing their phenotype, 

and simply including cells in the OSC does not capture 

the complexity of the nervous system. However, 

progress is being made through iteration, providing 

researchers with increasingly powerful models that 

capture more of the relevant physiology. For example, 

wound healing is slowed in aged skin, and immune cells 

are vital in both physiological and pathological wounds. 

While fibrosis has been studied using OSCs, this is 

typically limited to observing fibroblast and 

keratinocyte responses; there is a recognized need for 

OSC models that include immune populations [102]. 

While not prevalent, some models do incorporate the 

immune system [104, 116, 141–143], demonstrating the 

trajectory of the field toward increased capability and 

flexibility. Similarly, changes in vasculature are 

prevalent in aged skin, but OSCs often lack vascular 

cells. While progress has been made in vascularizing 

OSCs and related models [92, 93, 96, 97, 99, 100, 141, 

144–146], there is still a great deal of work to be done 

in applying this to aging questions. 

 

Further, OSCs tend to be structurally simplified. As 

mentioned, they typically lack nerves, glands, and other 

structures typical of skin. Building on the example of 

vasculature, even with appropriate vascular cells, OSCs 

often have a random or simplified organization; native 

cutaneous vasculature is organized into two horizontal 

plexus planes with connecting vessels between them 

along the apicobasal axis [147, 148]. In OSCs, this 

organization could be recapitulated through the 

inclusion of patterned or semi-patterned vasculature, 

although this is typically not done [149]. Additionally, 

decline of collagen density is an important aspect of 

skin aging, yet many OSCs are fabricated with collagen 

densities much lower than those found in vivo [79, 150]. 

While not common yet, OSCs can be fabricated from 

higher collagen densities through techniques such as 

dense collagen extractions [151], and compression of 

collagen cultures [152], to more closely represent the in 

vivo dermal matrix. 
 

Another key limitation of current OSCs is loss of 

systemic factors present in vivo. For example, age-

associated changes in sex hormone profiles impact skin 

physiology; e.g., post-menopausal decreases in collagen 

content, reduced elasticity, and lowered skin moisture in 

women. While changes in systemic factors can be 

addressed, they will invariably lack the full complexity 

of an in vivo model. For example, a recent study 

addressed the impact of exogenous estradiol on elastin 

synthesis using male and female dermal organotypic 
cultures [153]. Studies such as this highlight the 

tradeoffs in organotypic models, as reductionist culture 

models allow specific questions to be interrogated, they 
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obviously lack the complexity inherent in aging at the 

organismal scale. 

 

Intestine/gut 

 

Native intestinal aging 

In this section we focus on the gastrointestinal system 

and review relevant three-dimensional organotypic 

culture models. The small intestine is the primary organ 

for nutrient absorption from food, while the colon (or 

large intestine) is the primary organ for reabsorption of 

water [154]. Here, we focus on the small intestine, due 

to the larger number of in vitro three-dimensional 

models, but large intestine models are briefly discussed 

as well. The small intestine has a complex tissue 

structure involving crypts (valley points) and villi 

(mountain points); with the crypts providing a stem cell 

niche (Figure 2A). Stem cells located within crypts 

asymmetrically divide and the resultant epithelial cells 

migrate up toward villi and eventually slough off into 

the gut lumen. Multiple distinct epithelial populations 

arise from these stem cells, including microfold cells, 

enteroendocrine cells, enterocytes, goblet cells, Paneth 

cells, and tuft cells; this process of continual epithelial 

renewal and differentiation is integral to a healthy gut 

barrier. On the epithelial surface there is a brush boarder 

and single or bi-layered mucus layer depending on 

location within the gut [155]. Interacting with this 

surface is the microbiome which is made up of 

commensal bacteria and pathobionts (resident microbes 

with pathogenic potential) that constantly interact with 

the mucin layer of the gut [155]. Diversity of the gut 

microbiome has been established as an important factor 

in gut health and host health [156–165]. The diversity of 

the microbiota presents in different regions of the 

gastrointestinal tract depend on many factors including 

pH, host health, mucin composition, bacterial 

cooperation, nutrient availability, location within the 

 

 
 

Figure 2. Organotypic models of gut aging. (A) Simplified gut anatomy and aging, focusing on the most commonly modeled 

components. A mixed epithelial population, described in the text, forms a simple cuboidal epithelial layer with both secretory and 
absorptive epithelium. A layer of mucus inside the gut lumen supports the host/microbiome interaction. The stroma underneath the 
epithelium, the submucosa, is host to nerves (not shown) blood vessels, fibroblasts, and immune cells important for gut function. Smooth 
muscle is required for gut peristalsis. In aging, the macrostructure of villi degrades, with villi becoming shorter and broader. Immune cell 
populations are disrupted, and reduced epithelial barrier integrity can lead to increased microbial infiltration into the submucosa and 
vasculature. (B) Organotypic models of the gut typically only model a small subset of these features, and are typically adapted to aspects 
that are relevant to specific questions. For example, epithelial and immune populations may be co-cultured to study intercellular 
interactions in a simple format. To study the influence of villous structures, soft lithography can be used to recreate the villi/crypt 
geometry. Microbiome co-cultures can be included, and microfluidic organ-on-a-chip models have been used to mimic the oxygen gradient 
from the vascularized submucosa to the anaerobic lumen. 
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gut, and age of the host [157]. Further, within the 

subepithelial and stromal tissue there are additional cells, 

including fibroblasts, smooth muscle cells, microvascular 

cells, and both circulating and resident immune cells (e.g., 

monocyte derived macrophages, neutrophils, dendritic 

cells, T cells). The immune cells are known to interact with 

and traverse the epithelial surface [166–168]. Given the 

complexity of the intestinal tissue and the number of host 

and bacterial cell types, it is unsurprising that many of the 

cellular interactions are poorly understood, especially in 

aging tissue where both the host tissue and microbiome 

can change [169]. 

 

Aging in the gut presents as reductions to nutrient 

ingestion, the tolerance of resident microbiota, and the 

response to infection (key aging phenotypes are 

summarized in Table 2). Often these co-present with 

dehydration and malnutrition [166]. Generally, there is a 

lower intake of macronutrients and micronutrients in aged 

individuals, although this lower intake could be attributed 

to lower physical activity, problems with teeth, impaired 

sense of taste and smell, psychological factors, income 

levels, and drug side effects [170–172]. Together, lessened 

nutrient intake, dehydration, and malnutrition contribute to 

overall healthy decline and morbidity in aged individuals 

[172]. Additionally, there is evidence showing that 

absorption of glucose and vitamins increases with age 

while some nutrients such as cholesterol and fatty acid 

decrease or slow; changes in absorption have been well 

reviewed in animals [170, 172] but continues to require 

more investigation in the human gut [172, 173]. It has been 

suggested that changes in nutrient absorption could also be 

tied to the changes in morphology found in aged animals 

and in humans [174]. 

 

Morphologically, as the small intestine ages, numerous 

structural changes have been observed in several models. 

These structural changes are coupled to cellular changes, for 

example, the dynamics of cell life cycle from the crypt to 

extrusion at the villi [170, 175–177]. In one year old rabbits 

compared to young rabbits, there are morphological changes 

in the jejunum and ileum; villi shorten, number of 

cells/villus drops, and mucosal surface area declines in the 

jejunum while villus cell size remained constant in both 

areas [178]. Changes in villous height are associated with 

mucosal surface area at all ages [178] and these declines in 

surface area have been related to differences in nutrient 

absorption of aged individuals [174]. In healthy mice it takes 

around 4-5 days for a stem cell derived progenitor to move 

from the crypt, differentiating along the way, to the tip of the 

villus, where it ultimately undergoes apoptosis and 

extrusion. Morphological changes such as villi length 

increase and crypt number decrease lead to larger crypts 
with more cells and are coupled with less travel of 

progenitor cells to the tip of the villus as well as increased 

apoptotic events, decreased cell proliferation, and lower cell 

survival in aged mice [177]. Aging and how it effects 

wound healing in the small intestine has also been 

investigated in mouse models. Martin and colleagues 

studied the regenerative capacity of small intestinal 

epithelium after injury in young and old mice using full or 

partial body irradiation [179]. Authors found that after injury 

induced by full body irradiation, crypts of old mice were 

smaller than controls while young mice had larger crypts. 

After partial body irradiation, the crypts of young animals 

were found to be smaller, while the number of surviving 

crypts in old mice was lower than in young mice. 

 

In rats, morphological changes such as increased numbers 

of crypts and villi are observed with aging, although size 

and cell production rate changes were not observed [183]. 

Atrophy of intestinal mucosa also occurs in aged rats and 

this contributes to decreased number of enterocytes [184, 

185]. These changes can be localized to specific tissues; 

for example, mucosal atrophy in rats has been found in 

proximal regions of the small intestine, but not in the distal 

small intestine; similarly, the decline in villi height has 

been found in the ileum but not the duodenum [184]. 

Changes in morphology are thought to be closely tied to 

transport function across the gut barrier and may be tied to 

malabsorption of nutrients, but more evidence is needed to 

support this [169, 170, 174, 178]. Further, the association 

between aging and morphological changes is poorly 

understood in human intestine. Currently, there are few 

studies that have examined human intestinal morphology; 

Webster and colleagues found that elderly people have 

shorter villi and possibly broader villi when comparing 

shape and dimensions of proximal jejunal villi in young 

versus aged humans [174]. The villous changes in humans 

were not definitively linked to changes in intestinal 

function, but changes in surface area are thought to 

contribute to the nutrient absorption decline that aged 

individuals often experience [174]. 

 

Changes in enzyme distribution and brush border 

membrane makeup have been observed in mice [170], 

rats [185], and rabbits [178], but the conclusions differ 

by species and it is unclear whether these changes are 

associated with aging [170]. Briefly, in adult and aged 

mice there are similar activities and distribution of 

enzymes in the brush boarder membrane [170]; while in 

aged rats lower alkaline phosphatase activities have 

been found; conversely, higher sucrase/alkaline 

phosphatase in the brush boarder membrane have been 

found in adult vs. young rabbits. Differences in mucus 

structure and chemical composition have been tied to 

age changes [166, 170, 191]; specifically glycoproteins 

in the mucus change with age in rats [170, 191]. There 

is some evidence suggesting that the process of bacterial 
adhesion to mucus also changes with age, shown with 

bifidobacterial strains [166, 192–194]. However, gastric 

and duodenal mucus thickness does not change with age
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Table 2. Prominent phenotypes of aging intestine. 

Prominent aging phenotypes References 

Increased microbial infiltration into submucosa and vasculature [180–182] 

Reductions to nutrient ingestion, tolerance of resident microbiota, and the response to 
infection. 

[166] 

Villi morphology changes, decreased cells per villus, decreased mucosal surface area, 
decreased crypt numbers 

[174, 177, 178, 183–185] 

Increased cell apoptosis, reduced cell proliferation and survival, decreased regenerative 
potential of stem cells 

[166, 177, 184–187] 

Disruption of Wnt Signaling [177, 188–190] 

 

in healthy individuals [166, 195]; mechanical properties 

of mucus have been found to remain stable as well 

[166]. 

 

On a cellular level, differences have been observed with 

aging. Most prominently, stem cell changes have been 

observed in aged animal studies and in organoid 

cultures [177, 188]. In small intestinal tissue from mice, 

the intestinal stem cell markers Lgr5 and Olfm4 were 

examined but found to be similar in young and old 

samples, while the quiescent intestinal stem cell 

markers Lrig1 and Tert were reduced [177]. However, 

when examining numbers of stem cells in young versus 

old cultures, no difference was found [177]. Wnt 

signaling, an important aspect of self-renewal and 

proliferation in intestinal stem cells, is altered in aging 

gut [188–190]. Elevated Wnt activation can lead to 

intestinal tumorigenesis [196] and malformed crypts 

(less lobes and buds per crypt) in small intestine mouse 

organoid cultures [189]. However, there is conflicting 

literature on how elevated or lowered Wnt signaling 

effects stem cells in aged mice. Nalapareddy and 

colleagues found that during aging, intestinal stem cells, 

Paneth cells, and mesenchyme secrete less Wnt ligands 

which leads to overall reduced Wnt signaling and lower 

regenerative potential of stem cells [177]. Using 

organoid models derived from duodenal (proximal) 

crypts in mice, the decreased stem cell function can be 

rescued by endogenous Wnt in vitro [177]. There is 

evidence that the stem cells may lose fitness in 

maintaining differentiated cell populations; specifically 

Paneth cells, responsible for generating anti-microbial 

peptides [166]. The amount of Paneth cells and their 

secretory functions have been found to decline with age 

[166, 187], and this may be due to the age-related stem 

cell decline and reduced ability to generate Paneth cells 

[166, 179, 197]. 

 

The mucus is the site of antibody production 

(specifically, secretory immunoglobulin A; IgA) and is 

the first defense against harmful microorganisms [166]. 

Goblet cells, the primary contributor to the mucus layer, 

have a stable population in aging mice [166, 198]. As 

previously reviewed, the literature remains unclear on 

the effect of aging on IgA response, migration, and 

production [166]. Aging has been found to decrease 

secretory IgA amounts in animals (mice, rat, non-

human primates) when exposed to cholera toxin [166, 

199–202] and increase somatic hypermutation in mice 

[166, 203]. In contrast, other studies have shown no 

changes in serum or intestinal amounts of IgA in aged 

rats and mice; some results suggest that the lower levels 

of IgA are due to an overall homing decline rather than 

changes in amounts of IgA [166, 201, 204–207]. 

Dendritic cells present antigens to B and T cells in the 

intestinal immune system, and evidence points to 

decreasing cell numbers and function in aged mice 

[186]. Further, this plays a role in decline of regulatory 

immune functioning [166, 208, 209] and may play a 

role in low grade inflammation observed in the aging 

gut [166, 169, 210, 211]. 

 

The microbiome plays an important role in digestion, 

absorption, and nutrient processing [212], but it remains 

incompletely understood how the intestinal barrier and 

immune system interact with microbiota and how this 

system is affected by aging. In the study of microbiota, 

it remains unclear how gut diversity affects the aging 

process and how gut diversity changes with age. There 

is not enough evidence or investigation on age-related 

associations and gut health to determine causes/effects 

of gut on old age [164, 165], although there are many 

health practices that correlate with perturbations of the 

gut microbiome including drug/antibiotic usage and diet 

[164, 213]. There is evidence that the gut microbiome is 

affected by sex differences [212, 214–217], and this 

may be implicated in sex differences in aging-

associated disease. Sex differences in the microbiome 

affect gut health but also risk of disease development 

including atherosclerosis, diabetes, hypertension, 

dyslipidemia, and obesity [212]. In general, aging and 

its relation to sex and hormonal differences requires 

more investigation, but there are indications that 

changes in the aging gut are sex-linked due to hormonal 



www.aging-us.com 9348 AGING 

differences during early life, adulthood, and aging [214, 

215]. In aging males, testosterone levels drop slightly 

from levels during adulthood while in aging females, 

there is a dramatic drop in estrogen from the oscillation 

range of adulthood [215]. The general effects of 

hormonal supply decline to the gut microbiome are 

unknown, but are likely sex-specific [215] and may be 

associated with the immune component of the gut [216]. 

 

Tissue engineered gut models 

There are a few limitations to traditional intestinal 

models that can be addressed with 3D organotypic gut 

models (Figure 2B). 2D cultures on culture inserts are 

often used to model gut, but these cultures are unstable 

after 4 weeks due to cellular overgrowth and formation 

of multicellular layers [155]. To study enteric bacterial 

pathogens, researchers have often used human tissue 

explants; animal models [218]; and 2D cultures with 

cell lines such as T84 and HT-29 which mimic goblet 

cells, and Caco-2 which serve as enterocytes [219]. 

Although helpful in understanding microbiome-host 

responses, these models are typically inconsistent with 

the human anatomy and physiology in the gut [218, 

220]. Similarly, mouse transgenic models are often used 

to study inflammatory gut diseases but mice do not 

develop some prevalent human diseases, such as 

ulcerative colitis or Barrett’s esophagus [221]. To 

address gaps in more traditional models, several 3D 

models have been established based on organoid, 

explant cultures, micro-fluidic chips, and organotypic 

gut models (OGMs) generated through self-assembly 

and partial villous molding. Intestinal tissue derived 

organoids are a popular model that has been used to 

study aging; these are called enteroids for small 

intestine, or colonoids for large intestine models. 

Enteroids consist of only epithelial cells and model 

crypt like populations or are often differentiated to 

model surface/villous epithelium [218]; these have been 

studied using monolayers on tissue culture inserts and 

embedded in extracellular matrix [218, 221]. Human 

induced pluripotent stem cell (iPSC) derived intestinal 

organoids, contain both epithelial and mesenchymal 

lineages and model both crypt and surface villus [218]. 

Models of differentiated intestinal organoids, although 

limit appropriate human scale, can include even the rare 

cells of intestine models including enteroendocrine, tuft, 

M cells, and Paneth cells [222]. 

 

3D cultures have been generated with both primary 

human cells and commercially available lines. OGMs 

have been generated with adult human intestinal stem 

cells [222], iPSC [222], Caco-2 [155, 222, 223], T84 

[222], HT-29 [155, 222, 223], and myofibroblasts [155]. 
OGMs are only recently developed, but they have 

advantages over 2D models, micro-fluidic chips, 

explant cultures, and organoid structures because of 

their ability to mimic appropriate tissue length scales for 

oxygen diffusion and customizable cell and material 

properties [218]. Additionally, human based models that 

include human cells and relevant 3D micro-

environments can be used to study diseases such as 

gastroesophageal reflux disease, Barrett’s esophagus, 

IBD, and ulcerative colitis; for therapeutic screening; 

and other aging associated research [221]. 

 

Incorporation of 3D villi in OGMs have been 

demonstrated to model the human system more closely 

[220] and help to understand the changes in crypt/villi 

that have been observed in aged animals [177, 178, 183, 

184]. Several groups have generated 3D gut models 

with villous platforms though pre-culture molding of 

hydrogels and custom plate inserts [219, 220, 224]. 

These systems have been found to mimic mammalian 

intestines more closely than 2D cultures facilitating cell 

differentiation, absorption/metabolism, and have been 

used to evaluate drug permeability [220]. Yi and 

colleagues compared absorption and metabolism of 

enterocyte (Caco-2) 2D monolayer cultures and 3D 

villous collagen scaffolds covered with enterocytes. 

They found that in the 3D cultures, cell growth was 

higher (likely due to more surface area), there were 

more in vivo phenotypes such as lower expression of  

P-gp (efflux transporter protein, p-glycoprotein) which 

is overexpressed in 2D monolayers, and increased 

alkaline phosphatase expression (a metabolic enzyme 

and intestinal epithelial differentiation marker) [219]. 

To generate 3D collagen villi structures, multiple 

groups have used relatively stiff collagen and an 

alginate reverse molding method to create villous 

structures from collagen hydrogel [219, 220]. Yu and 

colleagues promoted a basement membrane like surface 

by coating the collagen with laminin. Villous structures 

were fabricated to match the density and depth of 

human villi and models were cultured for 14 days; a 21-

day duration led to breakdown of villi [220]. Similar 

pre-culture molding of villous structures has been used 

in microfluidic-chips [225–227]; and as reviewed by 

others [225]. These models capture appropriate 

microanatomy of the intestinal surface and have the 

potential to elucidate the respective roles of structural 

and cellular changes in aging. 

 

Organoid models have been used to study several 

diseases [189, 190, 222, 228, 229]; illustrating how 3D 

cultures provide a physiologically relevant model 

without the complexity of fully in vivo studies. Woo and 

colleagues demonstrate how a 3D model (specifically 

an intestinal organoid spheroid model) can be used to 

study the human disease dyskeratosis congenita. 
Dyskeratosis congenita causes intestinal defects 

(including stem cell failure) and is characterized by 

decreases in telomerase, telomere length, telomere 
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capping, and Wnt activity [190]; it is particularly 

relevant to aging since some of these disease 

characteristics are similar to what happens in aged 

intestinal cells [188]. In organoids generated with the 

dyskeratosis congenita model cell line, there was 

incomplete and thin epithelia, overgrowth of 

mesenchymal cells, and inferior E-cadherin and beta-

catenin expression; the organoids did not have proper 

budding crypts or cavitation [190]. Through 

CRISPR/CAS9-mediated repair and administration of 

Wnt agonists the authors were able to rescue the disease 

phenotype and demonstrate normal organoid formation 

in vitro. In other disease specific models, organoids 

made with cells derived from inflammatory bowel 

disease patients maintain characteristics of disease in 

vitro such as gene expression profiles that regulate 

absorption and secretion [222, 228]. Disease focused 

organoid studies [190] and other organoid models 

generated with aged mice cells [189] demonstrate the 

potential of more physiologically relevant in vitro 

models to address aging questions. By building off of 

these methods and incorporating human cell types, 

anatomies, and physiology it is possible to develop a 

human derived organotypic gut model [155] and avoid 

costly procedures involved in animal colonies [213]. 

 

Tissue engineered gut models to study aging 

A recent study by Arnold and colleagues demonstrates 

the physiological relevance of 3D in vitro models for 

aging [230]. In vivo, older animals have higher ratios of 

non-saccharolytic v. saccharolytic bacteria and lower 

amounts of β-galactosidase when compared to younger 

animals. Pre-biotic galacto-oligosaccharides (GOS) 

have previously been found to have a positive impact on 

intestinal health and can be administered through diet. 

To study the effects of dietary GOS on aging in the gut, 

using young and old mice models of Clostridiodes 
difficile were used. In the aged mouse models, dietary 

GOS promoted changes in microbiome composition and 

transcriptomic analysis also revealed differences in gene 

expression. Aged mice that were fed a GOS diet had 

decreased intestinal permeability and increased mucus 

abundance and thickness when compared to aged mice 

not fed the GOS diet. These changes in permeability 

supported previous findings attributing the leaky gut to 

increased non-saccharolytic bacteria and lower amounts 

of key enzymes. Further, these results were additional 

tested in colonic organoids injected with stool samples 

from young and old mice. Using the colonic organoids 

generated from one young mouse and stool sample 

injection from experimental mouse models, authors 

showed that they were able to reproduce differences of 

age, minor differences of the GOS diet, and bifidogenic 
responses observed in the in vivo mouse models [230]. 

As the authors already showed a reproduction of aged 

phenotypes in organoid models, reproducing these 

characteristics in scalable and humanized organotypic 

models may be beneficial in research questions of how 

diet and microbiome affect aged humans. 

 

The ability to culture anaerobic bacteria is an important 

step in modeling the microbiome of the gut in healthy 

tissue and to improving the understanding of how aging 

changes the host-microbiome interaction [158, 163, 

164, 231–233]. Most in vitro models, including OGMs, 

only study a few relevant features of the complex 

physiology at a time; models that include microbiota are 

no exception. One study showed their ability to culture 

5 different microbe types in vitro on a custom scaffold 

and evaluated for proliferation and biofilm formation 

[234]. It is important to recognize, that although this is a 

human microbiota gut model, it does not incorporate 

human gut cells or microanatomy. Combining 

microbiota and human 3D OGMs is an important step in 

modeling the human gut; some work on the 

combinations of microbiota and human gut cells has 

been carried out in microfluidic chips [225], but these 

tend to lack relevant villous anatomy and appropriate 

oxygen diffusion scales. These factors have been 

partially addressed in an innovative upright cylindrical 

culture system [155]. Authors generated the vertical 

lumen with an un-patterned surface and a threaded 

surface to mimic crypt and villi of the intestine. Their 

model includes epithelial cells (Caco-2 and mucus 

producing HT-29 cells) and myofibroblasts seeded on 

and into silk-based scaffolds, respectively. With this 

design, they achieved proximal-to-distal oxygen 

gradients and reached anaerobic conditions in patterned 

lumens. As a proof of concept, they cultured anaerobic 

bacteria using this model. Importantly, the patterned 

lumen model was stable for long-term culture (at least 8 

weeks); they further showed continuous mucus 

production and accumulation (~10 µm average 

thickness of the mucus layer). Although this model does 

not incorporate aging phenotypes, aged cells, or 

differences due to aging in the microbiome, it highlights 

the recent progress in developing organotypic constructs 

that could be adapted to aging studies. 
 

In vitro organoids are common in the gut/microbiome 

field of study [188, 218, 222, 235, 236] and have been 

used to assess intestinal stem cell function during 

chronological aging [177, 188–190, 237, 238]. 

Although there is conflicting literature on Wnt signaling 

in the intestine and how it effects intestinal stem cells, 

several recent studies have used organoid models to 

investigate aging and how it changes crypt/villi 

formation and stem cell function in the gut. Each study 

also presented a rescue method to restore normal Wnt 
signaling and gut formations [177, 189]. Cui et al. 

cultured organoids from aged mice and showed reduced 

differentiation and increased expression of Wnt target 
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genes (Axin2 and Ascl2). The organoids generated from 

aged mice presented rounded cysts without typical 

differentiated cell types, in contrast to organoids 

generated from young mice, which demonstrated 

differentiation and formation of villus structures. These 

phenotypes matched organoid cultures of cells that 

exhibit overactivation of Wnt signaling (through 

seeding with adenomatous polyposis coli deficient 

cells). The decreased differentiation of intestinal stem 

cells and impaired structure could be rescued by 

reducing exposure to the Wnt agonist R-spondin-1 and 

thus reducing Wnt activity. Rescued organoids matched 

those generated with cells isolated from young mice. 

Nalpareddy and colleagues generated organoids from 

duodenal proximal crypts of aged and young mice as 

well as humans [177]. In humans, organoids were 

generated from people 12–16 and 62–77 years old. The 

authors found decreased formation of organoids in the 

aged group, which was improved by adding Wnt 3a (a 

Wnt pathway agonist). This data supported their 

findings in mice organoids where aged mice organoids 

had lower organoid formation rates after 3 passages and 

decreased stem cell function (determined by lower lobes 

and buds per crypt). Adding Wnt 3a increased organoid 

formation and expression of Wnt target genes (Axin1 

and Ascl2) in the aged cultures [177]. While interpreting 

the apparently contradictory results of these studies is 

difficult, they do highlight the use of organotypic 

models in performing detailed signaling studies that 

would be challenging and expensive in animal models. 

 

In vitro intestinal models have a particularly relevant 

potential impact on personalized medicine due to the 

person-to-person variability in gut health. Aside from 

genetics, variation in local community and world 

regions as well as day-to-day activities result in 

microbiome and inflammatory differences that are not 

yet understood [239]. Personalized medicine and patient 

derived organotypic models may help to address these 

parameters. One organotypic microfluidic chip model 

named iHuMiX has paved the way for personalized gut 

models [240]. The iHuMiX platform utilizes 

compartments including microbial, epithelial, and flow 

chambers and allows for study of specific bacteria on 

host specific physiology. While microfluidic systems 

often present technical barriers for non-specialist labs, 

these results highlight the customizability of 

organotypic models, including adaption to personalized 

medicine. As with OSCs described in the prior section, 

the tradeoff between complexity and capability for 

organotypic gut models results in several limitations. 

 

Limitations 

As with OSCs and other organotypic models, the most 

prominent limitation is the lack of cell populations and 

structural features of the in vivo gut. While a great deal of 

the work described above has extensively modeled 

epithelial cells and their stem cell niches, the gut is much 

more complex; immune cells, vasculature, smooth 

muscle, and neuronal populations all contribute to the 

gut, and its physiology when aged. Further, the 

organization of the gut, most notably the crypts and villi, 

is well understood to influence function and disease; 

these features are only incompletely reflected in 

organotypic models [219, 220, 241]. More unique to the 

gut is the anaerobic microbiome, which is critical to 

understanding gut and organismal health [158, 163, 164, 

231–233]. While there has been demonstrated inclusion 

of anaerobic microbiome in a gut model [225–227], the 

complexity of the system makes it challenging to broadly 

replicate in other labs. Indeed, the general challenges of 

creating and maintaining hypoxic and anoxic cultures 

significantly limits the ability of organotypic models to 

correctly match the lumen environment. Further, there is 

significant evidence that the microbiome is not restricted 

to the gut lumen, and translocation of commensal 

bacteria to surrounding tissues, including lymph nodes, is 

a driver of disease [242, 243]. While organotypic gut 

models may be suited to address some questions of 

bacterial translocation, none have reached the scale or 

complexity required to include lymphatics. While this is 

a single example, it does highlight the more general 

limitations on most organotypic models. 

 

As with other organotypic models, sex differences are 

understudied. This is despite clear sex differences in 

aging associated gastrointestinal diseases [244, 245] and 

cancers [246, 247]. While sex differences local to the 

cell populations used could, and should, be studied 

using organotypic models, systemic factors including 

hormones remain a challenge. As a pertinent example in 

the gut, sex hormone levels are known to regulate the 

mucosal surface and barrier integrity [248]. While 

organotypic models to lend themselves to studying the 

impact of specific hormone levels, they clearly lack the 

complexity of overall systemic changes that come with 

aging and sex differences. 

 

Skeletal muscle 

 

Native skeletal muscle aging 

Skeletal muscle is an abundant tissue, making up ~30–

40% of body mass [249]. Healthy muscle regulates 

major physiological processes such as locomotion [250, 

251], venous return [252–254] and metabolism [255–

258]. From the 3rd to 8th decade of life fat-free mass 

declines by ~15%, even for healthy individuals, 

contributing to loss of independence and higher risk of 

injury and mortality. The age-associated loss of muscle 
mass, known as sarcopenia, is a major hallmark of 

human aging [259–261] with a complex etiology, 

resulting in muscular, vascular, and metabolic 
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impairment [262–264]. Chronic inflammation [265–

268], nutrient deficiencies [269–271], and decreased 

physical activity [272–274] are all contributing factors 

of sarcopenia, however, much remains unknown at the 

molecular, cellular, and tissue levels. Improved models 

of sarcopenia and other aging phenotypes are 

imperative for improving clinical outcomes and 

prophylaxis for the expanding geriatric populations. 

 

In a healthy individual, skeletal muscle is composed of 

densely packed and aligned cylindrical myofibers 

individually sheathed in a specialized matrix called 

endomysium [275] (Figure 3A). Bundles of myofibers 

are encapsulated in a connective tissue layer known as 

the perimysium, while the whole muscle is surrounded 

in a thicker connective tissue layer called the 

epimysium. Myofibers are organized into fiber types 

(fast twitch and slow twitch) based on their metabolic, 

contractile, and morphological properties. Due to the 

unique signature of each fiber type, maintaining 

homeostatic fiber compositions is vital to muscle 

function [276]. Multiple muscle fibers and the 

corresponding motor neuron form a motor unit, with the 

overall force of muscle contraction controlled by 

activating more motor units. A dense vascular network 

that delivers nutrients and removes waste supports the 

high metabolic demands of muscle tissue. 

 

Structural and cellular changes are prominent in aged 

muscle (summarized in Table 3). Structural changes 

include reduced muscle cross sectional area [277–280], 

thickening of the epimysium and endomysium 

connective tissue layers [281–284], increases in tissue 

fibrosis [285, 286], and decreased capillarization 

 

 
 

Figure 3. Organotypic models of skeletal muscle aging. (A) Simplified muscle anatomy and aging, focusing on the most commonly 

modeled components. The primary unit of muscle is the myofiber, a multinucleated cell responsible for contraction. Specialized matrix 
(endomysium, perimysium, and epimysium) support and organize the tissue. Satellite cells are an important stem cell population for the 
muscle, and the muscle is supported by a host of other cell types including nerves, fibroblasts, adipose, and vascular cells. In aged muscle, 
cross-sectional area (CSA) is reduced, in part due to myofiber atrophy, and decreasing capillary and satellite cell density. Conversely, there 
is increased infiltration of adipose and thickening of the connective tissues. At the molecular level, there is decreased expression of GLUT4, 
an important glucose transporter, and insulin resistance (IR) frequently develops. (B) Organotypic models of muscle have several unique 
challenges but have distinct advantages over other traditional models. Muscle cultures are contractile, and require anchoring to prevent 
collapse. Typical approaches include posts (although other methods are used) to provide points of resistance for the muscle to pull against. 
In order to study active contraction, researchers have used various stimulation methods, including electrical and optogenetic methods. Due 
to the high metabolic demand, the cultures are typically quite small, to allow nutrients and waste to diffuse more readily. As with other 
organotypic models, the matrix, cell population, and media can be customized for the research question. 



www.aging-us.com 9352 AGING 

Table 3. Prominent phenotypes of aging skeletal muscle. 

Prominent Aging Phenotypes References 

Myofiber atrophy, reduced cross-sectional area, reduced mass, loss of motor units, and 
decreased strength 

[277–280, 289, 293, 297–299] 

Change in the ratio of fiber types (increased percentages of slow twitch/Type I fibers) [289–292] 

Decreased vascularization and increased endothelial cell apoptosis [278, 287, 288, 318] 

Increased fibrosis and thickening of connective tissue layers [281–286] 

Increased adipose infiltration and differentiation [309–314]  

Decreased progenitor pool and loss of regenerative capacity [285, 300–302, 304–308] 

Increased insulin resistance and metabolic dysfunction [319–325]  

 

[278, 287, 288]. Further, reduction and atrophy of 

specific fiber types (particularly fast twitch/Type II 

fibers) has been observed, leading to altered fiber 

composition and increased percentages of slow twitch 

(Type I) fibers [289–292]. More specifically, Type II 

(fast) fiber atrophy is associated with reduced muscle 

mass and strength [289, 293]. Cellular changes include 

increased adipose infiltration into the muscle [294–

296], and loss of motor units [297–299]; all result in 

decreased skeletal muscle force generation. Further, age 

associated changes in skeletal muscle satellite cell 

populations include a reduced progenitor pool [300–

302], limited myogenic colony formation [303], loss of 

amplification and myofiber differentiation potential 

[285, 304–308], and an increased susceptibility to 

senescence and apoptosis [301]. Further, aged satellite 

cells have been shown to favor fibroblastic and 

adipogenic differentiation programs [285, 309–311], 

potentially explaining the observed increase in fibro-

adipogenic progenitors in aged skeletal muscle [312–

314]. Of course, aging muscle includes non-muscle 

cells, other skeletal muscle aging phenotypes include 

increased M2 macrophage presence [315–317] and 

endothelial apoptosis [318]. Together these cellular and 

microstructural changes contribute to loss of muscular 

and systemic function in the elderly population, 

motivating research into the molecular mechanisms 

underpinning these changes. 

 

The above structural and cellular changes are coupled 

with molecular changes in the aged tissue. A loss of 

overall regenerative potential is likely largely 

influenced by a reduced satellite cell population and 

differentiation potential [306, 308]. Satellite cell 

activation is regulated by myogenic regulatory factors 

(MRFs). Primary examples of MRFs include: 

myogenin, myogenic determination factor (MyoD), 

myogenic factor 5 (Myf-5), and myogenic regulatory 

factor 4 (MRF4) [326]. In rats, MyoD and myogenin 

have been found to increase with age, indicating a 

potential compensatory role to attenuate loss of satellite 

cell activation [327]. Yet, human studies have observed 

a decrease in myogenin, Myf-5, and MyoD [328, 329]. 

Differential responses between organisms such as this 

emphasize the need for robust models of human muscle 

tissue. Myostatin, a member of the TGF-β superfamily, 

inhibits satellite cell proliferation (via upregulation of 

p21) and activation (via reduced MRF expression). 

Further, the elevation of myostatin contributes to 

muscle atrophy through glucocorticoid signaling [330–

332]. Upregulation of myostatin is seen in aged 

individuals and is thought to contribute to age-

associated loss of muscle mass [333–335]. Further, 

mitochondrial dysfunction and increased oxidative 

stress are hallmarks of aged muscle [336–339]. 

Mitochondria manage the cell’s energy supply, ROS 

generation, and apoptosis. Changes in mitochondrial 

bioenergetics lead to ROS accumulation, impaired 

quality control mechanisms, and apoptotic cell death 

[340–342]. ROS accumulation in aged muscle 

mitochondria contributes to protein and DNA damage 

[343–346]. This subsequent loss of mitochondria 

quality control mechanisms establishes a feedforward 

cycle of mitochondrial damage and muscle degeneration 

[347]. 

 

Of course, muscle is not separate from the systemic 

context, both being influenced by and influencing 

changes in the entire aged organism. Systemic changes 

contributing to skeletal muscle aging include altered 

cytokine and hormone signaling. Insulin-like growth 

factor (IGF) is both a circulating hormone and 

localized growth factor. IGF is predominantly 

produced by the liver and delivered systemically, 

although other tissues produce specific IGF splice 

variants; mechano growth factor (MGF) and IGF-1Ea 

are produced by skeletal muscle [348–350]. In skeletal 

muscle, IGF regulates muscle hypertrophy and growth, 

and concentrations are known to decline in elderly 

populations [327, 351, 352]. IGF and MGF are 

responsible for activating anabolic and anti-catabolic 

pathways via PI3K/Akt, ERK/MAPK, and PKC 
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signaling, leading to increased protein synthesis and 

anabolic activity [351–353]. Examples of aging-

associated dysregulation of IGF signaling includes 

evidence that mechanical loading of skeletal muscle 

results in MGF stimulation in young individuals, but 

not the elderly [354]. Inflammatory cytokines are also 

implicated in muscle aging. Elevated TNFα 

concentrations are found in aged muscle and cause 

increased apoptosis [355]. IL-6 is a pleotropic 

cytokine known to influence skeletal muscle function 

in a number of ways [356]. Elevated levels of IL-6 are 

strongly associated with diseased muscle, 

proinflammatory signaling, and a catabolic shift. In 

rats, with positive stress stimuli such as physical 

activity, IL-6 levels increase and may have anti-

inflammatory effects [357]. In the context of aging 

there is evidence that in aged human muscle, 

chronically IL-6 elevated can initiate muscle wasting 

[358]. In contrast, local IL-6 expression appears in 

both young and aged individuals after exercise with 

beneficial effects, indicating a complex role for IL-6 in 

muscle homeostasis [359, 360]. 

 

Hormonally, testosterone and its precursor, 

dehydroepiandrosterone (DHEA), are key regulators of 

muscle mass. Androgens (including testosterone and 

DHEA) are important for maintaining muscle mass 

through hypertrophy via increases in myonuclear 

number and fiber cross-sectional area [361–363]. The 

mechanisms driving androgen mediated muscle growth 

are poorly understood, but there is evidence of impact 

on satellite cell commitment level and trophic 

signaling, discussed in more detail in other reviews 

[361, 362]. Relevant to the present work, androgen 

levels decrease in the elderly and contribute to reduced 

muscle mass [362, 364–367]. Thyroid hormones (TH), 

T3 and T4, are important regulators of metabolism, 

contractile function, and muscle differentiation [368, 

369]. Expression of TH decreases with age [370], and 

this may be involved in the development of sarcopenia 

[371, 372]. 

 

Skeletal muscle also regulates systemic AAD. Skeletal 

muscle insulin resistance is a primary characteristic of 

Type II Diabetes (T2D) that presents years before the 

disease’s onset [323–325]. Yet, the mechanism 

connecting the pathogenesis of T2D and skeletal muscle 

insulin resistance is incompletely understood. Increases 

in mitochondrial dysregulation, oxidative stress, and 

inflammation are all known to contribute to diminished 

insulin sensitivity in skeletal muscle. Indeed, it has been 

demonstrated that elderly individuals have impaired 

glucose metabolism, and decreased expression of the 
insulin-mediated glucose transporter, GLUT4 [320–

322]. Additionally, aged skeletal muscle exhibits 

reduced rates of mitochondrial oxidative phosphory-

lation and an inability to switch from lipid to glucose 

oxidation when stimulated with insulin [319]. Reduced 

insulin sensitivity of aged muscle contributes to the 

development of diabetes and other metabolic disorders. 

Importantly, the above molecular changes are not 

broadly conserved across species and gender, 

emphasizing the need to ensure research models match 

the morphological, functional, and biochemical 

characteristics observed in vivo. Overall, understanding 

human skeletal muscle aging remains a challenge, 

especially considering the diverse and interacting 

factors at the molecular, cellular, and tissue scales. 

Developing models that mimic the native tissue, while 

remaining accessible to experimental techniques, are 

needed to further push the field forward. 

 

Tissue engineered muscle models 

Tissue engineered skeletal muscle models, pioneered by 

Vandenburgh and colleagues [373], have been in use for 

over two decades. The earliest engineered constructs, 

termed bioartificial muscle (BAM), consist of skeletal 

myoblasts encapsulated in an ECM. The ECM is 

molded around artificial “tendons”, or posts, responsible 

for maintaining passive tension within the tissue  

(Figure 3B). As the myoblasts differentiate into highly 

contractile myotubes the cells align along the axis of 

tension and lift off the culture substrate. Myoblasts from 

a range of developmental stages are commonly sourced 

from muscle biopsies of organisms such as avian [374], 

mouse [375, 376], rat [377–379], and human [380–383]. 

Due to limited availability of primary cells, immortal 

myogenic lines, including C2C12 (mouse) and L6 (rat) 

cells, are commonly used due to ease of culture and 

availability [384–387]. Yet, immortal cell lines exhibit 

low excitability [388] and poor physiological relevance 

compared to primary cells [389–391]. Induced 

pluripotent stem cells (iPSCs) are a promising 

alternative to traditional primary and immortal cultures 

due to their high expansion capability and potential 

sourcing from specific genetic backgrounds [382, 392–

397]. BAM models have been used to examine 

physiological events such as hypertrophy and atrophy in 

response to drugs and exercise [398–401], skeletal 

muscle wounding and regeneration [400, 402, 403], 

force production [404–407], cell signaling [408–410], 

and drug response [411–414]. Importantly, as different 

muscle cell sources have distinct costs and benefits, 

different cell populations can be readily interchanged in 

BAM models to suit specific research needs. 

 

Further advances have been made in the field of skeletal 

muscle tissue engineering through other approaches, 

such as scaffold free assemblies, bioprinting, and chip 
based systems. Scaffold free assemblies use the 

contractile nature of myotubes to form 3D tissues. In 

these systems, differentiated skeletal muscle/fibroblast 
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monolayers delaminate from the culture substrate are 

rolled in on itself and pinned down to form “myoids” or 

“myooids” [378, 380, 415, 416]. Myoid models 

recapitulate many structural and functional features of 

native muscle, such as production of ECM, 

microvessels, and spontaneous contractions [417]. 

Although myoid constructs have been reported to be 

stable for up to 40 days, drawbacks include long 

maturation times (3–4 weeks), inability to scale cultures 

[418], and low force generation [401]. Recent advances 

in bioprinting technology have led to the printing of 

biomimetic muscle tissues and have been reviewed 

extensively [419, 420]. Bioprinting skeletal muscle is an 

appealing technique due to its high precision in cell 

positioning and alignment; however, progress in this 

area is limited by broad challenges in the field such as 

cell viability, printing speed, and resolution [419–422]. 

Additionally, printing the soft materials necessary to 

recapitulate the skeletal muscle microenvironment 

remains a challenge [423]. Recent “muscle-on-a-chip” 

devices have shown several advantages, including 

avoiding perfusion required to feed thicker tissues. 

Using microfabricated cultures, researchers have 

demonstrated muscle viability and enhanced maturation 

in response to microtopographical and morphological 

cues [424–426]. Skeletal muscle-on-a-chip systems are 

a promising tool for drug toxicity studies, especially due 

to their low media consumption and extensibility to 

high throughput screenings. Recently, a 3D skeletal 

muscle microdevice has been coupled with a biosensing 

platform to monitor myokine secretion. The authors 

validated this system by measuring IL-6 and TNF-α 

levels in response to electrical and biological 

stimulation [427]. However, muscle microdevices are 

limited by the need for specialized training and 

equipment to fabricate and use these devices. 

 

It is important to emphasize that most of the models 

described above largely consist of homogeneous cell 

populations that lack the organization of native tissue. 

Recent progress has been made in incorporating 

heterogeneous cell population in BAMs, including the 

addition of endothelial cells and demonstration of 

vascular network formation [410, 417, 428–433]. In a 

mixed muscle/vascular mouse myoid model, researchers 

found high levels of vascular endothelial markers such as 

VEGF, CD31, and VE-cadherin, indicating the survival 

and signaling of vascular cells. Yet, the extent of the 

network formation was not examined in this study [417]. 

Endothelial vessel formation has been demonstrated on 

engineered skeletal muscle scaffold systems; however, 

muscle cells do not align along one axis, limiting 

contractility and tissue function [431]. Applying uniaxial 
strain to a vascularized mouse BAM model has been 

shown to induce vascular tube formation, likely through 

increased VEGF secretion by the differentiating muscle 

[433]. In a human vascularized BAM model researchers 

identified optimal cell seeding ratios (50–70% muscle 

cells) and media blends (endothelial growth media) for 

generating endothelial tubes along with aligned 

myofibers [429, 430]. Despite these advances, further 

work should be done to characterize vessel structure, and 

nutrient and oxygen delivery in vascularized BAMs. As a 

model of muscle regeneration, macrophages have been 

added into rat BAMs to study the regenerative potential 

of satellite cells within the engineered tissue. The 

incorporation of bone marrow derived macrophages 

showed recovered Ca2+ transients after injury compared 

to muscle only controls. Muscle-macrophage constructs 

also had improved cell organization and regeneration of 

myofibers post injury. Further, the authors demonstrate 

impaired regeneration in adult derived engineered muscle 

compared to neonatal constructs. In the future, this model 

can be used to identify pro-regenerative treatments in 

adult muscle [434]. Continued development of 

heterogeneous muscle models is of interest to the field of 

aging research given the prevalence of dysregulated 

adipose, fibroblast, and macrophage signaling with age. 

 

BAMs have been used to study physiological muscle 

function, pharmaceutical response, and human disease 

[378, 412, 414, 435, 436]. While few systems have 

been developed in the context of aging (discussed 

below), other BAM models of disease demonstrate the 

power of the technique. Disease models of skeletal 

muscle include Miyoshi myopathy, Duchenne, limb-

girdle, congenital muscular dystrophy, Pompe disease, 

and amyotrophic lateral sclerosis [437–445]. One 

strategy that is readily applicable is incorporating cells 

isolated from diseased patients into tissue constructs. 

As an example, Bersini and colleagues engineered 

myobundles co-cultured with endothelial cells and 

muscle-derived fibroblasts isolated from patients with 

Duchenne muscular dystrophy (DMD) [446]. Tissues 

with DMD fibroblasts exhibited an increased fibrotic 

phenotype characterized by higher collagen I and 

fibronectin deposition compared to healthy and TGF-β 

(inducer of fibrotic response) treated controls. Further, 

samples with DMD fibroblasts exhibited increases of 

α-smooth muscle actin compared to controls, 

indicating a shift towards a myofibroblast phenotype, 

consistent with the in vivo disease. The ability to 

capture and assay fibrosis, as demonstrated in the 

above models, has clear applicability to many aging 

studies. 

 

In another study, human iPSCs from patients with DMD 

and limb-girdle muscular dystrophy were used to 

engineer 3D disease models with muscle, vascular, and 
neuronal cells [444]. These engineered muscles 

recapitulated disease phenotypes seen in vivo including 

the nuclear elongation typical in laminopathies. As 
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another key example, BAMs generated from primary 

muscle cells isolated from both healthy individuals and 

patients with Pompe disease were used to test potential 

therapies [442]. Pompe disease myobundles exhibited 

traits consistent with that of clinical data such as 

elevated glycogen content and low acid alpha-

glucosidase (GAA) gene activity. Researchers 

compared tissue functionality between healthy and 

Pompe disease models, observing reduced fatigue 

resistance, tetanic force production, and glycogen 

mobilization. While the observed functional defects 

were not alleviated by treatment with recombinant 

human GAA (current standard of care) or AAV-

mediated GAA expression, the use of similar platforms 

for screening therapies is promising. Disease models 

such as the above can be readily adapted to study aging 

phenotypes by incorporating cell populations derived 

from aged individuals. The ability to compare 

functional and mechanical properties of aged and young 

muscle is of special interest to aging research, as elderly 

people have reduced muscle functionality. Further, 

being able to screen pharmaceutical interventions in 

muscle specific AAD models represents a significant 

advancement in the field of aging biology. 

 

Tissue engineered muscle models to study aging 

In recent years, engineered muscle has been used to 

study specific aging and aging associated diseases. A 

key example is the role muscle plays in insulin 

sensitivity and the age-related disease, type 2 diabetes 

(T2D). As aged muscle displays reduced insulin 

sensitivity [322, 447], it is especially relevant to 

quantify insulin sensitivity in engineered muscle. To 

test this, Kondash and colleagues created human 

myobundle constructs using primary myoblasts, 

differentiated in a 3D matrix for 2 weeks [436]. The 

authors found that 3D engineered constructs displayed a 

significantly higher glucose uptake in response to 

insulin than similarly cultured 2D cells. Further, the 

usefulness of this model for elucidating therapeutic 

mechanisms was also tested. Metformin, a common 

pharmaceutical for hyperglycemia and T2D, led to 

similar increases in glucose uptake in the presence or 

absence of insulin; indicating that metformin does not 

impact insulin responsiveness in peripheral muscle 

tissue. Further, metformin was found to impair both 

twitch and tetanus force production as well as decrease 

fatigue resistance. Although the magnitude of insulin 

response observed in this study is lower than that of 

native muscle tissue, the authors demonstrate the 

importance of the 3D microenvironment for improving 

physiological relevance in T2D studies. Additional 

work performed by Acosta and colleagues used 
engineered muscle to test the effect of systemic 

metabolic changes on muscle health [448]. Using 

muscle precursor cells isolated from lean, obese, and 

diabetic rats, engineered constructs were maintained in 

either myogenic media or adipogenic media. The 

authors showed that constructs with diabetic muscle 

precursor cells had decreased creatine kinase activity, 

tissue compaction, myotube alignment, and reduced 

tensile strength when compared to lean control samples. 

Overall, these data indicate diabetic myogenic precursor 

cells reduce overall muscle integrity. Further, the 

authors showed increased adipogenic differentiation in 

diabetic samples. Increased adipose presence between 

muscle fibers is common in vivo with aging, where 

muscle precursor cells are a potential source of adipose 

tissue [448]. These examples demonstrate tissue 

engineered skeletal muscle can be readily applied to the 

study of aging phenotypes such as increased insulin 

resistance and adipose infiltration. 

 

In addition to the genetic and systemic factors discussed 

above, models of aged muscle have also been generated 

similar to the BAM method described above [449–451]. 

Sharples and colleagues utilized late passage C2C12 

myoblasts to replicate aging phenotypes, including 

reduced myofiber diameter, length, and peak force 

development [449]. The reduced force generation 

observed coincides with a decrease in construct 

differentiation and hypertrophy potential. The authors 

quantified transcript expression of muscle 

differentiation and hypertrophy markers throughout 

culture. In aged constructs, they observed an increase in 

myostatin and TNFα, genes associated with impaired 

differentiation potential and sarcopenia [449]. A study 

performed by Rajabian and colleagues takes this work a 

step further by measuring calcium handling and 

metabolic function in aged human engineered muscle 

tissue [450]. Human myoblasts were obtained from 

young and aged donors and seeded into engineered 

constructs. Tissues formed from aged myoblasts exerted 

lower contraction force compared to younger control 

samples, fail to respond to electrical stimulation and, 

consistent with a lack of muscle contraction, have lower 

Ca2+ and ATP concentrations. Further, to study 

regeneration in aged tissue, the authors induced muscle 

injury using cobra cardiotoxin (CTX). Samples made 

with young myoblasts regenerated myofibers within 5 d 

post CTX injury, while aged constructs did not 

regenerate, resulting in reduced myotube diameter. 

Indeed, the number of multipotent satellite cells 

(identified with positive staining for PAX7) did not 

change after CTX injury in pre-senescent tissues, 

indicating increased regenerative potential [450]. 

Overall, these studies demonstrate that engineered 

skeletal muscle replicates many of the basic phenotypes 

seen with aging in vivo. 
 

An additional application of engineered muscle is to 

elucidate the molecular mechanisms of aging. Shahini and 
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colleagues leveraged engineered skeletal muscle to test the 

role of NANOG expression in mitigating senescence-

associated dysfunction [451]. These studies were built off 

prior work showing NANOG expression reversed 

senescent phenotypes in MSC populations [452, 453]. In 

the skeletal muscle study, late passage C2C12 myoblasts 

were engineered to express NANOG under the control of 

tetracycline and embedded in a 3D collagen/Matrigel 

matrix. The authors observed NANOG expression 

partially rescued myotube population levels, diameter, and 

length to that of early passage controls when compared to 

late passage constructs without NANOG. They further 

observed a restoration of differentiation markers MYHC 

and Actinin. A key advantage of engineered muscle 

models, demonstrated by the above studies, is the 

accessibility for targeted genetic and pharmacological 

manipulation. As with other models, the advantages of 

engineered muscle cultures are coupled to limitations, 

discussed below. 

 

Limitations 

As with other organotypic models, exclusion of cell 

types present in vivo is a challenge for skeletal muscle 

as well. For example, common aging phenotypes of 

inflammation, reduced peripheral vascularization, and 

adipose infiltration require inclusion of immune cells, 

endothelial cells, and adipocytes. In addition to sourcing 

and maintaining these cells, co-culture with muscle cells 

presents additional challenges due to their high 

metabolic demand and contractility. Progress is being 

made, for example with inclusion of increasingly 

complex vascular components [410, 417, 428–433], but 

there are many areas needing improvement. 

 

Further, skeletal muscle poses unique challenges for cell 

sourcing. Most in vitro models of aging skeletal muscle 

are established from primary cells that are derived from 

animal models and patients [450, 454–456]. Although 

primary cells offer increased physiological relevance 

relative to immortalized lines, the culture methods 

needed to isolate and expand these cells to populations 

suitable for organotypic studies rely on specialized 

techniques and restricted supplies, especially for human 

cells. Established cell lines are a more accessible 

sourced of aged myoblasts, and replicative senescence 

models have been established and used in 3D culture 

[449]. While the tradeoffs between primary cells and 

established cell lines are well documented for any in 
vitro culture system, the large number of cells needed 

for organotypic skeletal muscle models can make 

sourcing sufficient primary tissue difficult. 

 

It is important to note that skeletal muscle is typically 
composed of multiple fiber types, with different 

physiology and function. In aging, fast twitch fibers 

preferentially atrophy, leading to changes in fiber 

composition. While an important phenotype, especially 

in aging, fiber type is typically not assessed or 

controlled in organotypic models, leading to an 

important capability gap [457]. Further, engineered 

skeletal muscle generates force several orders of 

magnitude lower than that of adult human muscle, with 

reduced myofiber diameters [458]. Methods to improve 

contractile properties in these models focus on co-

culture with motor neurons, electrical and mechanical 

stimulation, and improved nutrient and gas delivery. 

Ultimately, better control of muscle differentiation and 

maturation will improve modeling of both healthy and 

aged tissues. 

 

Finally, although both males and females exhibit loss of 

muscle mass with age, the pattern of decline is sex 

dependent. Similar to other tissues, organotypic 

constructs could be ideal platforms to isolate the impact 

of sex specific cells and specific hormone levels on 

muscle function [459, 460]; however, fully capturing 

the systemic sex differences in vitro is beyond the 

current capabilities of these models.  

 

Discussion and outlook 
 

Progress in tissue engineering has resulted in the 

development of three-dimensional organotypic models, 

and these have demonstrated potential to overcome 

several limitations of current aging models. 

Organotypic models, while not replacing animal 

models, have multiple advantages, including lower cost, 

increased accessibility, and human-specific biology. 

This allows for re-capitulation of human disease and 

aging phenotypes that animals may not experience 

naturally or may experience differently [7, 102]. 

Further, tissue engineered organotypic models have 

advantages over classic two-dimensional in vitro 

models as they incorporate physiologically important 

structural-cell and cell-cell interactions [71]. 

Additionally, tissue engineered cultures offer flexible 

scalability when compared to organoid and microchip 

culture formats. Appropriately scaled models are 

especially important when investigating aging; in many 

cases, aging contributes to breakdown of disruption and 

alterations of the overall tissue, and may include altered 

nutrient diffusion, organization, and cell-cell 

communication. In addition, tissue engineered models 

offer high customizability compared to conventional in 

vivo models, where specific cell populations or 

biomaterials can be easily selected or replaced to match 

research needs. In the three tissues that were addressed 

here, we highlighted studies that have specifically 

adapted these models to studying aging; where possible 

we have also highlighted the accessibility of these 

models to research groups that may not have prior 

experience. Importantly, organotypic models are 
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straightforward to customize and, with some 

optimization, can be a reliable and powerful tool for any 

aging researcher to adapt to their needs and questions. 
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