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INTRODUCTION 
 

As one of the most common tumor types in digestive 

system, the incidence rate and mortality of colon cancer 

are increasing year by year [1–3]. Although in recent 

years, the comprehensive treatment mainly including 

surgical resection, chemotherapy, and radiotherapy has 

enriched the treatment methods of colon cancer, the 

prognosis of patients has not been significantly 

improved, and the 5-year survival rate is 40% - 60% [4, 

5]. The amazing benefits of immunotherapy represented 

by PD-1/PD-L1 immune checkpoint inhibitors on a 

variety of solid tumors have provided the new direction 

and strategy for the treatment of colon cancer [6, 7]. 

Unfortunately, anti-PD-1/PD-L1 therapy did not show 

the desired therapeutic effect in patients with colon 

cancer. Only 10% - 20% of patients could benefit from 

the anti-PD-1/PD-L1 therapy, which was far from 

meeting the clinical needs [8, 9]. Significant individual 

heterogeneity especially the existed intrinsic and 

adaptive immune resistance in tumor microenvironment 

(TME) was significantly associated with treatment 
failure. Therefore, it is urgent to develop new 

biomarkers to predict the prognosis of patients and 

determine the treatment regimens. Increasing evidence 

indicated that the pyroptosis played a crucial role in the 
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ABSTRACT 
 

The important role of pyroptosis in tumor progression has been well characterized in recent years. However, 
little is known about the impact of tumor pyroptosis characteristics on patient prognosis and tumor 
microenvironment (TME) as well as efficacy of immunotherapy. In this study, we successfully classified colon 
cancer samples into three pyroptosis characterizations with different prognosis and TME cell infiltration 
patterns based on the expression of pyroptosis-related genes. Cluster 2, with the characterizations of 
immunosuppression, was classified as immune-desert cell infiltration patterns. Cluster 3, with the patterns of 
immune-inflamed cell infiltration, had the feature of an activated innate and adaptive immunity and significant 
prolonged survival. The activation of stromal pathways including EMT, angiogenesis and TGF-β in cluster 1 may 
mediate the impaired immune penetration of this cluster, which was classified as immune-excluded cell 
infiltration patterns. Our results demonstrated the PyroSig signature was a robust and independent biomarker 
for predicting patient prognosis. Patients with low PyroSig signature was confirmed to be correlated with 
treatment advantages and significant prolonged survival in two anti-checkpoint immunotherapy cohorts. This 
study identified three pyroptosis-related subtypes with distinct molecular features, clinical and 
microenvironment cell infiltration patterns in colon cancer, which could promote individualized 
immunotherapy for colon cancer. 
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initiation and progression of colon cancer via multiple 

biological pathways. Pyroptosis, a distinct form of 

programmed cell death distinguished from apoptosis, is 

characterized by cell swelling and rupture, releasing 

inflammatory cellular contents, which triggers a robust 

inflammatory response [10, 11]. A variety of cytokines 

and stress-related signaling molecules are activated 

concomitantly with the process of pyroptosis, which 

promotes immune cell infiltration as well as 

inflammatory responses. During pyroptosis, activated 

caspase-1 promotes the production of proinflammatory 

cytokines such as IL-18 an IL-1β7 to regulate the tumor 

immune microenvironment. Furthermore, since 

pyroptosis is an innate immune mechanism, it could 

likewise suppress tumor progression [12–15]. However, 

the TME cell infiltrating patterns mediated by distinct 

pyroptosis characteristics in colon cancer remains 

unknown. Exploring the impact of distinct pyroptosis 

characteristics on immune cells of the TME will help to 

increase the understanding of the complexity and 

heterogeneity of the TME and provide novel directions 

and strategies for personalized immunotherapy for 

colon cancer patients. In the present study, we 

performed genomic analyses to comprehensively assess 

the pyroptosis characterizations in colon cancer based 

on the expression of pyroptosis-related genes, and 

correlated these characterizations with TME immune 

cell infiltration patterns. Three pyroptosis 

characterizations with distinct prognostic features and 

TME cell infiltration patterns were successfully 

identified in colon cancer based on more than 1000 

cases. The constructed pyroptosis-related score 

signature (PyroSig) could serve as an independent 

biomarker to predict patient prognosis and efficacy of 

anti-PD-1/PD-L1 immunotherapy. 

 

RESULTS 
 

Genomic variation of pyroptosis-related genes in 

colon cancer 
 

Based on the published studies, we in total extracted 

31 pyroptosis-related genes from the GEO datasets. 

We used the STRING to establish the protein-protein 

interaction network (PPI), and reveal widespread 

protein interactions among these genes (Figure 1A). 

The GO enrichment analysis was used to reveal the 

biological functions of these genes, and we found 

these genes were remarkably related to pyroptosis and 

immune regulation pathways including pyroptosis, 

nterleukin-1 production and cytokine production 

involved in immune response (Figure 1B). only 114 of 

399 samples, accounting for 28.57%, exhibited at least 

one mutation type among these genes (Figure 1C). We 

also observed an obvious mutation co-occurring 

relationship existed among these genes (Figure 1D). In 

addition, the CNV alteration analyses showed that 

these pyroptosis-related genes had a relatively low 

CNV alteration frequency in colon cancer. GSDMB, 

GSDMA, GSDMC, PLCG1, PYCARD, IL6, AIM2 

and GSDME primarily focused on copy number 

amplification frequencies, whereas CASP9, CASP3, 

IL18, ELANE, GPX4 and CASP6 had copy number 

deletions (Figure 1E). For the mRNA expression, a 

significant difference in expression was observed 

between tumor and normal tissues (Figure 1F). 

Considering the difference in expression, we 

performed survival analyses for these pyroptosis-

related genes, and the univariate Cox regression model 

indicated these genes were significantly associated 

with prognosis of patients, of these, NOD1, PRKACA 

and NLRP1 were the protective factors for colon 

cancer (Figure 1G). 

 

Identification of distinct pyroptosis characterization 

clusters 

 

Considering the detailed clinical annotations in 

GSE39582 cohorts, we used this cohort for the 

subsequent analyses. The consensus clustering was 

utilized to reveal the pyroptosis characterization in colon 

cancer and classify patients into distinct molecular 

subtypes. Based on the expression of entire pyroptosis-

related genes, we successfully classified all samples into 

three different pyroptosis characterizations, which was 

referred to as cluster 1 subtype, cluster 2 subtype and 

cluster 3 subtype, respectively (Figure 2A). PCA 

methods presented three completely disjoint populations 

among three clusters (Figure 2B). Among three 

subtypes, patients classified as cluster 2 subtype 

experienced a poor survival, while patients with cluster 3 

subtype showed a particularly prominent prolonged 

survival (Figure 2C). The significant distinction in all 

pyroptosis-related gene expression was observed among 

the three clusters (Figure 2D, 2E). In these three 

pyroptosis characterizations of colon cancer, we found 

CASP4, GSDMC, IL1B, IL6, NLRC4, NLRP1, NLRP3 

and TNF was significantly up-regulated in cluster 1 

subtype compared to other two subtypes. This implied 

that pyroptosis in this cluster was mainly regulated by 

CASP4, IL1B, IL6, NLRC4, NLRP1, NLRP3 and TNF. 

The pyroptosis characterization characterized by high 

expression of this set of genes mediated the immune-

excluded phenotype of tumor microenvironment, which 

led to a relatively poor prognosis. Similarly, cluster 2 

subtype presented an upregulation expression of GPX4, 

GSDMC, NOD1 and PLCG1, whose pyroptosis 

characterization, regulated by this gene set, led to an 

immune-desert microenvironment. And cluster 3 
subtype showed a high expression of AIM2, CASP1, 

CASP3, CASP5, CASP6, CASP8, GSDMB, IL18 and 

TIRAP, whose pyroptosis characterization, regulated by 
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this gene set, resulted in an improved prognosis  

and immune-inflamed tumor microenvironment (Figure 

2D, 2E). 

 

TME cell infiltration patterns under three 

pyroptosis characterizations 

 

In order to evaluate the correlation between TME cell 

infiltration patterns and pyroptosis characterizations, we 

calculated the infiltration abundance of immune cells in 

each cluster. We found a high level of immune cell 

infiltration in the tumor microenvironment of cluster 1, 

sharing the similar immune cell infiltration abundance 

with the cluster 3 (Figure 3A, 3B). However, despite the 

high immune level of cluster 1, we did not observe that 

patients with cluster 1 showed significant survival 

advantages compared with the other two subtypes 

(Figure 2C). We then applied the GSVA enrichment 

 

 
 

Figure 1. Landscape of pyroptosis related genes in colon cancer. (A) The protein-protein interactions (PPI) network between 
pyroptosis genes using STRING database. (B) GO functional enrichment analyses for pyroptosis-related genes. (C) The mutation landscape of 
pyroptosis genes in TCGA-COAD cohort. (D) The mutation co-occurrence and exclusion analyses for these genes. (E) The copy number 
variation frequency of pyroptosis genes. (F) Expression of pyroptosis genes in tumor and normal samples based on TCGA-COAD cohort. (G) 
Survival analyses for the pyroptosis genes using univariate Cox regression model.  
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analysis to explore this phenomenon by revealing the 

biological behaviors under these distinct three clusters. 

As shown in Figure 3C, 3D, we noticed that the immune 

related signaling pathway was significantly activated in 

cluster 3 subtype such as cytokine-cytokine receptor 

interaction, Toll like receptor signaling pathway, T cell 

receptor signaling pathway, and Nod like receptor 

signaling pathway (Figure 3D). The activity of stromal-

related and carcinogenic pathways was remarkably  

up-regulated in the cluster 1 subtype including  

ECM receptor interaction and focal adhesion (Figure 

3C). While in cluster 2 subtype, we found the 

 

 
 

Figure 2. Identification of distinct pyroptosis characterization clusters in colon cancer. (A) Consensus matrices of pyroptosis 

related genes, for k=3. (B) Principal component analysis for the three clusters based on the pyroptosis gene expression and revealed three 
entirely disjoint populations in the meta cohort. (C) Survival analyses for the three pyroptosis characterizations including cluster 1, cluster 2 
and cluster 3 in the meta cohort. (D) The hierarchical clustering of pyroptosis genes among three pyroptosis characterization clusters. (E) 
Difference in pyroptosis gene expression between the three clusters. 
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immunosuppressive pathways were significantly 

activated, which was consistent with the results of 

immune cell infiltration.  

 

We analyzed the expression of chemokines and cytokines 

that characterize these three pyroptosis characterization 

clusters to further explore their characteristics of TME 

immunoregulation (Figure 3E–3G) [16]. The results 

indicated that the mRNA expression of TGFb/EMT 

pathway was significantly upregulated in cluster 1 

subtypes (Figure 3F), and the cluster 1 and cluster 3 

subtypes demonstrated increased expression of mRNAs 

associated with immune-activation transcripts (Figure 

3E). In addition, the cluster 3 subtypes showed an 

upregulated expression of immune checkpoint molecules, 

which may mediate the immune escape of this subtype 

 

 
 

Figure 3. TME cell infiltration patterns in distinct pyroptosis characterizations. (A) The abundance of 28 TME cell infiltration among 

three pyroptosis characterization clusters visualized by heatmap. (B) Differences of 28 TME cell infiltration abundance between three 
pyroptosis characterization clusters. (C, D) GSVA enrichment showing the activation states of biological pathways in distinct clusters. (C) 
cluster 1 vs cluster 3; (D) cluster 2 vs cluster 3. (E) Difference in the immune-activation related gene expression among three clusters. (F) 
Difference in the TGFβ-EMT pathway-related gene expression among three pyroptosis characterization clusters. (G) Difference in the 
immune-checkpoint related gene expression among three clusters. 



www.aging-us.com 9025 AGING 

(Figure 3G). Based on the above results, we  

were surprised to find that the three pyroptosis 

characterizations of colon cancer were consistent  

with the three immunophenotypes of the tumor 

microenvironment, which all shared similar immune 

cell infiltration patterns. The immune cell infiltrate 

characteristic of cluster 1 subtype was consistent with 

the immune-excluded phenotype, which was 

characterized by marked stromal activation of the  

tumor microenvironment. The cluster 2 subtype was 

consistent with an immune-desert phenotype, with a 

microenvironment with little immune cell infiltration. 

Whereas the tumor microenvironment of cluster 3 

subtype phenocopies a relatively high level of 

infiltration of innate and adaptive immune cells, which 

was consistent with an immune-inflamed phenotype. 

We then used the gene signature to further evaluate the 

classification accuracy. In order to further validate the 

stability of these findings, we used the ssGSEA to 

estimate the activity of stromal pathways through 

stromal signature, and found the activation of 

angiogenesis pathways, pan-fibroblast transforming 

growth factor beta response (Pan-F-TBRS), and 

epithelial-mesenchymal transition (EMT) (Figure 4A). 

The ESTIMATE algorithm showed the stromal score 

was significantly higher in cluster 1 subtype compared 

 

 
 

Figure 4. Construction of pyroptosis related score signature (PyroSig). (A) Variations between three distinct pyroptosis 

characterization clusters in pathways with stroma activation. (B) ESTIMATE algorithm analyses revealing the overall TME stromal score 
among three clusters. (C) The proportion of molecular subtypes in the three clusters. (D) The venn diagram showing 1219 overlap DEGs 
between three clusters. (E) GO functional enrichment analyses for overlap DEGs. (F) The changes of molecular subtypes, pyroptosis 
characterization clusters and PyroSig, visualized by alluvial diagram. (G) Spearman correlation between the known signatures and PyroSig 
values. (H) Differences in PyroSig signature across three distinct pyroptosis characterization clusters. (I) Difference of stromal signature 
between low and high PyroSig groups. (J) Differences in PyroSig across distinct molecular subtypes. (K) Kaplan-Meier curves showing the 
survival difference between the low and high PyroSig groups. (L) Survival analyses of four subgroups, where patients were stratified according 
to adjuvant chemotherapy.  
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with other two subtypes (Figure 4B). Subsequent 

analysis revealed that the majority of patients with a 

molecular phenotype of CIN presented with the 

pyroptosis characterizations of cluster 2, whereas the 

majority of patients with a dMMR molecular subtype 

presented with the pyroptosis characterizations of 

cluster 1 (Figure 4C, 4F). The above analyses also 

demonstrated that TME cell infiltration patterns under 

the three pyroptosis characterizations were in 

accordance with three immunophenotypes of tumor 

including immune-inflamed, immune-excluded and 

immune-desert phenotypes, indicating the accuracy of 

our classification. 

 

Construction of pyroptosis related signature 

(PyroSig) 

 

To further explore the potential biological characteristics 

of the three pyroptosis characterizations, we investigated 

the transcriptome differences between the three  

clusters and a total of 1219 DEGs were determined 

(Figure 4D). We analyzed differentially expressed genes 

(DEGs) common to the three subtypes to uncover 

biological pathways that differ among subtypes. A total of 

1219 DEGs were identified, and we found that these 

DEGs were similarly enriched for immune-related 

signaling pathways, confirming again that pyroptosis 

characterizations in colon cancer were significantly 

correlated with TME anti-tumor immune response (Figure 

4E). We established the PyroSig signature by the LASSO 

analysis to further evaluate the role of pyroptosis 

characterizations in patient survival and TME cell-

infiltrating patterns. The coefficient of each signature  

gene was summarized in Supplementary Table 2 and 

Supplementary Figure 1. We used the MaxStat algorithm 

to classify patients into low and high PyroSig groups. The 

flow of samples including molecular subtypes, pyroptosis 

clusters and PyroSig was presented by the alluvial 

diagram (Figure 4F). The PyroSig signature was 

negatively correlated with DNA damage repair and was 

positively correlated with stromal activity (Figure 4G). 

The cluster 1 and 2 pyroptosis characterization displayed 

the highest median PyroSig, while the cluster 2 showed 

the lowest median PyroSig (Figure 4H). The stroma in 

patients with high PyroSig was remarkably activated 

compared with that in patients with low PyroSig (Figure 

4I). The CSC molecular subtype exhibited a highest 

PyroSig compared to the other three molecular subtypes 

(Figure 4J). Patients with low Pyrosig scores were 

associated with significantly prolonged survival (Figure 

4K). Furthermore, we found that the Pyrosig signature 

could similarly be used to predict survival in patients who 

received adjuvant chemotherapy. Patients with lower 

Pyrosig were consistently associated with improved 

survival regardless of whether or not patients received 

adjuvant chemotherapy. (Figure 4L). 

Characteristics of PyroSig in tumor somatic 

mutation 

 

We used TCGA-COAD cohort as the validation set. 

Consistent with the GEO cohort, patients with low 

PyroSig also experienced an improved overall survival 

compared to those with high PyroSig (Figure 5A). 

Compared with CIN and invasive molecular subtype, 

patients with MSI/CIMP exhibited a relatively higher 

PyroSig (Figure 5B). However, we found MSI and MSS 

phenotype did not show an obvious difference (Figure 

5C). We then explore the somatic mutation landscape of 

the high and low PyroSig group to reveal the correlation 

between tumor mutation burden and PyroSig (Figure 

5D–5F). The tumor mutation burden (TMB) in tumors 

with low PyroSig were similar with those with high 

PyroSig (Figure 5F). We plotted the frequency of 

mutations as well as the types of mutations in the top 30 

mutated genes between high and low PyroSig group 

using waterfall plots (Figure 5D, 5E). Based on the 

multivariate Cox regression model consisting of sex, 

age, tumor location and MMR status, we confirmed that 

the PyroSig was an independent and robust prognostic 

biomarker to predict the outcomes of patients with 

colon cancer (Figure 5G). Additionally, the predictive 

performance of PyroSig signature to evaluate the one, 

three and five year survival rates, confirmed by the 

ROC curves, reached 0.741, 0.765 and 0.741, whose 

reliability was far superior to the traditional 

pathological evaluation (Figure 5H). 

 

Predictive performance of PyroSig in anti-PD-1/PD-

L1 immunotherapy 

 

To further determine the prognostic predictive value of 

the PyroSig signature, we generalized it to other colon 

cancer cohorts. Based on the GSE17536, GSE37892 

and GSE38832 collected from GEO database, we found 

that patients with lower PyroSig were consistently 

associated with improved survival compared with those 

with higher PyroSig, which further confirmed the 

potential of PyroSig signature as an independent 

prognostic biomarker in colon cancer (Figure 6A–6C). 

The successful application of immunotherapy on 

multiple solid tumors, represented by immune 

checkpoint inhibitors, has provided a new strategy for 

the comprehensive treatment of colon cancer. In this 

study, we collected two immunotherapy cohorts to 

evaluate the role of PyroSig signature in predicting the 

efficacy of anti-PD-1/PD-L1 immunotherapy. In the 

IMvigor210 cohort, which investigated the efficacy of 

anti-PD-L1 regimens, we found the patients with low 

PyroSig presented a prominent improved clinical 
response and survival than patients with high PyroSig 

(Figure 6D–6F). Consistent with anti-PD-L1 regimens, 

PyroSig signature could be also used to predict the
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Figure 5. Characteristics of PyroSig in tumor somatic mutation. (A) Kaplan-Meier curves showing the survival analyses of high and low 

PyroSig groups in TCGA-COAD cohort. (B) Differences in PyroSig between distinct TCGA colon cancer molecular subtypes. (C) Differences in 
PyroSig between different microsatellite status. (D, E) The waterfall plot showing the differences of TMB landscape between low and high 
PyroSig groups. (D) High PyroSig group. (E) Low PyroSig group. (F) Differences in tumor burden mutation between low and high PyroSig 
groups. (G) Multivariate cox regression analysis for PyroSig in predicting patient’s survival. (H) ROC curves showing the predictive values of 
PyroSig in prognosis. 
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outcomes of patients treated with anti-PD-1 regimens 

(Figure 6G, 6H). The above results showed a potential 

predictive value of PyroSig in anti-PD-1/PD-L1 

immunotherapy. 

DISCUSSION 
 

Although the diagnosis and treatment of colon cancer 

have made some progress in recent years with the 

 

 
 

Figure 6. Role of PyroSig in predicting efficacy of immunotherapy. (A) Kaplan-Meier curves showing the survival analyses of high and 

low PyroSig groups in GSE17536 cohort. (B) Kaplan-Meier curves showing the survival analyses of high and low PyroSig groups in GSE37892 
cohort. (C) Kaplan-Meier curves showing the survival analyses of high and low PyroSig groups in GSE38832 cohort. (D) Kaplan-Meier curves 
displaying the survival difference of high and low PyroSig groups in IMvigor210 cohort. (E) The ratio of clinical response types in high PyroSig 
and low PyroSig groups in the IMvigor210 cohort when treated with anti-PD-1 immunotherapy. (F) Differences in PyroSig between different 
clinical response types in the IMvigor210 cohort. (G) Survival analyses for PyroSig in GSE78220 anti-PD-1 immunotherapy cohort. (H) The 
ratio of clinical response types in high PyroSig and low PyroSig groups in the GSE78220 cohort when treated with anti-PD-1 immunotherapy. 
(I) Differences in PyroSig between different clinical response types in the GSE78220 cohort. 
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development of technology, it has not significantly 

reduced the incidence rate and mortality of colon cancer. 

In addition, for advanced colon cancer, existing 

treatment methods are still limited. Therefore, the early 

diagnosis and treatment as well as the mechanism of 

recurrence monitoring are particularly important in colon 

cancer [17]. Due to the individual heterogeneity of colon 

cancer, some clinical indicators, such as age, stage, 

image characteristics and blood biomarkers, have limited 

effect in predicting prognosis and evaluating treatment 

plans. In recent years, with the wide application of large-

scale sequencing technology, evaluating the gene 

expression level and mutation characteristics has become 

one of the important means for prognosis monitoring of 

many solid tumors. However, a single gene expression 

level is easily affected by various factors in vivo, and its 

prediction accuracy is often poor. It has become an 

important means to improve the prediction efficiency to 

identify novel molecular subtypes and build a multi gene 

model by combining a group of gene signature with 

machine learning [18]. Pyroptosis plays a dual role of 

promoting or anti-tumor in mediating inflammation and 

tumor progression [19–21]. On the one hand, 

inflammasomes have the function of eliminating 

microorganisms and maintaining the integrity of 

intestinal epithelium, which can prevent tumor 

attraction. In contrast, inflammasomes can also stimulate 

the production of protective factors of cnacer cells to 

help cancer cells escape immune killing, in which, 

immunosuppressive factors such as Il-18 and il-1 β 

accumulate in the tumor microenvironment, impairing 

the function of natural killer immune cells and mediating 

the immunosuppressive microenvironment [22]. Yang et 

al. reported that cisplatin exerted antitumor roles in 

triple-Negative Breast Cancer through promoting 

MEG3/NLRP3/caspase-1/GSDMD pathway to mediate 

pyroptosis [23]. Zhang et al. revealed that GSDME 

silencing remarkably suppressed cisplatin induced 

secondary necrosis/pyroptosis, but could not inhibit 

paclitaxel induced secondary necrosis/pyroptosis [24]. 

At the same time, the antineoplastic features of 

pyroptosis have been widely demonstrated, possibly due 

to the protective effect of inflammasomes on the 

gastrointestinal epithelium. However, the TME cell-

infiltrating patterns mediated by different pyroptosis 

characteristics in colon cancer remains unknown. In this 

study, we comprehensively evaluated the molecular 

characteristics of genes related to pyroptosis to construct 

new classifiers and prognostic signature, and associated 

them with immune cell infiltration in the tumor 

microenvironment of colon cancer, so as to guide more 

appropriate treatment strategies. 

 
Here, we integrated multi-omics data on colon cancer 

from the TCGA database to further explore the genomic 

signatures of cell-coke-death-related genes in colon 

cancer tissues. Although the copy number variation and 

mutation frequency of these genes are relatively low, 

the expression levels of these genes are significantly 

different between colon cancer tissues and normal 

tissues. Through consensus clustering of these genes, 

we revealed three distinct cellular pyroptosis 

characterizations, implying that colon cancer patients 

could be divided into three distinct molecular subtypes 

based on pyroptosis-related genes. GSVA and GO 

enrichment analysis showed that these three subtypes 

were highly correlated with immune related signaling 

pathways. The evaluation of TME immune cell 

infiltration confirmed that these three pyroptosis related 

molecular subtypes had significantly different TME cell 

infiltration patterns, and were consistent with the three 

immune phenotypes of tumors. In general, innate 

immune cells and stroma were significantly activated in 

cluster 1 subtypes, which was consistent with the 

immune-excluded phenotype. Cluster 2 subtype 

presented an inhibitory microenvironment with 

relatively few innate and adaptive immune cells, so it 

was classified as immune-desert phenotype. Contrary to 

the former two, the microenvironment in cluster 3 

subtype had a large number of immune cells infiltrating, 

and the immune related signal pathway also showed an 

activated phenotype, which was consistent with the 

immune-inflamed phenotype. Although both cluster 1 

and cluster 3 subtypes belong to “cold tumors”, their 

mechanisms were not identical. The stroma in the TME 

was significantly activated in cluster 1 subtype, 

mediating tumor immune escape. There were abundant 

immune cells in both immune-excluded and immune-

inflamed tumors. However, unlike the immune-

inflamed tumors, the activated stroma retained immune 

cells around the nests of tumor cells, limiting immune 

cell infiltration into the parenchyma of the tumor. The 

interaction between the stroma and the immune cells 

made the immune cells appear to be present inside the 

tumor. Although PD-1/PD-L1 inhibitors could stimulate 

T cell activation and proliferation around the stroma, 

they could not stimulate infiltration, thus limiting the 

clinical response rate of this subtype to immunotherapy 

[25–29]. In addition, activation of the classical 

oncogenic pathway in cluster 1 subtype further reduced 

the level of immune cell infiltration [30]. Our results 

suggested that impaired immune permeability of the 

cluster 1 subtype may be associated with activation of 

EMT, TGF-β, and angiogenic pathways. 
 

At present, it has become a hot topic to transform “cold 

tumor” into “hot tumor” to increase immune infiltration 

of microenvironment [31–33]. In this study, we 

identified three molecular subtypes closely related to 
the immune phenotype through pyroptosis. This 

suggested that pyroptosis may be a factor that could not 

be ignored in mediating the complexity of immune 
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infiltration in microenvironment. Regulating pyroptosis-

related genes to change the pyroptosis characteristics 

may be a potential strategy to reshape the micro-

environment. We used LASSO algorithm to construct 

PyroSig signature to further characterize the role of 

pyroptosis in prognosis and TME cell infiltration 

patterns. Cluster 3 subtypes were characterized by low 

PyroSig signature, while cluster 1 and cluster 2 

subtypes were characterized by high PyroSig signature. 

Subsequent analysis revealed that PyroSig signature 

could be used as an independent biomarker to predict 

the prognosis of colon cancer patients. We also found 

that pyroptosis could be involved in the patient's 

resistance to immune checkpoint immunotherapy. In 

patients receiving anti-PD-1 and anti-PD-L1 

immunotherapy, low PyroSig was closely associated 

with enhanced clinical response and significantly 

prolonged survival. Although our results indicated the 

pyroptosis-related signature could be associated with 

efficiency of immunotherapy, due to the lack of single-

cell sequencing data related to pyroptosis and 

immunotherapy, we were unable to further determine 

which cell subset of pyroptosis mediated the efficacy of 

immunotherapy. Determining which cell subset of 

pyroptosis played a crucial role in immunotherapy 

could help to further guide more effective immuno-

therapeutic strategies. This was a potential limitation of 

our study. 

 

CONCLUSIONS 
 

This study identified three pyroptosis characterizations 

with distinct clinical, molecular characteristics and 

TME cell infiltration patterns, and constructed PyroSig 

signature based on these pyroptosis characterizations, 

which could be served as a robust and independent 

biomarker for predicting patient outcomes and efficacy 

of immunotherapy. It might help to promote 

individualized immunotherapy for colon cancer from 

the perspective of pyroptosis characterizations. 

 

MATERIALS AND METHODS 
 

Sample datasets collection and processing 
 

After systematic search of GEO and TCGA database, we 

collected a total of 5 colon cancer cohorts including the 

TCGA-COAD, GSE39582, GSE17536, GSE37892, 

GSE38832, which contain detailed clinical information 

[34–37]. All cohorts from the GEO database were based 

on the Affymetrix platforms, so we used the affy R 

package for background correction and normalization 

[38]. For TCGA-COAD cohort, we downloaded the 
FPKM value of the original gene expression and 

converted FPKM into transcripts per kilobase million 

(TPM) values. We merged the GEO cohorts and used the 

sva R package to perform batch correction. The detailed 

clinical information of all the included cohorts was 

summarized in Supplementary Table 1. 

 

Identification of pyroptosis characterizations in 

colon cancer 

 

The pyroptosis-related genes were derived from 

published studies. In order to identify distinct pyroptosis 

characterization clusters in colon cancer, we used 

ConsensuClusterPlus R package to execute consensus 

clustering based on the mRNA expression of these 

pyroptosis-related genes. Consensus clustering is 

repeated 1000 times to ensure the stability of molecular 

classification [39].  

 

Functional annotation analysis 

 

The Gene Set Variation Analysis (GSVA) and GO 

enrichment analysis was used to execute functional 

annotation for uncovering the signaling pathways 

involved in these pyroptosis characterizations. The 

“c2.cp.kegg.v6.2.symbols” gene set was downloaded 

from GSEA database [40–42]. The limma package was 

utilized to identify differentially expressed genes 

(DEGs) between three clusters. The DEGs with P value 

< 0.05 was considered as significant [43]. We then 

conducted GO enrichment analysis to reveal the 

biological pathways associated with these DEGs [44]. 

 

Inference of TME cell abundance 

 

Multiple algorithms have now been developed for 

assessing the abundance of various immune cell 

infiltrates of the tumor microenvironment based on gene 

expression. In this study, we used single sample gene 

set enrichment analysis (ssGSEA) to measure the 

abundance of microenvironmental immune cell 

infiltration under three pyroptosis characterizations. We 

obtained the gene sets with 28 immune cells from a 

previous study [45, 46]. 

 

Establishment of pyroptosis related signature 

(PyroSig) 

 

Considering that pyroptosis characterizations played an 

important role in the prognosis and microenvironment 

of colon cancer, we constructed pyroptosis related 

signature. First, a univariate Cox regression model was 

used to explore the correlation between patient 

prognosis and the expression of these DEGs. The least 

absolute shrinkage and selection operator regression 

method (LASSO) was then performed for the 
expression of the DEGs with the prognosis P value less 

than 0.001 [47]. The PyroSig signature was defined as 

follows: 
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1

PyroSig Coefi
n

i

Expri
=

=   

 

where i is the expression of prognosis-related genes. 

 

Statistical analysis 

 

We used the Kaplan-Meier method to plot survival 

curves and used the log-rank tests for significance test 

based on the survminer R package. In addition, a 

univariate and multivariate Cox regression models were 

used to reveal the prognostic value of PyroSig signature 

as a continuous variable. The MaxStat R package was 

utilized to determine the optimal cut-off point of PyroSig 

to classify patients into low and high groups. We 

executed the Wilcoxon test to calculate the difference 

significance between two groups. The One-way 

ANOVA test and Kruskal-Wallis tests were utilized to 

calculate the difference significance groups of three or 

more [48]. All data analyses were handled based on the 

software R 4.0.5. All statistical P-values were two-sided, 

with a statistical significance of p < 0.05. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 

 
 

Supplementary Figure 1. Identifying signature genes in colon cancer based on the LASSO model to construct PyroSig 
signature. 
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Supplementary Tables 
 

 

Supplementary Table 1. The basic information of datasets included in this study. 

Source Platform Number of patients Survival 

TCGA-COAD Illumina RNAseq 514 OS 

GSE39582 
Affymetrix Human Genome U133  

Plus 2.0 Array 
585 RFS/OS 

GSE17536 
Affymetrix Human Genome U133  

Plus 2.0 Array 
177 RFS 

GSE37892 
Affymetrix Human Genome U133  

Plus 2.0 Array 
130 RFS 

GSE38832 
Affymetrix Human Genome U133  

Plus 2.0 Array 
122 RFS 

 

Supplementary Table 2. The LASSO 
coefficient of the signature genes. 

Gene Coefficient 

SGK1 0.029851098 

POFUT1 -0.200520959 

APOL6 -0.332489247 

CCL13 0.00429936 

PEAR1 0.113373389 

TPM4 0.241256572 

MCC 0.001070563 

CCDC88C -0.052312181 

MYB -0.006091323 

RPP14 -0.004724394 

ZNF57 -0.085188108 

MLLT3 -0.003590551 

HOXA4 0.179238763 

MARVELD2 -0.049983419 

ZNF564 -0.000432386 

GDI1 0.013007788 

ETV5 0.186508141 

ORAI3 0.269976608 

DTX3L -0.009202089 

WWC3 0.010115175 

ANKRD32 -0.116197339 

RGCC 0.272613636 

PLD3 0.03784518 

DENND2D -0.019782871 

 


