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ABSTRACT

The period (PER) and cryptochrome (CRY) families play critical roles in circadian rhythms. The imbalance of
circadian factors may lead to the occurrence of cancer. Expressions of PER and CRY family members decrease in
various cancers. Nevertheless, expression levels, genetic variations, and molecular mechanisms of PER and CRY
family members in lung adenocarcinoma (LUAD) and their correlations with prognoses and immune infiltration in
LUAD patients are still unclear. In this study, to identify their biological functions in LUAD development,
comprehensive high-throughput techniques were applied to analyze the relationships of expressions of PER and
CRY family members with genetic variations, molecular mechanisms, and immune infiltration. The present results
showed that transcription levels of PER1 and CRY2 in LUAD were significantly downregulated. High expression
levels of PER2, PER3, CRY1, and CRY2 indicated longer overall survival. Some cancer signaling pathways were
related to PER and CRY family members, such as cell-cycle, histidine metabolism, and progesterone-mediated
oocyte maturation pathways. Expressions of PER and CRY family members significantly affected the infiltration of
different immune cells. In conclusion, our findings may help better understand the molecular basis of LUAD, and
provide new perspectives of PER and CRY family members as novel biomarkers for LUAD.
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INTRODUCTION

According to a report provided by cancer statistics 2022,
the most commonly diagnosed cancer is lung cancer,
which is also the leading cause of cancer deaths in the
world [1]. Lung cancer is divided into two categories,
namely small-cell lung cancer (SCLC) and non-SCLC
(NSCLC). NSCLC accounts for more than 85% of
all lung cancers, and it is subdivided into lung
adenocarcinoma (LUAD), squamous cell lung cancer,
and large-cell lung cancer. LUAD accounts for the
highest proportion of NSCLC cases, and finding
efficacious treatments for LUAD is one of the main
research goals of researchers. In recent years, although
the pathogenesis of LUAD and new treatment strategies
have been discovered, LUAD is still one of the most
aggressive and fatal types of lung cancer, with low 5-
year overall survival (OS) rates. Therefore, finding novel
biomarkers for LUAD is desperately in demand [2-6].
Recently, it was proven that circadian rhythms act as a
crucial factor causing cancer, as an abnormal lifestyle
may disrupt and break natural circadian rhythms [7-9].
Circadian rhythms can regulate cell proliferation, cell
death, DNA repair, and metabolic functions [10, 11].
Changes in circadian rhythms may lead to loss of these
regulatory functions and further lead to the development
of cancer. The suprachiasmatic nucleus (SCN) plays an
important role in the circadian rhythms of mammals
[12], and it uses a molecular oscillator to maintain clock
oscillation at a normal pace [13]. The molecular
oscillator consists of interacting molecular loops,
composed of positive elements including circadian
locomotor output cycles kaput (CLOCK) and brain and
muscle ARNT-like 1 (BMALL1), and negative elements
including period (PER) circadian regulators and
cryptochrome (CRY) circadian regulators [14]. In
addition, the core oscillatory mechanism of the SCN
begins from the heterodimer CLOCK/BMAL1 complex
binding to E-box elements in their regulatory regions
and activating target genes to initiate transcription of
PER and CRY [15], which are translated into proteins
and accumulate in the cytoplasm during the daytime.
After the proteins have accumulated to a certain level,
the PER and CRY proteins form a complex that is then
translocated into nuclei to inhibit their own transcription
at night [16]. Afterward, the PER and CRY proteins are
gradually phosphorylated at night, and degraded by the
proteasome after being ubiquitinated by a specific E3
ligase [17-19]. The SCN can adjust the circadian rhythm
stage by receiving photic and non-photic signals [20].

PER and CRY are important negative regulators of
circadian rhythms [21]. Studies showed that CRY-
deficient mice produce angiopoietin-like protein 2
expression [22], and CRY was proven to be related to
insulin-like growth factor (IGF), which plays important

roles in cell proliferation, growth, and cancer [23].
Similarly, according to clinicopathological features,
PER1, PER2, and PER3 are obviously methylated in
breast cancer patients [24]. PER expression in colorectal
cancer cells is also significantly lower than that of
normal colorectal mucosal cells [25]. Recent studies
discovered the mechanisms by which circadian factors
affect certain cancers. For example, melatonin can
inhibit the activity and the growth of prostate cancer
cells by upregulating PER2 [26]. CLOCK/BMAL1/
PER/CRY were also found to alter the c-Myc/p21 and
Wnt/B-catenin pathways to varying degrees to affect
DNA damage [27]. In addition, circadian rhythms are
thought to be related to the immune system, as CRY can
affect some key inflammatory pathways such as nuclear
factor (NF)-xB [28]. Despite the fact that there is
research on PER and CRY in various cancers, current
studies have not fully elucidated expression levels, gene
variations, molecular functions, or their relationships
with prognoses and immune infiltrations in LUAD.

Few previous studies reported the roles of PER and
CRY in lung cancer. In particular, interactions and
pathways between all PER and CRY family members
and related molecules in tumorigenesis are still unclear.
Multiple microarray and sequencing technologies have
enhanced the ability of robust computational algorithms
to rapidly analyze biomedical data [29-34]. Examining
gene expressions and employing appropriate algorithms
are thought to be able to help us understand the
respective functions of PER and CRY in lung cancer
development. In this study, different bioinformatics
databases were incorporated to analyze various PER
and CRY family members in LUAD to understand
expressions of these factors, molecular functions such
as proliferation or tumorigenesis, and their impacts on
OS, genetic changes, immune infiltration, and immune
checkpoints in LUAD, which would help identify
whether PER and CRY are suitable biomarkers for
precision treatment and detection of LUAD.

RESULTS

Transcriptional levels of PER and CRY family
members in LUAD patients

Circadian factors are widely expressed by mammalian
cells, but have different expression levels in different
tumor tissues. The UALCAN database showed
expressions of circadian factors, including PER and
CRY family members, BMAL1 (ARNTL), and CLOCK,
with differential expression levels between different
types of cancers and normal tissues (Supplementary
Figure 1). GEPIA was used to understand the
messenger (M)RNA expressions of circadian rhythm-
related factors in the PER family (PER1, PER2, and
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PER3), CRY family (CRY1 and CRY2), BMAL1, and
CLOCK in different types of cancer (Figure 1).

The Oncomine database displays mRNA expression
levels of PER and CRY family members in different
types of tumors and normal tissue samples
(Supplementary Figure 2). The Oncomine analysis
showed that transcription levels of both PER and CRY
family members were downregulated in lung cancer
patients. Transcription levels of all members of the PER
and CRY families were significantly lower than those in
normal tissues (Supplementary Table 1). In the LUAD
dataset of Bhattacharjee Lung [35], Stearman Lung
[36], Landi Lung [37] and Okayama Lung [38],
transcriptional levels of PER1 in tumors were lower
than those in normal samples with -5.555- (p = 3.35E-
5), -1.717- (p = 1.38E-7), -2.125- (p = 8.29E-19), and -
2.148-fold changes (p = 1.77E-8), respectively. In the
Su Lung dataset [39], expressions of PER1, PERZ2,
CRY1, and CRY2 were -1.861- (p = 6.23E-7), -1.803-
(p = 1.29E-7), -2.058- (p = 1.39E-6), and -3.450-fold
lower (p = 2.47E-5) in LUAD than in normal samples.
In the Hou Lung [40] dataset, PER3, CRY1, and CRY2
were significantly lower than in normal tissues in
LUAD patients with respective fold changes of -2.024
(p = 1.05E-9), -1.702 (p = 5.10E-13), and -1.836 (p =
9.60E-13). In GEPIA2, PER1 and CRY2 were also
found to have higher expressions in normal lung tissues
than in LUAD tissues (Figure 2).

Furthermore, we used the CCLE to analyze mRNA
expression levels of PER1, PER2, PER3, CRY1, and
CRY2 in lung cancer cell lines in current lung cancer
research. Then, the CCLE analysis was presented to
reveal transcriptomic levels of PER and CRY family
members in 198 lung cancer cell lines (Figure 3).
Comprehensive results are clearly described in Figure 3
and show mRNA expression levels of PER1, PER2,
PER3, CRY1, and CRY2 in different lung cancer cell
lines. Blue represents a lowly expressed gene in a cell
line, while red indicates a highly expressed gene in a
cell line. The shade of the color represents the degree of
high or low expression.

Prognostic values of PER and CRY family members
in LUAD patients

To evaluate different transcription levels of PER and
CRY family members in the LUAD, we used the
KM plotter to analyze correlations of PER and CRY
family members with clinical results. OS results
showed that high expression levels of PER2, PER3,
CRY1, and CRY2 were significantly related to longer
OS in LUAD patients (Figure 4). In contrast, PER1
expression in LUAD patients was not significantly
related to OS.

Analysis of genetic changes and coexpressions of
PER and CRY family proteins in LUAD patients

The cBioPortal web tool was used to analyze changes in
PER and CRY family proteins in LUAD patients. Among
503 cases, 148 cases (29.42%) of LUAD patients had
genetic changes in PER and CRY circadian rhythm-
related factors (Figure 5A and Supplementary Figure 3).
TCGA dataset showed that among circadian rhythm-
related factors, mutation rates were highest in PER3 and
CRY1 (9%), followed by CRY2 (7%), and mutation rates
were lowest in PER1 and PER2 (6%) (Figure 5B). In
addition, results showed the coexpression and mutually
exclusive relationships among these genes, with only
PER1 and CRY2, and PER2 and CRY1 exhibiting
statistically ~ significant coexpression relationships
(p<0.05). Others showed coexpression and mutual
exclusion without statistical significance (p>0.05)
possibly due to insufficient sample sizes (Figure 5C).

Analysis of gene interactions among PER1, PER2,
PER3, CRY1, and CRY2 in LUAD patients

From previous studies, we know that the functions of
these genes are often related to regulating circadian
rhythms. For instance, CLOCK and ARNTL (aryl
hydrocarbon receptor nuclear translocator-like protein
1, also known as BMALL) are positive mediators of
circadian rhythms and mediate CRY and PER
transcription [14]. GeneMANIA was used to construct a
gene-gene interaction (GGI) network composed of
PER1, PER2, PER3, CRY1, and CRY2, and analyze the
functions that may be related to networks composed of
PER and CRY family members. They were all
surrounded by 20 nodes, representing genes that may
have physical interactions, coexpressions, predictions,
co-localizations, pathways, gene interactions, and
shared protein domains with PER and CRY family
members (Figure 6). In the PER family network (Figure
6A), the most relevant genes were CRY1, CRY2, NR3C1
(nuclear receptor subfamily 3 group C member 1),
CSNKI1E (casein kinase 1 epsilon), CSNK1D (casein
kinase 1 delta), TIMELESS (timeless circadian
regulator), ARNTL, and CLOCK. In the CRY family
network (Figure 6B), the most relevant genes were
PER1, FBXL3 (F-box and leucine-rich repeat protein 3),
PER2, TIMELESS, PER3, ARNTL, CLOCK, and PPP5C
(protein phosphatase 5 catalytic subunit).

PPIs and functional analysis of PER and CRY
family members in LUAD patients

DAVID was utilized to analyze molecular functions and
Online Mendelian inheritance in man (OMIM) diseases
of PER1-, PER2-, PER3-, CRY1-, and CRY2-related
genes (Supplementary Table 2). The first five molecular
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Figure 1. Expression levels of period (PER) family (PER1, PER2, and PER3), cryptochrome (CRY) family (CRY1 and CRY2), and
other circadian factors such as BMAL1 and CLOCK in different types of cancer (GEPIA). (A-G) This figure shows mRNA expression
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levels of the PER and CRY families of circadian factors in different cancer tissues. If a cancer had significant overexpression of a gene, the
name of the cancer is shown in red. Conversely, if a cancer had a significantly low expression of the gene, green color indicates the name of

the cancer.

functions of PER1 (Supplementary Table 2A) were
protein binding, ATP binding, microtubule-binding,
single-stranded DNA binding, and microtubule motor
activity. As to OMIM diseases, PER1 was related to
breast cancer and colorectal cancer (Supplementary
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indicate significant differences in the data.
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Figure 6. Gene interactions among PER1, PER2, PER3, CRY1, and CRY2 in lung adenocarcinoma (LUAD) patients
(GeneMANIA). (A) PER (period) family network constructed by GeneMANIA. (B) CRY (cryptochrome) family network constructed by
GeneMANIA. Each node in the figure represents a gene, and the size of the node represents the intensity of the interaction. Connecting lines
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between nodes represent gene-gene interactions. The color of the connecting line represents the type of interaction.
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pigmentation 1, blond/brown hair, skin/hair/eye
pigmentation 1, blue/non-blue eyes (Supplementary
Table 2D). The first five molecular functions of
PER3 (Supplementary Table 2E) were protein binding,
poly (A) RNA binding, MHC class Il receptor
activity, metal ion binding, and structural constituents
of ribosomes. As to OMIM diseases, PER3 was
related to congenital dysfibrinogenemia and congenital
afibrinogenemia (Supplementary Table 2F). The first
five molecular functions of the CRY family
(Supplementary Table 2G) were protein binding,
single-stranded DNA-dependent ATPase activity,
protein kinase binding, DNA clamp loader activity, and
ATP binding [41-45]. Results demonstrated the
proportions of related genes with protein-binding
function were the highest with statistical significance
among these five genes. Moreover, we used STRING
database to separately analyze PPIs of PER and
CRY family members. Supplementary Figure 4 shows
the protein networks closely related to the PER
(Supplementary Figure 4A) and CRY families
(Supplementary Figure 4B).

In addition, to verify the detail pathway relative to PER

and CRY, the database of DAVID was used to analyze
and select KEGG pathways with the highest correlations
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with PER1, PER2, PER3, and CRY family members
(Supplementary Figure 5). The most closely related
KEGG pathway to PER2 (Supplementary Figure 5A)
was histidine metabolism. The KEGG pathway of
progesterone-mediated oocyte maturation was the most
relevant to PER3 (Supplementary Figure 5B). The most
relevant KEGG pathway to CRY family members
(Supplementary Figure 5C) was the cell cycle like PERL1,
but the associated genes were not the same.

Genes coexpressed with PER1 were correlated
with “Signal transduction_Beta-adrenergic receptors
signaling via cyclic AMP”, “Immune response_IL-6
signaling pathway via JAK/STAT”, and “Signal
transduction_Calcium-mediated signaling” (Figure 7
and Supplementary Table 3). Genes coexpressed with
PER2 were correlated with “G-protein signaling_RhoA
regulation pathway”, “Cell adhesion_Tight junctions”,
and “Development Positive regulation of WNT/Beta-
catenin signaling in the cytoplasm” (Figure 8 and
Supplementary Table 4). Genes coexpressed with PER3
were correlated with “Development Gastrin in cell
growth and proliferation”, “NF-AT signaling in cardiac
hypertrophy”, and “Immune response_Gastrin in
inflammatory response” (Figure 9 and Supplementary
Table 5).
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Figure 7. Expression of the PER1 signaling pathway in lung cancer (using MetaCore). The functional analysis of “Signal
transduction_Beta-adrenergic receptors signaling via cyclic AMP” was correlated with lung cancer development.

www.aging-us.com 9065

AGING



1234

5 7 tog(pvalue)

1.G-protein signaling_RhoA
regulation pathway

2.Call adhesion_Tight junctions

4.Cell adhesion_Endothelial
cell contacts by junctional
mechanisms

S.Inhibition of TGF-beta
signaling in gastric cancer

6.Cytoskelaton remodeling_
Regulation of actin

by
the kinase effectors of Rho
GTPases
7.Immune response_IL-7
signaling in T lymphocytes
8.Inhibition of Ephrin receptors
in coloractal cancer
9.Development Alpha-1 Ephnin-A

adrenergic receptors signaling
via Cyclic AMP
10.Neurophysiological pracess_ o
repuision
11.G-protein signaling_
Regulation of COCA2 activity
12.5ignal transduction Activin A
signaling regulatior
13.5ignal transduction_ Non-
canonical WNTSA signaling
14.Development_Early embryonal
hypaxial myogenesis
15.Development Positive
regulation of WNT/Bota-
catenin signaling in the
nucleus
16.ENaC regulation in normal and
F airways

17.Development_Role of growth
factors in the maintenance of
embryonic stem cell
pluripotency

18.Signal transduction_Beta-
adrenergic receptors signaling
via Cyclic AMP.

19.Development_Stimulation of

se
embryonic fibroblasts into
adipocytes by extracellular
factors

20.Immune response IFN-gamma
signaling via JAK/STAT and
PLC-gamma

21.Development Fetal brown fat
cell differentiation

22.Regulation of Beta-catenin
activity in colorectal cancer

23.Alrway smooth muscle
contraction in asthma

ion in type 2 diabetes
._Role of SUMO in
53 regulation

=8

rotein
alpha-12 family —

process

oact B,

ARHGE!I N\

(p115RhOGEF)

_Rap1GDS1

ARHGEF2

Figure 8. Expression of the PER2 signaling pathway in lung cancer (using MetaCore). The functional analysis of the “G-protein
signaling_RhoA regulation pathway” was correlated with lung cancer development.

12345678

_-log(pValue)
1 Gastrin in cell

growth and proliferation
2.NF-AT signaling in cardiac
hypertrophy
3.Immune response_Gastrin in
inflammatory response
4.Immune response_IL-

6

pathway via MEK/ERK
and PI3K/AKT cascades

5.Androgen receptor activation
and downstream signaling in
Prostate cancer

6.Development_Gastrin in

of the gastric
mucosa

7.Signal transduction_

1/ AG
signaling via p38, ERK and
PI3K

10

8.
1/EDNRA signaling

9.Immune response_HMGB1 release
from the cell

10. action of

1
12
13

14
15
16
17

18
19
20
21 ‘
22
23

24
25

"Gastrin in gastric cancer
11.Mitogenic action of ErbB2 in
breast cancer
12.Neurophysiological process_
Thyroliberin signaling
13.Chemotaxis_Lysophosphatidic
acid signaling via GPCRs
14.Apoptosis and survival NGF/
TrkA Pi3K-mediated signaling
15.Development_Negative
regulation of STK3/4 (Hippo)
pathway and positive
regulation of YAP/TAZ function
16.1L-6 signaling pathway in
lung cancer
17.Development Negative
regulation of WNT/Beta-
catenin signaling in the
Cytoplasm
18.Development Thromboxane A2
signaling pathway
19.Immune response_Oncostatin M
signaling via MAPK
20.Development TGF-beta
receptor signaling
21.1L-6 signaling in Prostate
Cancer
22.Regulation of Beta-catenin
activity in colorectal cancer
23.Reproduction_Gonadotropin-
releasing hormone (GnRH)
signaling
24.Breast cancer (general schema)

25.Development_Neurotrophin
family signaling

activation of

*®

7

A o

* e

Fi ~ S
Y [ S

Q nu.&%’ugﬁ) &1

. o

e

|A (p8S-alpha)
4 mxgsue ’M Pidins3,5)P2

Pmo‘ﬂi)m Wgz’w@ . Vﬁmlﬁ?ﬁm‘)
. s s
R

45.
D#Eiﬁ—% > JNK(I

< 3 >
\ *» ® 2

¥ -
p70$ul| p?n&z

o
Regulation actuity of EIF4F [l o

p3aigha
(MAPK14)
e

Pos "

+
N Cell proliferation "

Cell growth

Figure 9. Expression of the PER3 signaling pathway in lung cancer (using MetaCore). The functional analysis of
“Development_Gastrin in cell growth and proliferation” was correlated with lung cancer development.

WWWw.aging-us.com

9066

AGING



Genes coexpressed with CRY1 were correlated with
“Development Positive regulation of WNT/Beta-
catenin signaling in the cytoplasm”, “Signal
transduction_Non-canonical WNT5A Signaling”, and
“Oxidative stress_ROS-Induced cellular signaling”
(Figure 10 and Supplementary Table 6). Genes
coexpressed with CRY2 were correlated with
“Cytoskeleton  remodeling_Regulation of actin
cytoskeleton nucleation and polymerization by Rho
GTPases”, “Development Regulation of lung epithelial
progenitor cell differentiation”, and “Cytoskeleton
remodeling_Regulation of actin cytoskeleton organiza-
tion by the kinase effectors of Rho GTPases” (Figure 11
and Supplementary Table 7).

Relationships between expressions of circadian
factors in the PER and CRY families with immune
infiltration in LUAD

In the current research, some relationships between the
immune system and circadian rhythms were discovered.
For example, it is believed that PER and CRY are related
to the inflammasome [28]. It is, however, unclear
whether PER and CRY are related to immune cell
infiltration in LUAD patients. TIMER was utilized to
understand relationships between immune infiltration
and circadian factor expressions in LUAD (Figure 12A).

The analysis showed that expressions of PER1 and
PER2 were only positively related to infiltration of
cluster of differentiation 4-positive (CD4*) T cells.
PER3 expression was positively related to the infiltration
of B cells, CD8* T cells, CD4* T cells, macrophages,
neutrophils, and dendritic cells (DCs). CRY1 expression
was positively related to the infiltration of macrophages
and neutrophils. CRY2 expression was positively
related to the infiltration of B cells, CD4* T cells,
macrophages, and DCs. These results demonstrated that
the circadian-related factors of the PER and CRY
families were related to immune infiltration in LUAD
patients.

In addition, somatic copy number alterations (CNAS) of
circadian factors were significantly associated with
infiltration levels (Figure 12B). Among them, CNAs of
PER1 affected the infiltration level of B cells, CD4* T
cells, macrophage, neutrophil, and DCs; CNAs of PER2
affected the infiltration levels of B cells, CD4* T cells,
macrophage, and neutrophils; CNAs of PER3 affected
the infiltration levels of B cells, CD8* T cells, CD4* T
cells, and macrophages; CNAs of CRY1 affected the
infiltration levels of B cells, CD4* T cells, and
macrophages; and CNAs of CRY2 affected the
infiltration levels of B cells and CD4* T cells. These
results demonstrated that genetic alterations of the PER
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and CRY families in LUAD led to changes in immune
infiltration levels.

We also utilized the TISIDB database to understand
relationships between various immune checkpoints and
circadian factors (Figure 13). The results showed that
the expression of PER1 was correlated with CD274 (rho
=-0.157, p = 0.000349) and PDCD1LG2 (rho = -0.179,
p = 4.41E-05) (Figure 13A); the expression of PER2
was correlated with CD274 (rho = -0.336, p = 6.03E-
15), CTLA4 (rho = -0.189, p = 1.63e-05), PDCD1 (rho
=-0.163, p = 0.000204), and PDCD1LG2 (rho = -0.348,
p = 3.83e-16) (Figure 13B); the expression of PER3 was
correlated with CD274 (rho = 0.102, p = 0.0203)
(Figure 13C); the expression of CRY1 was correlated
with CD274 (rho = -0.126, p = 0.00413), CTLAA4 (rho
-0.096, p = 0.0284), and PDCD1 (rho = -0.138, p
0.00164) (Figure 13D); and the expression of CRY2 was
correlated with CD274 (rho = -0.259, p = 2.53E-09),
CTLAA4 (rho = -0.151, p = 0.000557), PDCD1 (rho = -
0.203, p = 3.41E-06), and PDCD1LG?2 (rho = -0.223, p

1.2 3 45 6 7 _og(pvalue)

= 3.22e-07) (Figure 13E). Finally, we used the TISMO
database to recognize whether the expressions of
circadian  factors were affected by different
immunotherapies (Figure 14). Expressions of circadian
rhythm factors in an LLC (lung carcinoma) cancer
model changed under stimulation with different
cytokines (Figure 14A). However, the expressions of
these circadian factors were not significantly affected
under different immune checkpoint blockade treatments
(Figure 14B).

DISCUSSION

The physiological behavior of animals often exhibits
periodic changes to adapt to repeated environmental
changes. The most typical one is the sleep-wake cycle,
and others include neurological, metabolic, endocrine,
cardiovascular, and immune functions [46]. There are
very close links between circadian rhythms and sleep.
Both circadian rhythms and sleep play important roles
in disease and health, which complicates the process of
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finding links between circadian rhythms and diseases.
This study is the first attempt to elucidate possible links
between some gene families associated with circadian
rhythms and LUAD.

Previous studies showed that an imbalance of circadian
rhythm-related factors may lead to the occurrence of
cancer. At present, circadian rhythm-related factors have
been discovered, and the basic operation mode of
circadian rhythms has been established. PER and CRY
family members were found to be basic factors in
modulating  circadian  rhythms [47], and their
relationships with many types of cancer have been
explored. Previous studies showed that circadian rhythm-
related factors such as the ARNTL, CLOCK, RORA,
RORB, CRY1, CRY2, and PER3 genes were associated
with a higher risk of lung cancer [48]. Moreover, some
genes of numerous circadian factors can affect the
prognosis of NSCLC and changes in immune infiltration
and cell functions. Many circadian factors are involved in
numerous biological processes, such as inhibiting levels
of immune cell infiltration. However, no study has
discussed whether the PER and CRY families have the
same effect on lung cancer development [49].

Thus, this is the first study to use bioinformatics to
analyze and discuss different PER and CRY
transcription levels, genetic variations, molecular
functions, diseases, and their relationships with
prognoses and immune infiltration in LUAD patients.
We conducted an Oncomine database analysis and
found that compared to normal tissues, expressions of
circadian rhythm-related factors of PER1, PER2, PER3,
CRY1, and CRY2 in LUAD tissues were relatively low.
Consistently, expressions of PER1 and CRY2 were
found in a GEPIA2 analysis to be lower than in normal
tissues. Moreover, the KM analysis showed that high
expression levels of PER2, PER3, CRY1, and CRY2 in
LUAD patients were related to a better OS.

In addition, PER and CRY family members were found to
have higher mutation rates (29.42%) in LUAD patients.
Mutually exclusive coexpressions were found between
differentially expressed PER and CRY family members
(mainly coexpression), which meant that LUAD might be
induced by the co-inhibition of these gene family
members. Furthermore, a molecular mechanism pathway
analysis demonstrated that the functions of PER- and
CRY-related genes were mainly involved protein-binding,
cell-cycle, histidine-metabolism, and progesterone-
mediated oocyte-maturation pathways. In particular,
progesterone-mediated oocyte-maturation pathways and
the cell cycle were previously demonstrated to be
correlated with LUAD [50]. Histidine metabolism was
also related to the oncogenic function of FAM83A in
LUAD [51]. Therefore, the development and inhibition

of these pathways may respectively be related to the
occurrence and development of LUAD. Results indicated
that differentially expressed PER and CRY family
members in LUAD have the potential to become crucial
genes for targeted therapy.

We also analyzed MetaCore and found genes that are
coexpressed with PER and CRY family members and the
functions associated with those genes. We found that
there were many signaling pathways involved in
immune evasion, cancer migration and proliferation,
and other functions. Among them, PER1 was related
to the Immune response_IL-6 signaling pathway via
JAK/STAT. Interleukin (IL)-6 can be found in all
human inflammatory diseases and cancers due to its
dysregulation and overexpression [52]. It is also known
that IL-6-activated Janus kinase 1 (JAK1) might lead to
the phosphorylation of Y112 of programmed death
ligand 1 (PD-L1) and consequently induce cancer
immune evasion [53]. The top three pathways related to
PER2 included a G-protein signaling RhoA regulatory
pathway, cell adhesion tight junctions, and development
positive regulation of WNT/Beta-catenin signaling in the
cytoplasm, which are all related to the function of cell
migration [54-56]. Therefore, overexpression of PER2
may allow cancer cells to easily migrate and spread.
Signaling pathways associated with PER3 were more
related to gastrin, including the development of gastrin
in cell growth and proliferation, and immune response of
gastrin in the inflammatory response. Gastrin is currently
considered to be related to cancer development,
proliferation, and anti-apoptosis in addition to digestion-
related functions [57]. The CRY1-related pathway was
the WNT signaling pathway. The canonical WNT
signaling pathway is associated with cell migration, and
the WNT5A non-canonical signaling pathway was also
found to be associated with a variety of human cancers
[58]. Finally, CRY2 was mainly related to the
cytoskeletal remodeling regulation signaling pathway.
The abnormality of cytoskeletal remodeling was related
to the invasion and metastasis of cancer cells in previous
research [59]. These findings revealed possible related
cancer pathways of PER and CRY family members and
provide insights into why dysregulation of circadian
rhythms may contribute to cancer development.

Previous studies demonstrated that deregulation of
circadian clock genes was indicated in the development
of cancers. Melatonin can resynchronize rhythmic
patterns of gene expressions, correcting defects in
various circadian rhythm oncogenes. Melatonin also
inhibits myeloperoxidase catalytic activity [60], which
is crucial for tumorigenesis. The action of melatonin
requires two receptors known as MT1 and MT2, and
these two receptors are present in high densities in the
SCN and other organ parts, which may indicate that
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melatonin affects other organ systems in addition to the
SCN [61]. For instance, the mean nocturnal melatonin
level ratio and melatonin nocturnal levels decrease in
patients with untreated LUAD [62]. Expression levels
of the CRY/ and BMALI core-clock genes were
correlated with clinical parameters in epithelial ovarian
cancer [63, 64]. Melatonin can inhibit the development
of breast cancer by interfering with estrogen [65], and
has a certain degree of benefit in colorectal cancer in the
elderly [66]. In addition, melatonin has functions of
stimulating cell apoptosis, regulating cell survival and
tumor-related metabolism, and inhibiting angiogenesis
[67]. In the cytokine signaling pathway, PER1
expression is suppressed by tumor necrosis factor
(TNF)-a, and knockdown of PER1 decreases the
proliferation of pancreatic carcinoma cells [68]. These
findings correspond to our results that PER and CRY
family members and related circadian clock genes
interfere  with melatonin secretion and circadian
rhythms, which have effects on pathogeneses of
malignancy.

Circadian rhythms can directly interact with components
of the immune system, thereby affecting aspects of the
immune system such as inflammation. Recent studies
also indicated that phagocytosis, migration of
inflammatory or infected tissues, cytolytic activity, and
proliferative responses to antigens are closely related to
circadian rhythms [69]. Furthermore, our data
demonstrated that immune cell infiltration in LUAD
patients was related to expressions of PER and CRY
family members. In LUAD, expressions of PER1 and
PER2 were positively correlated with the immune
infiltration of cluster of differentiation 4-positive (CD4*)
T and natural killer (NK) cells. CRY1 expression was
positively correlated with the infiltration of NK cells,
macrophages, and neutrophils, and CRY2 was correlated
with the infiltration of NK cells, B cells, CD4* T cells,
macrophages, and DCs. PER3 was connected to the
immune infiltration of NK cells, B cells, CD8" T cells,
CD4* T cells, macrophages, neutrophils, and DCs.
Additionally, it was found that circadian rhythm factors
were negatively correlated with the expressions of
immune checkpoint-related genes. Further analysis of
TISMO found that circadian rhythm factors had no
significant relationships with immune checkpoint
blockades, but were more related to stimulation of
cytokines. These results suggest that circadian rhythm
factors may contribute to increases in levels of partial
immune infiltration by downregulating expressions of
immune checkpoint genes [70-73].

Our results correspond to other research in
immunotherapy [74]. PER1 and CRY2 were correlated
with the expression of CD4* T cells, and the expression
of PD-1 exhibited a robust circadian rhythm in normal

lung tissues [75], which supported the results that
circadian rhythm factors might downregulate expressions
of immune checkpoint factors and thus enhance the
effects of immunotherapy in LUAD. Although there is a
lack of further evident clinical data to prove our
hypothesis, we propose a positive association between
circadian rhythm factors and immunity.

Taken together, the results indicated that PER1 and
CRY?2 are significantly downregulated in LUAD. Except
for PERL, high expressions of PER2, PER3, CRY1, and
CRY2 lead to better OS in LUAD patients. In the
functional analysis of these circadian coexpressed
genes, many factors related to cancer development were
also found. In addition, PER1, PER2, PER3, CRY1, and
CRY2 were related to six different immune cells to
varying degrees, which may be related to the
downregulation of different immune checkpoints. Given
the above results, these circadian rhythm factors may be
involved in tumor immunity of LUAD. PER and CRY
family members could be novel and promising
prognostic biomarkers of LUAD.

In summary, we used several high-throughput
bioinformatics databases to analyze and investigate
gene expressions of PER and CRY family members and
their influences. The present study may help us better
understand the molecular functions of circadian rhythm-
related factors in LUAD and may provide possible
molecular targets for LUAD in chemotherapy and
immunotherapy.

MATERIALS AND METHODS
UALCAN database analysis

UALCAN (http://ualcan.path.uab.edu/) is an online tool
for analyzing cancer OMICS data and was used to
analyze the relationship between gene expressions and
various cancers. Its functions include (1) analysis of the
relative expressions of genes in tumor and normal
samples, (2) analysis of the effects of gene expressions
on survival rates of different cancer patients, and (3)
analysis of high and low expressions of genes in
different cancer samples. These helped us understand
expression levels of circadian factors in different cancer
types [76].

GeneMANIA

GeneMANIA (https://genemania.org/), an online server
for prediction, is used to prioritize genes and predict
gene function biological networks [77]. This tool was
used to understand relationships between circadian
rhythm-related genes in the PER and CRY families and
other genes, and to establish a network.
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Cancer cell line encyclopedia (CCLE) analysis

Cancer cell lines are the most relevant approach in
cancer biology research to verify targets and determine
drug efficacies (https://portals.broadinstitute.org/ccle).
This platform was established with multiple human
cancer cell lines (n = 1457) and plenty of unique
datasets (n = 136,488) [78]. Of interest, we obtained
gene expression levels in 198 lung cancer cell lines and
visualized the data with default settings as in our
previous studies [79-82].

Gene expression profiling interactive analysis
dataset analysis 2 (GEPIA2)

GEPIA2  (http://gepia2.cancer-pku.cn/#index), an
upgraded version of GEPIA, is a web-based data
platform that can be used to compare tumor tissues and
normal tissues, and provides 60,498 genes and 198,619
isoforms for querying. Like the older version of GEPIA,
functions include differential expression analyses,
spectrogram drawing, correlation analyses, patient
survival analyses, similar gene detections, and
dimensionality reduction analyses. In addition, some of
the original older functions have been upgraded, and
there are also new functions such as survival maps,
isoform use profiling, uploaded expression data
comparisons, and cancer-subtype classifiers [83, 84].

The Kaplan-Meier (KM) plotter analysis

The KM plotter (https://kmplot.com/analysis/), an
online database with gene expression and clinical data,
can be used to analyze relationships between gene
expressions and cancer survival rates. Types of cancer
that can be analyzed include lung cancer [85], breast
cancer [86], ovarian cancer [87], gastric cancer [88],
liver cancer [89] and pan-cancer [90]. We used this tool
to understand prognostic values of expression levels of
the circadian rhythm-related PER1, PER2, PERS,
CRY1, and CRY2 genes in lung cancer patients and
analyzed the OS of lung cancer patients under
expressions of related genes, as well as the number of
patients, median values of messenger (m)RNA
expressions, 95% confidence intervals (Cls), hazard
ratios (HRs), p values, and other related information.

The cancer genome atlas (TCGA) data and
cBioPortal

TCGA is an open database with genome sequencing and
related pathological data of more than 30 human tumors
[91]. We selected LUAD data (TCGA, PanCancer
Atlas) containing 503 pathological reports, and further
used the cBioPortal (https://www.cbioportal.org/) to
analyze expression levels, coexpressions, and network

analyses of circadian rhythm-related genes of PER and
CRY family members [92-94].

STRING analysis

STRING (https://string-db.org/) is a biological database
and web resource for searching and predicting protein-
protein interactions (PPIs) [95]. In this study, we used
this tool to understand proteins related to the PER and
CRY families, and establish a relationship network.

DAVID analysis

DAVID (https://david.ncifcrf.gov/) is a database that
aims to provide functional explanations for a large
number of genes from genome research. DAVID has four
analytical modules, namely Annotation Tool, GoCharts,
KeggCharts, and DomainCharts [96, 97]. In the study, we
used this tool to understand gene functions of the PERL1,
PER2, PER3, CRY1, and CRY2 gene lists after cross-
comparisons of different databases to evaluate how
PER1, PER2, PER3, CRY1, and CRY2 affect molecular
functions and may be related to various diseases.

Tumor immune estimation resource (TIMER)
analysis

TIMER (cistrome.shinyapps.io/timer) and its upgraded
version TIMER2.0 (http://timer.cistrome.org/) were
established to study interactions between malignant
cells and host immune systems. It can be used to
understand relationships between genes and tumor-
infiltrating immune cells and evaluate their clinical
impacts [98-101]. This analytical website was used to
evaluate the impacts of PER and CRY family gene
expressions on tumor-infiltrating immune cells.

TISIDB

TISIDB (http://cis.hku.hk/TISIDB/) is an integrated
repository portal for tumor-immune system interactions,
which integrates multiple  heterogeneous data
types including the PubMed database, genomics,
transcriptomics, and clinical data of 30 cancer types
from TCGA, high-throughput screening data, exome
and RNA sequencing datasets of patients, and other
public databases including UniProt, GO, DrugBank, etc.
It can be used to analyze correlations between immune
checkpoint factors and circadian factors [102].

TISMO database analysis

TISMO (http://tismo.cistrome.org/) is a database for
hosting and analyzing an extensive collection of
syngeneic mouse model data. The entire repository
contains raw sequencing data from 1518 mouse
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samples, including 68 cell lines and 19 cancer types,
which can be used to analyze relationships between
cancers receiving different treatments (e.g., cytokines
and immune checkpoint blockade) and gene expressions
of circadian factors [103].

Functional enrichment analysis

The MetaCore platform was used to identify cancer risk
pathways and tumorigenesis in enrichment pathways as
we previously described. Expression profiles of TCGA
dataset on PER1, PER2, PER3, CRY1, and CRY2 gene
expressions were pooled and in-depth integrated to
describe potential key candidate genes and pathways in
lung cancer [104-107].

Statistical analysis

We utilized TCGA Pan-Cancer Atlas, a dataset from
cBioPortal, to obtain patient data and query the effects
of the expressions of different PER and CRY family
members on overall survival (OS). For the survival
analysis, a KM plotter was applied, with all default
settings, and recurrence-free survival (RFS) was
preferred, with the auto-best cutoff values and J best
probe set. All possible cutoff values between the lower
and upper quartiles were determined, and the best
presenting threshold was subsequently used as the
cutoff. A log-rank p value of <0.05 was considered
statistically significant [84, 108, 109].
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SUPPLEMENTARY MATERIALS

Supplementary Figures

Expression of PER1 across TCGA cancers (with tumor and normal samples)
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Expression of PER2 across TCGA cancers (with tumor and normal samples)
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Tumor Normal
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Expression of CLOCK across TCGA cancers (with tumor and normal samples)

Supplementary Figure 1. Expressions of circadian factor family members in patients with different types of cancer (UALCAN

database). The blue box represents the expression of the gene in general tissues, and the red box represents the expression of the gene in
cancer.
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Supplementary Figure 2. Transcription levels of circadian rhythm-related factors of the period (PER) and cryptochrome (CRY)
family members in different types of cancer (Oncomine). This figure shows a dataset with statistically significant mRNA
overexpression (red) or downregulated expression (blue) of circadian rhythm-related PER and CRY family factors with the following
parameter design thresholds of a multiple of change of 1.5 and a p value of <0.05.
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Supplementary Figure 3. cBioPortal analysis of circadian rhythm-related gene changes in small cell lung cancer (SCLC) and its
impact on overall survival in SCLC patients.
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Supplementary Figure 4. Analysis of protein-protein interactions of PER (period) and CRY (cryptochrome) family members of
lung adenocarcinoma (LUAD) patients and the network constructed by STRING. (A) Network of PER1, PER2, and PER3. (B) Network
of CRY1 and CRY2.
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Supplementary Figure 5. KEGG pathway with the highest correlations with individual PER (period: PER1, PER2, and PER3),
and CRY (cryptochrome) family members. (A) KEGG pathways of PER2. (B) KEGG pathways of PER3. (C) KEGG pathways of CRY family
members.
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Supplementary Tables

Please browse Full Text version to see the data of Supplementary Tables 2—7.

1.

Supplementary Table 1. Significant changes in transcriptional levels of circadian rhythm-
related PER (period) and CRY (cryptochrome) family members in lung adenocarcinoma
(LUAD) patients (using the Oncomine database).

LUAD vs. normal Fold change t- test P-value Ref

PER1 Lung Adenocarcinoma -5.555 -5.002 3.35E-5 [1]

Lung Adenocarcinoma -1.717 -6.597 1.38E-7 [2]

Lung Adenocarcinoma -2.125 -10.850 8.29E-19 [3]

Lung Adenocarcinoma -1.861 -5.451 6.23E-7 [4]

Lung Adenocarcinoma -2.148 -7.754 1.77E-8 [5]

PER2 Lung Adenocarcinoma -1.803 -5.958 1.29E-7 [4]

PER3 Lung Adenocarcinoma -2.024 -6.727 1.05E-9 [6]

CRY1 Lung Adenocarcinoma -2.058 -5.304 1.39E-6 [4]

Lung Adenocarcinoma -1.702 -8.168 5.10E-13 [6]

CRY2 Lung Adenocarcinoma -1.836 -8.556 9.60E-13 [6]

Lung Adenocarcinoma -3.450 -4.537 2.47E-5 [4]
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Supplementary Table 2. Analysis of gene oncology (GO) molecular function enrichment and online mendelian
inheritance in man (OMIM) diseases of PER1, PER2, PER3, CRY1, and CRY2, and related genes in lung
adenocarcinoma (LUAD) (using the DAVID database).

Supplementary Table 3. Pathway analysis of genes coexpressed with PER1 from public lung cancer databases using
the MetaCore database (with p<0.05 set as the cutoff value).

Supplementary Table 4. Pathway analysis of genes coexpressed with PER2 from public lung cancer databases using
the MetaCore database (with p<0.05 set as the cutoff value).

Supplementary Table 5. Pathway analysis of genes coexpressed with PER3 from public lung cancer databases using
the MetaCore database (with p<0.05 set as the cutoff value).

Supplementary Table 6. Pathway analysis of genes coexpressed CRY1 from public lung cancer databases using the
MetaCore database (with p<0.05 set as the cutoff value).

Supplementary Table 7. Pathway analysis of genes coexpressed with CRY2 from public lung cancer databases using
the MetaCore database (with p<0.05 set as the cutoff value).
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