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INTRODUCTION 
 

The liver is a key organ for glucose storage, 

detoxification and processing of exogenous substances, 

lipid and cholesterol homeostasis, metabolism, 

endocrine regulation of growth signals, and immune 

surveillance [1]. However, it is susceptible to 

environmental and genetic risk factors that increase the 

incidence of liver cancer, including oncogenic viral 

infection with hepatitis B virus (HBV) or hepatitis C 

virus (HCV), alcoholism, metabolic syndrome 

associated with obesity and diabetes [2]. Currently, 
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ABSTRACT 
 

Traditional Chinese medicine (TCM) is a promising and effective treatment for cancer with minimal side effects 
through a multi-active ingredient multitarget network. Radix Bupleuri and Rhizoma Cyperi are listed as herbs 
dispersing stagnated liver Qi in China. They have been used clinically to treat liver diseases for many years and 
recent pharmacological studies have shown that they inhibit the proliferation of hepatocellular carcinoma 
(HCC). However, the pharmacological mechanisms, potential targets, and clinical value of the Radix Bupleuri-
Rhizoma Cyperi herb pair (CXP) for suppressing HCC growth have not been fully elucidated. We identified 44 
CXP targets involved in the treatment of HCC using the GEO dataset and HERB database. An analysis of the 
Traditional Chinese Medicine System Pharmacology Database (TCMSP) showed that CXP exerts synergistic 
effects through 4 active ingredients, including quercetin, stigmasterol, isorhamnetin, and kaempferol. GO and 
KEGG analyses revealed that CXP mainly regulates HCC progression through metabolic pathways, the p53 
signaling pathway, and the cell cycle. Additionally, we applied The Cancer Genome Atlas (TCGA)-liver 
hepatocellular carcinoma (LIHC) database to perform the expression patterns, clinical features, and prognosis of 
6 genes (CCNB1, CDK1, CDK4, MYC, CDKN2A, and CHEK1) in cell cycle pathways to reveal that CXP suppresses 
HCC clinical therapeutic value. Moreover, based on molecular docking, we further verified that CXP exerts its 
anti-HCC activity through the interaction of multiple active components with cell cycle-related genes. We 
systematically revealed the potential pharmacological mechanisms and targets of CXP in HCC using multilevel 
data integration and molecular docking strategies. 
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hepatocellular carcinoma (HCC) is a global health 

problem with increasing morbidity and mortality rates. 

HCC accounts for approximately 90% of all primary 

liver cancers, is the most common type of liver cancer, 

and is the fourth leading cause of death worldwide [3, 

4]. At present, four commonly used treatment methods 

are available for early-stage HCC, namely, transcatheter 

arterial chemoembolization, liver transplantation, 

radiofrequency ablation, and surgical resection [5, 6]. In 

fact, most patients are diagnosed with HCC in the 

middle or late stages of the disease, and thus only 

systemic therapies (targeted therapy and 

immunotherapy) are still available for these patients. 

Several first-line drugs, including sorafenib and 

lenvatinib, have been shown to improve patient overall 

survival when administered as single agents [7]. 

However, only approximately 30% of patients benefit 

from sorafenib, and the therapy has moderate or severe 

side effects [8]. Therefore, the development of more 

effective and less toxic HCC therapies is still urgently 

needed. 

 

Traditional Chinese medicine (TCM), one of the most 

popular complementary and alternative medicine 

models in China, has been used clinically in Asia for 

thousands of years. Meanwhile, TCM has been 

gradually accepted by non-Chinese people because of 

its efficacy, accessibility, and lower toxicity. Several 

studies have shown that TCM formulas used alone or as 

an adjunct to conventional chemotherapy have shown 

good efficacy in the clinical treatment of cancer, 

including HCC and lung cancer [9–13]. In TCM theory, 

the synergistic effect of ‘herb-pair’ (Yaodui in Chinese) 

plays a key role in prescriptions [14]. Both Radix 

Bupleuri and Rhizoma Cyperi are considered the chief 

herbs for soothing the liver, and their combination is 

believed to produce a synergistic effect that increases 

the efficacy, but this synergistic effect still lacks support 

from modern pharmacological evidence. Nevertheless, 

Radix Bupleuri (Chai Hu)-Rhizoma Cyperi (Xiang Fu), 

a common herb pair, is widely used as an important 

ingredient in liver-soothing prescriptions in China. For 

example, Radix Bupleuri (Chai Hu)-Rhizoma Cyperi 
(Xiang Fu) herb pair (CXP) is an important component 

of the classic prescription Chaihu Shugan San (CSS), 

which was first recorded in the ‘Jing Yue Quan Shu’ in 

the Ming Dynasty [15]. Modern pharmacological 

studies have shown that CSS inhibits hepatic injury, 

especially in individuals with NAFLD [16, 17]. 

Furthermore, studies have shown that Radix Bupleuri or 

Rhizoma Cyperi administered as a single herb exhibits 

significant anticancer activity against HCC cells [18, 

19]. Additionally, phytochemicals in both herbs have 
been reported to exert anticancer effects in vivo and in 

vitro, including on HCC [20, 21]. However, the 

comprehensive ingredients in CXP and the mechanisms 

underlying its multiple synergistic anti-HCC effects 

have not yet been completely elucidated. 

 

Despite many technological advances, experimental 

elucidation of the interaction of a large number of 

compounds in CXP with proteins in HCC and the 

underlying pharmacological mechanisms is still 

difficult. With the rapid development of systems 

biology and polypharmacology, the emergence of 

network pharmacology has provided great opportunities 

for breakthroughs in TCM research [22]. To date, this 

method has been successfully used to elucidate the 

multitarget effects of TCM treatments on various 

diseases [23, 24]. It not only effectively bridges the gap 

between Western medicine and traditional medicine but 

also improves our understanding of the pharmacological 

mechanisms underlying the synergistic effects of herb 

pairs. In the present study, we employed various 

biological databases and biocomputational methods to 

investigate the pharmacological network of CXP in 

HCC and predict active compounds and their potential 

protein targets and pharmacological mechanisms. The 

overall flowchart of the study is shown in Figure 1. 

 

RESULTS 
 

Identification of significantly differentially expressed 

genes (DEGs) in HCC 

 

The GEO dataset GSE60502 was analyzed to identify 

DEGs in adjacent nontumor liver tissues and HCC 

tissues. First, an expression matrix was constructed with 

18 pairs of samples, the nonlinear dimensionality 

reduction algorithm UMAP was used to determine two 

clusters, and each sample was assigned to the nearest 

cluster. The results showed a clear difference between 

the two groups (Figure 2A). Notably, 1110 DEGs (491 

up-regulated and 619 down-regulated) were identified 

between noncancerous and cancerous tissues, as shown 

in the volcano plot (Figure 2B). In addition, subsets of 

the top 50 up- and downregulated DEGs were depicted 

in heatmaps (Figure 2C and 2D). 

 

Functional enrichment analysis of DEGs in HCC 

 

A GO enrichment analysis was performed to further 

investigate the biological functions of the 1110 DEGs. 

We constructed bubble plots to display the top 20 

enriched GO terms. The top 20 enriched GO terms 

showed that these DEGs were mainly enriched in 

metabolic processes (Figure 2E), including the 

following: “carboxylic acid metabolic process 

(GO:0019752)”, “organic acid metabolic process 

(GO:0006082)”, “oxoacid metabolic process 

(GO:0043436)”, “small molecule metabolic process 

(GO:0044281)”, “monocarboxylic acid metabolic 
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Figure 1. Flowchart of the analytical procedures used in the study. 

 

 
 

Figure 2. Identification and enrichment analysis of DEGs in adjacent nontumor liver tissues and HCC tissues. (A) The UMAP 

scatter plot. (B) The expression patterns of DEGs are shown in volcano plots. Red and blue dots represent upregulated genes (log2FC ≥ 1) and 
downregulated genes (log2FC ≤ −1), respectively, while gray represents genes with no significant difference in expression (P.adj < 0.05). 
Heatmap analysis of the top 50 up- (C) and downregulated (D) DEGs. Bubble plot showing the top 20 enriched GO terms (E) and KEGG (F) 
pathways. The larger the ordinate value in the bubble chart, the more significant the corresponding GO or KEGG result. The abscissa represents 
the normalized upregulation and downregulation value (the ratio of the difference between the number of upregulated genes and the number 
of downregulated genes to the total number of DEGs). The higher the value, the greater the number of upregulated genes enriched in the 
GO/KEGG pathway; conversely, the lower the value, the higher the number of downregulated genes enriched in the GO/KEGG pathway. 
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process (GO:0032787)”, “drug metabolic process 

(GO:0017144)”, “steroid metabolic process 

(GO:0008202)”, and “lipid metabolic process 

(GO:0006629)”. Moreover, these metabolic processes 

were mainly regulated by the downregulation of DEGs. 

 

Additionally, in the KEGG pathway analysis, the top 

20 KEGG pathways related to the 1110 DEGs were 

identified (Figure 2F). KEGG pathways were 

particularly enriched in three categories, including 

metabolism, organismal systems, and cellular 

processes. In particular, 15 of the 20 pathways were 

involved in the metabolism category, including 

“Metabolic pathways (ko01100)”, “Fatty acid 

degradation (ko00071)”, “Drug metabolism – 

cytochrome P450 (ko00982)”, “Metabolism of 

xenobiotics by cytochrome P450 (ko00980)”, “Fatty 

acid metabolism (ko01212)”, Tyrosine metabolism 

(ko00350)”, and “Carbon metabolism (ko01200)”. The 

category of organismal systems consists of two 

pathways, “Complement and coagulation cascades 

(ko04610)” and “PPAR signaling pathway (ko03320)”. 

The cellular processes category also consists of two 

pathways, “Cell cycle (ko04110)” and “p53 signaling 

pathway (ko04115)”. Notably, among these 20 

KEGGs, upregulated DEGs were only significantly 

enriched in the cellular process category. 

 

Protein–protein interaction (PPI) network and 

module analysis of DEGs in HCC 

 

Next, the PPI network was constructed to reveal the 

interconnections and roles of these 1110 DEGs. These 

1110 DEGs (|log2FC| >1) were input into the STRING 

database to construct a PPI network. The results were 

obtained according to an interaction score ≥0.9 and 

hidden disconnected nodes to improve the reliability of 

the PPI network [25]. This PPI network is extremely 

complex, containing 1080 nodes and 2405 interactions 

(Figure 3A). By calculating the degree of this PPI 

 

 
 

Figure 3. PPI network analysis of DEGs in HCC. (A) PPI network analysis of 1110 DEGs (right panel, STRING database) and 224 DEGs 
(left panel, Metascape web tool). (B) MCODE module for the gene clustering analysis. 
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network, we concluded that CDK1 (degree = 91), 

CCNB1 (degree = 72), and TOP2A (degree = 62) were 

the top three hub genes in this network (Supplementary 

Table 1). Limited by the complexity of the 

aforementioned network, we next selected DEGs with 

|log2FC| >2 to further construct the PPI network and 

deeply explored the key connections and hub genes of 

the network. A total of 224 DEGs (71 up- and 153 

downregulated genes) were screened and input into the 

Metascape web tool to construct a PPI network 

consisting of 171 nodes and 404 edges. CDK1 (degree = 

27), CYP2E1 (degree = 19), and KIF20A (degree = 17) 

were hub genes with higher node degrees in this PPI 

network (Supplementary Table 2). The Molecular 

Complex Detection (MCODE) algorithm was then 

applied to this network to identify neighborhoods where 

proteins were densely connected. Eight MCODE 

networks identified for individual gene lists have been 

gathered and are shown in Figure 3B. Furthermore, 

pathway and process enrichment analyses were 

independently applied to each MCODE component, and 

the three best-scoring terms based on P values were 

retained as functional descriptions of the corresponding 

components, as shown in Supplementary Table 3. Most 

of these MCODE components were enriched in 

metabolism-related pathways or processes. 

Active compounds and potential therapeutic targets 

of CXP 

 

According to the two criteria of drug-likeness (DL)  

≥0.18 and oral bioavailability (OB) ≥30% [26, 27], 31 

CXP-active compounds were identified in the 

Traditional Chinese Medicine System Pharmacology 

Database (TCMSP) (Supplementary Table 4). The 

results showed that Radix Bupleuri and Rhizoma Cyperi 
contained 17 and 18 active ingredients, respectively, 

and both contained the four active compounds 

quercetin, stigmasterol, isorhamnetin, and kaempferol. 

The structures of these compounds are shown in 

Figure 4. After removing duplicate values, 196 potential 

targets of 17 active compounds of Radix Bupleuri were 

obtained from the HERB database. Similarly, 159 

potential targets of 18 active compounds of Rhizoma 

Cyperi were obtained. Finally, 230 potential targets  

of 31 CXP active ingredients were identified 

(Supplementary Table 5). 

 

Target screening and network analysis of CXP in the 

treatment of HCC 

 

The comparison of the potential targets of the active 

components in CXP with the 1110 candidate targets of 

 

 
 

Figure 4. Chemical structures of some active ingredients of CXP. 
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the DEGs from the mRNA array in HCC showed an 

overlap of 44 targets, as shown in Figure 5A and 

Supplementary Table 5. The specific positions of these 

44 targets in the HCC-DEGs volcano plot are shown in 

Figure 5B, and 16 targets were upregulated and 28 were 

downregulated in HCC. Among them, CDK1, TOP2A, 

CCNB1, ESR1, CYP1A2, and ADRA1A had higher -

Log10 (P.adjust) in the volcano plot of HCC-DEGs. In 

the Venn diagram, both Radix Bupleuri and Rhizoma 
Cyperi exerted anti-HCC effects through 25 common 

potential targets. We speculated that these comment 

targets may explain why CXP exerts a synergistic anti-

HCC pharmacological effect. We constructed a network 

of Herb-Compound-Targets (H-C-T) to further 

understand the interconnectedness of herbs, active 

compounds, and potential anti-HCC targets (Figure 5C). 

Both herbs exerted their anti-HCC effects on multiple 

targets mainly through four active ingredients, namely, 

quercetin, stigmasterol, isorhamnetin, and kaempferol. 

Meanwhile, the results suggested that ESR1, AR, 

PTGS2, CHEK1, and CA2 are the main targets 

regulated by multiple active components of CXP. 

 

We constructed a PPI network and performed MCODE 

analysis and annotation on this network to further 

investigate the intrinsic connectivity of potential anti-

HCC targets of CXP (Figure 5D). The PPI network 

contained 73 connections and 2 MCODE networks. 

Notably, MCODE2 annotated 3 metabolic pathways or 

processes with significant enrichment, including “estrogen 

metabolism (log10 (P) = −12.3)”, “long-chain fatty acid 

metabolic process (log10 (P) = −12.2)”, and “fatty acid 

biosynthetic process (log10 (P) = −12.1)” (Supplementary 

Table 6). All mapped intersecting proteins were input into 

Cytoscape software to calculate the topological 

parameters of the PPI network related to CXP against 

HCC. The analysis identified that the genes in the 

MCODE1 and MCODE2 networks had high degrees, 

including the proteins CDK1 and CDK4, which are 

related to the regulation of the cell cycle, and the proteins 

CYP1A2, GSTM1, CYP3A4, and CYP1A1, which are 

related to metabolism (Supplementary Table 7). 

 

Functional enrichment and network analyses of 

potential targets of CXP for the treatment of HCC 

 

The GO enrichment analysis identified the top 20 GO 

terms in the cellular component, molecular function, 

and biological process categories. In terms of these top 

20 GO terms (Figure 6A–6C), CXP treatment of HCC 

 

 
 

Figure 5. PPI and H-C-T network analysis of 44 potential therapeutic targets for CXP in HCC. (A) Venn diagram. (B) The 

distribution of 44 potential therapeutic targets of CXP in the treatment of HCC in the volcano plot of DEGs in HCC. (C) H-C-T network 
analysis. (D) PPI network and gene clustering analysis (Metascape web tool). 
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mainly involves the regulation of “response to oxygen-

containing compound (GO:1901700)”, “response to 

lipid (GO:0033993)”, “cellular response to chemical 

stimulus (GO:0070887)”, “heme binding 

(GO:0020037)”, “tetrapyrrole binding (GO:0046906)”, 

“estrogen 2-hydroxylase activity (GO:0101021)”, 

“cyclin B1-CDK1 complex (GO:0097125)”, 

“endoplasmic reticulum (GO:0005783)”, and 

“cytoplasmic part (GO:0044444)”, among others. 

Moreover, we performed a secondary classification of 

all the enriched GO terms, and the results showed that 

in the biological process category, the GO terms were 

mainly involved in cellular processes, metabolic 

processes, and biological regulation (Figure 6D). 

 

In addition, we identified the top 20 KEGG pathways 

involved in CXP treatment of HCC by performing a 

KEGG enrichment analysis, including “p53 signaling 

pathway (ko04115)”, “Cellular senescence (ko04218)”, 

“Bladder cancer (ko05219)”, “Chemical carcinogenesis 

(ko05204)”, “IL-17 signaling pathway (ko04657)”, 

“Pathways in cancer (ko05200)”, “Endocrine resistance 

(ko01522)”, “Hepatocellular carcinoma (ko05225)”, 

“Metabolism of xenobiotics by cytochrome P450 

(ko00980)”, “Cell cycle (ko04110)”, “Fluid shear stress 

and atherosclerosis (ko05418)”, “TNF signaling 

pathway (ko04668)”, “Steroid hormone biosynthesis 

(ko00140)”, “Kaposi sarcoma-associated herpesvirus 

infection (ko05167)”, “Retinol metabolism (ko00830)”, 

“Drug metabolism-cytochrome P450 (ko00982)”, “Bile 

secretion (ko04976)”, “Platinum drug resistance 

(ko01524)”, “Chronic myeloid leukemia (ko05220)”, 

and “HLCV-I infection (ko05166)” (Figure 7A). Six of 

these top 20 KEGG pathways coincided with the 

previous top 20 KEGG pathways of DEGs-HCC. Next, 

we conducted a secondary classification of the top 20 

KEGG pathways, and these KEGG pathways were 

mainly divided into 5 categories, including metabolism 

(4), environmental information processing (1), cellular 

processes (3), organismal systems (2), and human 

diseases (10) (Figure 7B). Likewise, we performed 

secondary classification of all KEGG pathways, and the 

results are shown in Figure 7C. In the category of 

metabolism, the KEGG pathways were mainly enriched 

in lipid metabolism, amino acid metabolism, 

xenobiotics biodegradation and metabolism. In cellular 

processes, it is mainly enriched in cell growth and 

death, cellular community-eukaryotes, and transport and 

 

 
 

Figure 6. GO enrichment analysis of 44 potential therapeutic targets for CXP in HCC. (A) Biological processes. (B) Molecular 

functions. (C) Cellular components. (D) Secondary classification chart of enriched GO terms. 
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catabolism. We constructed a KEGG pathway-gene (K-

G) network to further mine the hub genes involved in 

the top 20 KEGG pathways, and the results showed that 

MAPK1, CDKN2A, CDK4, MYC, and GSTM1 had 

greater degrees (Figure 7D). 

 

Identification of six cell cycle-related genes involved 

in the effects of CXP on HCC and a prognostic 

analysis 

 

Combined with the aforementioned analysis of hub 

genes and pathways, we speculated that the cell cycle 

pathway plays a key role in CXP treatment of HCC. 

CXP regulates this pathway to suppress HCC via six 

genes, including CDK1, CDK4, CCNB1, CHEK1, 

CDKN2A, and MYC. The heatmap was used to show 

the expression patterns of these 6 cell cycle-related 

genes in 18 pairs of adjacent non-tumor liver tissues and 

HCC tissues (Figure 8A). The results showed that 

except for MYC, the transcript levels of the other 5 

genes were abnormally high in HCC. Univariate Cox 

proportional hazards regression analysis found that five 

cell cycle-related genes were associated with the 

prognosis of HCC, and CDK1, CDK4, CHEK1, 

CCNB1, and CDKN2A were considered risk factors (P 

< 0.01, HR >1) (Figure 8B). In addition, except MYC, 

five prognostic cell cycle-related genes were strongly 

positively correlated with each other (Figure 8C). 

 

 
 

Figure 7. KEGG enrichment and KEGG pathway-gene network analyses of 44 potential therapeutic targets for CXP in HCC. 
(A) Top 20 KEGG pathways. (B) Secondary classification of the top 20 KEGG pathways. (C) Secondary classification of all KEGG pathways. (D) 
KEGG pathway-gene network. 
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Construction of prognostic risk scores with cell 

cycle-related genes in TCGA dataset 

 

The five cell cycle-related genes (CDK1, CDK4, 

CCNB1, CHEK1, and CDKN2A) were analyzed using 

the least absolute shrinkage and selection operator 

(LASSO) Cox regression analysis to construct a cell 

cycle-related signature for predicting survival. Four cell 

cycle-related genes (CDK4, CHEK1, CCNB1, and 

CDKN2A) were used to establish a risk score to predict 

the overall survival (OS) of patients with hepatocellular 

carcinoma (LIHC) in TCGA training set using LASSO 

Cox regression analysis (Figure 8D and 8E). We 

established a risk score formula based on the expression 

of four genes in patients with LIHC and then divided 

patients from TCGA training set into low-risk and high-

risk groups based on the median risk score. The 

distribution of the cell cycle-related signature score, the 

survival status, and a heatmap exhibiting the expression 

profiles of the 4 genes in the high- and low-risk groups 

are presented in Figure 8F. Meanwhile, the Kaplan-

Meier survival analysis showed that patients in the low-

risk group had significantly longer OS times than those 

in the high-risk group (Figure 8G, HR (95% CI) = 0.56 

(0.40–0.80), P = 0.001). Subsequently, a time-

dependent receiver operating characteristic (ROC) 

 

 
 

Figure 8. Prognostic analysis of cell cycle-related genes and establishment of a prognostic model. (A) Heatmap of the expression 
patterns of 6 cell cycle-related genes in 18 pairs of adjacent non-tumor liver tissues and HCC tissues. (B) Forest plot of the univariate Cox 
analysis of 6 cell cycle-related genes. (C) Correlation network of 6 cell cycle-related genes. (D) LASSO coefficient profiles of 6 cell cycle-related 
genes. (E) Cross-validation for tuning parameter selection in the LASSO regression analysis. (F) The distribution of risk scores, gene expression 
levels, and survival status of patients with LIHC in the training cohort. (G) Kaplan–Meier curves of the OS of all patients with LIHC in TCGA 
cohort based on the risk score. (H) Time-dependent ROC curve analysis of the prognostic model (1, 3, and 5 years). 
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analysis was performed, and the results showed that the 

risk score performed well in predicting 1-, 3-, and 5-

year OS, with areas under the curves (AUCs) of 0.751, 

0.678, and 0.644, respectively (Figure 8H). 

 

Correlation analysis of clinical characteristics and 

immune cell infiltration based on the expression of 

four cell cycle-related genes in LIHC 

 

We analyzed the clinical characteristics of the 4 cell 

cycle-related genes involved in CXP treatment of HCC, 

including CDK4, CHEK1, CCNB1, and CDKN2A, to 

further evaluate the clinical application value of CXP in 

HCC treatment. We assessed RNA-seq data from 374 

HCC tissues and 50 adjacent normal tissues using 

transcriptome data from TCGA-LIHC database to 

investigate the roles of these genes in LIHC. The 

expression of all four genes was elevated in tumor tissues 

compared with normal liver tissues (P < 0.05) 

(Figure 9A). We then explored the expression patterns of 

these four cell cycle-related genes across vascular 

invasion subtypes and pathologic stages in these samples 

to identify the causes of disease diversification and 

specific clinical outcomes. The expression of these genes 

was increased in stage III and IV compared to stage I and 

II (P < 0.05) (Figure 9B); meanwhile, the expression of 

the CCNB1 and CHEK1 genes was significantly higher 

in HCC tissues with vascular invasion than in HCC 

tissues without vascular invasion (P < 0.05) (Figure 9C). 

Moreover, we further tested the clinical efficacy of these 

genes in LIHC. Analysis of TCGA-LIHC dataset 

revealed that patients with LIHC presenting high 

 

 
 

Figure 9. Correlation analysis of the expression of four cell cycle-related genes with clinical features and immune cell 
infiltration in patients with LIHC. (A) The differential expression of CCNB1, CDK4, CDKN2A, and CHEK1 between normal and tumor 
tissues. (B) CCNB1, CDK4, CDKN2A, and CHEK1 mRNA expression in normal individuals or individuals with different pathologic stages (stage 
I and II, and stage III and IV). (C) Differences expression of CCNB1, CDK4, CDKN2A, and CHEK1 mRNA in patients with different types of 
vascular invasion. (D) Kaplan-Meier curves of OS for different cell cycle-related genes. (E) Kaplan-Meier curves of DSS for different cell 
cycle-related genes. (F) Correlation analysis between four cell cycle-related genes and infiltration levels of different immune cells estimated 
using TIMER, EPIC, XCELL, CIBERSORT, and QUANTISEQ. *, **, and *** represent P < 0.05, P < 0.01, and P < 0.001, respectively. 
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expression levels of these genes had unfavorable overall 

OS and disease specific survival (DSS) (P < 0.05) 

(Figure 9D and 9E). 

 

We next analyzed the correlation between the abundance 

of 6 immune cell markers and the expression of 4 cell 

cycle-related genes using RNA-seq data and the 

TIMER2.0 database. The correlation analysis showed 

that the levels of infiltrating B cells, CD8+ T cells, 

CD4+ T cells, macrophages, and myeloid dendritic cells 

were positively correlated with the expression level of 4 

the cell cycle-related genes (CDK4, CHEK1, CCNB1, 

and CDKN2A) in LIHC (Figure 9F, P < 0.05). These 

results speculate that the expression of the four cell 

cycle-related genes in LIHC was related to different 

degrees of immune cell infiltration through different 

pathways, further supporting that these four cell cycle-

related genes may be effective factors affecting patient 

survival and prognosis. 

 

Component-target docking analysis 

 

The aforementioned results suggest that CXP 

suppresses HCC growth through multiple active 

components acting on multiple hub targets. As an 

approach to improve the reliability of the results, we 

used a molecular docking strategy to simulate the 

binding mode between the active components of CXP 

and the targets, and we calculated the binding energy to 

explain the mechanism by which CXP inhibits HCC 

growth. According to the predicted results from 

molecular docking, multiple active components 

(luteolin, quercetin, kaempferol, 8-isopentenyl-

kaempferol, arcapillin, β-sitosterol, chryseriol, cubebin, 

hyndarin, isorhamnetin, and khellin) bind these cell 

cycle-related targets (CCNB1, CDK4, CDKN2A, and 

CHEK1) well with low binding energy (Supplementary 

Table 8 and Figure 4). This efficient binding may be 

because these active ingredients contain multiple 

hydroxyl groups, making them good hydrogen bond 

donors or acceptors. As shown in Figure 10, the 

docking results predict that these active ingredients 

form stable non-covalent interactions with these 

selected proteins. An analysis of the way proteins 

interact with ligands may lead to the conclusion that 

these active components bind well to these selected 

targets, mainly by forming multiple hydrogen bonds to 

obtain lower binding energies. Furthermore, molecular

 

 
 

Figure 10. Molecular models of the binding of different active ingredients to 4 cell cycle-related targets, which are shown 
as predicted protein‒ligand binding diagrams and 3D interaction diagrams displayed using PyMOL. Green represents the 
surrounding amino acid residues in the binding pocket, and cyan represents the active ingredient. 
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docking models provide evidence for how CXP acts on 

these targets to suppress HCC growth. 

 

DISCUSSION 
 

The pathological mechanism of HCC is very complex 

and involves multiple targets and signaling pathways 

during its progression. We used the public GEO dataset 

to analyze the gene expression profiles of human liver 

cancer tissues relative to adjacent tissues as a method to 

understand the genes and mechanisms that regulate 

HCC progression. A total of 1110 DEGs were 

identified, including 491 upregulated genes and 619 

downregulated genes, indicating that the progression of 

HCC is regulated by a complex and large gene network. 

Most of these DEGs are involved in regulating cellular 

metabolism or cellular processes. Published studies 

have shown that DEGs, including MEP1A [28], 

AKR1B10 [29], CDK1 [30], and ADH1A [31], are 

involved in HCC growth. The liver is the main site of 

biotransformation, and its abnormal metabolism 

significantly alters the progression of liver cancer. 

Metabolic alterations clearly characterize HCC tumors. 

Our KEGG enrichment analysis indicated that multiple 

metabolic pathways are involved in the progression of 

HCC, consistent with published studies [32]. Moreover, 

cellular process-related pathways, including the cell 

cycle and p53 pathways, are also involved in the 

pathology of HCC. A study by Zhu et al. [33] confirmed 

that p53 deficiency affects cholesterol esterification and 

exacerbates hepatocarcinogenesis. Song et al. [34] 

showed that reticulon 3-mediated activation of 

Chk2/p53 inhibit hepatocellular carcinogenesis. 

Moreover, some existing targeted therapies exert anti-

HCC effects through specific signals, including anti-

angiogenesis or cell cycle progression [35]. These 

results suggest that the pathological mechanism of HCC 

is very complex and involves the regulation of multiple 

genes and signaling pathways during progression. This 

finding necessitates the development of a therapeutic 

strategy that modulates multiple targets in HCC to 

improve patient outcomes. 

 

TCM, as a multicomponent and multitarget empirical 

therapy, has been used clinically in Asia for thousands 

of years. Because of this unique feature, TCM 

treatments are considered promising therapeutic 

strategies for complex diseases, including liver cancer 

[36]. Radix Bupleuri and Rhizoma Cyperi, herbs 

dispersing stagnated liver Qi, have been suggested to 

possess hepatoprotective activity in modern 

pharmacological studies [20, 37, 38]. Su et al. [39] 

showed that a Radix Bupleuri water extract reduced the 

viability of HepG2 cells and that Radix Bupleuri 
enhanced the pharmacological effects of 5-fluorouracil-

induced HepG2 cell death. Furthermore, as shown in the 

study by Mannarreddy et al. [19], the methanol extract 

of Rhizoma Cyperi displays significant anticancer 

activity against multiple cancer cell lines, including 

HepG2, without inhibiting noncancer cells. However, 

the pharmacological mechanisms involved in the 

suppressing HCC remain largely unknown. In addition, 

Radix Bupleuri and Rhizoma Cyperi are often used as 

compatible drug pairs in in classic TCM prescriptions, 

such as CSS [16]. Therefore, studies exploring the 

molecular mechanism of the Radix Bupleuri-Rhizoma 

Cyperi drug pair in treating HCC are necessary. 

 

However, due to the limitation of the complex 

molecular network characteristics of TCM in treating 

diseases, modern pharmacological research on TCM has 

not achieved great progress, which undoubtedly widens 

the research gap between TCM and Western medicine. 

In recent years, the introduction of network 

pharmacology has provided a good research strategy for 

investigating the modern pharmacology of TCM. 

Therefore, we attempted to utilize this strategy to 

explore how CXP exerts its pharmacological anti-HCC 

effects. 

 

According to the TCMSP database, 17 and 18 key 

active ingredients were identified in Radix Bupleuri and 

Rhizoma Cyperi, respectively. These key active 

ingredients were mainly sterols (stigmasterol, sitosterol, 

β-sitosterol, etc.) and flavonoids (quercetin, luteolin, 

isorhamnetin, kaempferol, etc.). Notably, both herbs 

contain the following four active ingredients: quercetin, 

stigmasterol, isorhamnetin, and kaempferol. We 

hypothesized that these 4 active ingredients may be the 

important basis for the synergistic anti-HCC effect of 

the two herbs on CXP. Pan et al. [23] showed that the 

natural product quercetin derived from TCM inhibits 

the proliferation of HCC cell lines (HepG2 and Huh-7) 

by inhibiting the PI3K/AKT signaling pathway. Kin et 

al. [40] showed that stigmasterol induces apoptosis in 

human hepatoma HepG2 cells. Isorhamnetin, a natural 

antioxidant with significant cardioprotective effects, has 

been shown to enhance the anticancer activity of 

doxorubicin in HepG2 cells and has been used as an 

adjuvant therapy during the long-term clinical use of 

doxorubicin [41]. According to Han et al. [42], 

kaempferol induces autophagic cell death in various 

human hepatoma cells by activating AMPK signaling. 

In addition, other active ingredients have great potential 

in cancer therapy. For example, the naturally occurring 

furan chromone kellin has been used as an anticancer 

therapeutic agent [43], and the bioflavonoid troxerutin 

inhibits hepatic tumorigenesis by disrupting the MDM2-

p53 interaction [44]. Overall, the anticancer 
pharmacological effects of these active ingredients may 

serve as an important theoretical basis for the clinical 

treatment of hepatic tumorigenesis using CXP. 
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Forty-four potential therapeutic targets of CXP against 

HCC were identified from the GEO dataset and the 

TCM target prediction database HERB. Subsequently, 

according to the H-C-T network diagram, CXP may 

exert its anti-HCC effect through the actions of multiple 

active components on multiple targets. Among them, 

the two herbs in CXP exert synergistic anti-HCC effects 

on multiple targets mainly through their shared active 

ingredients: quercetin, stigmasterol, isorhamnetin,  

and kaempferol. TCM prescriptions are a rational 

combination of a variety of herbal medicines based on 

TCM theoretical compatibility, but they still lack the 

support of modern pharmacology, which limits TCMs 

progress [45]. Here, we elucidated the rationale for the 

compatibility of CXP through network pharmacology 

strategies. Furthermore, the PPI results suggest that 

CXP inhibits HCC through a complex molecular 

network. Some DEGs with high topological parameters 

were defined as hub genes, including the oncogene 

MYC, which can drive hepatocarcinogenesis [46], the 

therapeutic target CDK4 for targeted therapy of HCC 

[47], and the metabolic enzyme CYP3A4, which is 

involved in the abnormal metabolism of HCC [48]. 

 

We performed enrichment analyses of 44 potential 

therapeutic targets to better elucidate the molecular 

mechanism of CXP against HCC. The results showed 

that CXP mainly regulates HCC progression through 

metabolic and cellular processes, including the p53 

signaling pathway, cellular senescence, the cell cycle, 

and retinol metabolism. These enrichment results 

largely overlapped with our previous KEGG enrichment 

results for HCC progression, such as the involvement of 

the p53 signaling pathway and cell cycle. Moreover, the 

foregoing discussion has clarified that the progression 

of HCC is closely related to the p53 pathway and the 

cell cycle. Additionally, several cell cycle-related genes 

have recently been identified as potential therapeutic 

targets for the treatment of HCC, including CDK1 [49], 

CDK4 [47], CCNB1 [50], and CHEK1 [51]. In this 

study, we identified that CXP mediates HCC 

progression by acting on six genes regulating cell cycle 

pathways, including CCNB1, CDK1, CDK4, CDKN2A, 

MYC, and CHEK1. Therefore, we speculate that the 

molecular mechanism by which CXP suppresses HCC 

may be mediated by multiple active components acting 

on six genes regulating cell cycle pathways, including 

CCNB1, CDK1, CDK4, CDKN2A, MYC, and CHEK1. 

Interestingly, the molecular mechanism of CXP 

treatment of HCC involves cellular senescence, and 

TCM-induced cellular senescence has been recognized 

as a promising strategy for cancer treatment in recent 

years [52]. Cellular senescence is a process that 

produces anticancer activity by inducing irreversible 

cell cycle arrest and inhibiting the proliferative capacity 

of cells [53]. Therefore, we hypothesized that CXP may 

induce cellular senescence by acting on six cell cycle-

related genes and inducing cell cycle arrest, thereby 

inhibiting the progression of HCC. 

 

As the roles of cell cycle-related signatures in HCC are 

largely underexplored, a broader understanding of their 

expression profiles in cancer and prognostic analyses 

are important. In this study, we analyzed the expression 

patterns, prognostic value, and clinical characteristics of 

cell cycle-related genes in LIHC to determine the value 

of CXP clinical application in the treatment of HCC. 

We identified five cell cycle-related genes, CDK1, 

CDK4, CHEK1, CCNB1, and CDKN2A, which were 

significantly associated with the OS of patients with 

LIHC and were considered risk factors. Subsequently, 

the results of LASSO Cox regression model and 

analysis of the Kaplan-Meier survival curve revealed 

that patients with LIHC presenting low expression of 

cell cycle-related genes (CDK4, CHEK1, CCNB1, and 

CDKN2A) had a better prognosis than those with high 

expression. Moreover, the clinical characteristics of 

these genes were analyzed in the LIHC dataset, and the 

results revealed that their expression levels were closely 

related to the pathological stage of LIHC and the 

progression of vascular invasion. These data strongly 

suggest that CDK4, CHEK1, CCNB1, and CDKN2A 

are potential prognostic biomarkers for HCC and key 

therapeutic targets for CXP to suppress HCC. 

 

Given the achievements of immunotherapy in the field 

of cancer treatment [54], revealing the link between cell 

cycle-related genes and the immune environment will 

help us better understand the molecular mechanism by 

which CXP inhibits HCC. The expression of CDK4, 

CCNB1, CHEK1, and CDKN2A correlated with the 

infiltration levels of various immune cells in HCC. The 

correlation between the expression of cell cycle-related 

genes and immune cells suggested roles for CDK4, 

CCNB1, CHEK1 and CDKN2A in regulating HCC 

tumor immunology. Despite the lack of in-depth data, 

these findings provide evidence for the future 

combination of CXP and immunotherapy to improve 

the prognosis of patients with HCC. Furthermore, we 

applied a molecular docking approach to illustrate that 

CXP modulates HCC through the effects of various 

active components on these cell cycle-related genes. 

 

CONCLUSIONS 
 

In conclusion, we elucidate the underlying 

pharmacological mechanisms and targets of CXP action 

in HCC therapy by integrating multiple databases. CXP 

inhibits tumors through multiple metabolic pathways 

and cellular processes. An analysis of TCGA data 

showed that CXP may improve the prognosis and 

clinical outcomes of patients with HCC by regulating 



www.aging-us.com 9116 AGING 

cell cycle-related genes, revealing its clinical 

application value. Furthermore, CDK4, CDKN2A, 

CCNB1, and CHEK1 genes were identified as key 

therapeutic targets for CXP treatment of HCC. In recent 

years, TCM has become a promising cancer treatment 

strategy because of its multiple active components and 

multiple targets. However, due to the complexity of 

TCM pharmacological mechanisms, TCM research has 

not been rapidly established, and the proposal of 

network pharmacology strategies is gradually changing 

this dilemma. To our knowledge, this study represents 

the first systematic pharmacological analysis of CXP-

mediated HCC therapy. Therefore, although this study 

still has limitations, it provides innovative research 

methods and breakthroughs for TCM research. 

 

MATERIALS AND METHODS 
 

Data preparation 

 

Chemical components in CXP 

We collected the chemical components of CXP from the 

TCMSP (https://old.tcmsp-e.com/tcmsp.php), a 

database that provides the relationship between 

chemical components, targets, and diseases. Moreover, 

the database contains the pharmacokinetic properties of 

various chemical components, including their OB and 

DL. First, Chinese characters such as “Chai Hu” or 

“Xiang Fu” were entered into the database to determine 

their respective components and corresponding 

pharmacokinetic data. Then, the absorption, 

distribution, metabolism, and excretion (ADME) 

evaluation system was used to select potential active 

ingredients. Here, we selected two pharmacokinetic 

parameters as screening criteria to determine the active 

ingredients in Radix Bupleuri or Rhizoma Cyperi, OB  

≥30% and DL ≥0.18. Active ingredients that met the 

criteria were considered candidates for subsequent 

analysis. 

 

Target prediction 

We searched the HERB (http://herb.ac.cn/) database for 

active components of CXP for potential therapeutic 

target mining to identify targets that bind to CXP active 

compounds. HERB is a high-throughput experiment- 

and reference-guided database for TCM. We 

downloaded GSE60502 from the GEO 

(http://www.ncbi.nlm.nih.gov/geo/) database to screen 

for significant DEGs in HCC and identify HCC-related 

pathological genes. Wang et al. [55] mined and 

analyzed the gene expression profiles of HCC and 

adjacent nontumor liver tissues to identify significant 

DEGs in HCC. The transcriptional results from 18 

paired HCC and adjacent nontumorous liver tissues 

were selected for analysis. Data analysis and graph 

generation were performed using R version 3.6.3 

(https://www.r-project.org). The uniform manifold 

approximation and projection (UMAP) was analyzed with 

the ‘umap’ package and visualized with the ‘ggplot2’ 

package. The DEGs in HCC were screened and obtained 

using the ‘limma’ package of R language Bioconductor 

(http://www.bioconductor.org/packages/release/bioc/ht

ml/affy.html) with a false discovery rate (FDR) <0.05 

and |log2FC| >1. Subsequently, these DEGs were 

processed using the ‘ggplot2’ package in R language 

and visualized by constructing a volcano plot. The 

‘ComplexHeatmap’ package in R language was used to 

analyze the top 50 upregulated or downregulated DEGs 

in HCC. Finally, these genes were compared to obtain 

the potential overlapping CXP targets and HCC DEGs. 

These overlapping targets are those that CXP may 

modulate to treat HCC. 

 

Publicly available expression datasets 

We downloaded RNA-seq and clinical data from 374 

patients with HCC in TCGA (https://portal.gdc. 

cancer.gov). Fragments per kilobase per million 

(FPKM) values for TCGA cohort were converted to 

transcripts per million (TPM) values before further 

analysis. Subsequently, differences in gene expression 

between adjacent nontumorous tissues (n = 50) and 

tumor tissues (n = 374) were statistically analyzed and 

visualized using the “ggplot” R package. 

 

KEGG pathway and GO enrichment analyses 

 

A list of DEGs in HCC or CXP anti-HCC-related 

targets (species limited to ‘Homo sapiens’) was 

submitted to the OmicShare tool for KEGG pathway 

and GO enrichment analyses. OmicShare is a  

free online platform for data analysis 

(https://www.omicshare.com/tools) that can be used for 

GO analyses, KEGG analyses, Venn diagrams, 

heatmaps, network construction, volcano plot analyses, 

etc. 

 

Network construction, hub genes, and topology 

analysis 

 

A list of DEGs in HCC (|log2FC| >1) was input into the 

STRING database, with the species limited to ‘Homo 

sapiens’ and hidden disconnected nodes (interaction 

score ≥0.90), to construct a PPI network. Images were 

exported, and a topological analysis of nodes was 

performed. A list of DEGs in HCC (|log2FC| >2) or 

CXP anti-HCC-related targets was submitted to the 

Metascape webtool (http://metascape.org), with the 

species limited to ‘Homo sapiens’, to construct the PPI 

network. For each specific gene list, the Metascape 

platform performed a PPI enrichment analysis using the 

following databases: STRING, BioGrid, OmniPath, and 

InWeb_IM. The MCODE algorithm was used to 

https://old.tcmsp-e.com/tcmsp.php
http://herb.ac.cn/
http://www.ncbi.nlm.nih.gov/geo/
https://www.r-project.org/
http://www.bioconductor.org/packages/release/bioc/html/affy.html
http://www.bioconductor.org/packages/release/bioc/html/affy.html
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.omicshare.com/tools
http://metascape.org/
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identify densely connected network components if the 

network contained 3 to 500 proteins. This novel graph-

theoretical clustering algorithm, MCODE, may 

represent densely connected regions in large PPI 

networks of molecular complexes [56]. We downloaded 

the raw data for the PPI network obtained from the 

Metascape analysis and saved the data file in the CYS 

format. Subsequently, the file was opened using 

Cytoscape software (version 3.7.2) for visualization, 

hub gene analysis, and topological analysis. For the hub 

gene analysis, hub gene networks are available through 

the CytoHubba plugin in Cytoscape software. 

Additionally, the parameters of topological features can 

be calculated using the Cytoscape plugin Network 

Analyzer, including “Degree”, “Betweenness 

Centrality”, “Closeness Centrality”, “Clustering 

Coefficient”, and “Topological Coefficient”. In addition 

to the PPI network, other networks, such as H-C-T and 

KEGG pathway-genes, were analyzed and displayed 

using the OmicShare tool. 

 

Construction and validation of a prognostic model 

involving cell cycle-related genes and LASSO Cox 

regression analysis 

 

Prognostic cell cycle-related genes were identified by 

performing a univariate Cox analysis of OS of patients 

included in TCGA-LIHC set using the “survival” 

package in the R language. The R packages “glmnet” 

and “survival” were used to perform the LASSO Cox 

regression analysis with random seeds to build the risk 

score model that best predicts survival in the training 

cohort. A risk score formula was then established 

based on the normalized expression level of each gene 

and its corresponding regression coefficient: risk score 

= (0.1159 × CDK4 expression level) + (0.0234 × 

CHEK1 expression level) + (0.1968 × CCNB1 

expression level) + (0.0322 × CDKN2A expression 

level). The patients were then divided into the low-risk 

and high-risk groups according to the median risk 

score. 

 

Correlation between immune cell infiltration and the 

expression of cell cycle-related genes 

 

We integrated several computational tools to estimate 

immune cell infiltration in TCGA RNA-seq cohorts. 

Based on the centralized algorithms in the online 

database TIMER2.0 (http://timer.comp-genomics.org/), 

including the TIMER, EPIC, XCELL, QUANTISEQ, 

and MCPCOUNTER algorithms, we analyzed the 

relationship between the expression of cell cycle-related 

genes (CDK4, CCNB1, CHEK1, and CDKN2A) and 
immune cell infiltration levels in patients with LIHC. 

Pearson’s correlation analysis was performed to 

elucidate the correlations between the expression of cell 

cycle-related genes expression and immune cell 

infiltration. 

 

In silico molecular docking study 

 

AutoDock Vina and PyMOL 1.8 software were utilized 

to perform molecular docking studies of CXP active 

components and selected proteins. X-ray crystal 

structures of selected proteins were obtained from the 

Protein Data Bank (PDB, https://www.rcsb.org/). Then, 

the PDB file was opened with PyMOL 1.8 to remove 

water molecules and heteroatoms from the protein crystal 

structure, add hydrogen atoms, and calculate the charge. 

Meanwhile, the 3D chemical structures of the active 

components of CXP were downloaded from PubChem 

(https://pubchem.ncbi.nlm.nih.gov/) with the format for 

SDF and converted to a.pdb format by PyMOL 1.8. Next, 

the proteins and active ingredients were converted 

into.pdb format files by AutoDockTools (version 1.5.6). 

Second, the grid box function of AutoDockTools was 

used to define specific docking pockets in selected 

proteins that potentially bind to the active ingredient. 

Finally, the molecular docking analysis was performed 

using the command prompt, and the docking results were 

visualized using PyMOL. The binding energy was 

calculated to assess the theoretical binding affinity of the 

active ingredient for the selected proteins. 

 

Statistical analysis 

 

The data analysis and graph generation were performed 

in R language (version 3.6.3) and with the OmicShare 

tool. Comparisons between the two groups were 

performed using the unpaired Student’s t-test to analyze 

the statistical significance of normally distributed 

variables and the Wilcoxon rank-sum test to estimate 

the statistical significance of non-normally distributed 

variables. Kaplan-Meier survival curves for OS or DSS 

were plotted using the R package “survminer”. ROC 

curves for 1-, 3-, and 5-year survival were plotted to 

assess the diagnostic value of risk scores generated 

using timeROC. P < 0.05 was considered statistically 

significant. 

 

Data availability 

 

Publicly available datasets were analyzed in this study. 

This data can be found here: TCMSP, HERB, TCGA, 

GEO, TIMER2.0, etc. 
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NAFLD: Non-alcoholic fatty liver disease; TCMSP: 

Traditional Chinese Medicine System Pharmacology; 

OB: Oral bioavailability; DL: Drug-likeness; ADME: 

Absorption, distribution, metabolism, and excretion; 

DEGs: differentially expressed genes; FDR: False 

discovery rate; LIHC: Liver hepatocellular carcinoma; 

TCGA: The Cancer Genome Atlas; FPKM: Fragments 

per kilobase per million; TPM: Transcripts per million; 

OS: Overall survival; DSS: Disease-specific survival; 

GO: Gene Ontology; KEGG: Kyoto Encyclopedia of 

Genes and Genomes; PPI: Protein-protein interaction; 

MCODE: Molecular Complex Detection; H-C-T: Herb-

Compounds-Targets; K-G: KEGG pathway-Genes; 

PDB: Protein Data Bank; UAMP: Uniform Manifold 

Approximation and Projection; ROC: receiver operating 

characteristic; AUC: areas under the curve; LASSO: 

Least absolute shrinkage and selection operator. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 and 5. 

 

Supplementary Table 1. Degree rank of nodes in the PPI network of 1110 DEGs in HCC (Node_degree >0). 

 

Supplementary Table 2. Degree rank of nodes in the PPI network of 224 DEGs in HCC (Node_degree >0, Blanks are 
represented as none). 

Symbol DEGREE MCODE_CLUSTER_ID MCODE_TYPE Symbol DEGREE MCODE_CLUSTER_ID MCODE_TYPE 

CDK1 27 0  PBK 3 0  

CYP2E1 19 1 Clustered IGF2BP3 3 0  

KIF20A 17 0  TNFSF14 3 0  

PRC1 15 0  SPP1 3 0  

CYP26A1 14 1 Clustered SHBG 3 0  

CYP3A4 14 1 Clustered PDGFRA 3 0  

CYP2C9 14 1 Clustered MT1G 3 0  

CYP2B6 14 1 Clustered MEP1A 3 0  

CYP2A6 14 1 Seed ITIH4 3 0  

PLG 13 4 Clustered GYS2 3 0  

ESR1 13 0  GPC3 3 0  

CYP1A2 13 1 Clustered GCGR 3 0  

CYP1A1 13 1 Clustered DCN 3 0  

KIF23 12 8 Clustered C9 3 6 Clustered 

CYP4A11 12 1 Clustered C8A 3 6 Seed 

CYP2C8 12 1 Clustered BHMT 3 0  

CCNB1 11 0  BARD1 3 0  

CYP3A7-

CYP3A51P 
10 1 Clustered NAT2 3 0  

CYP39A1 10 1 Clustered ZGPAT 2 0  

NUP62 10 0  CFHR5 2 0  

RUVBL2 10 0  SMYD3 2 0  

NDC80 10 0  CFHR4 2 0  

TOP2A 10 0  FAM189B 2 0  

MAD2L1 9 0  VNN1 2 0  

ACSL4 9 8 Clustered TFPI2 2 0  

PTGS2 8 0  VIPR1 2 0  

PKM 8 0  SULT1C2 2 0  

MMP1 8 4 Clustered SRD5A2 2 0  

IGF1 8 4 Clustered SLC22A1 2 0  

TPX2 7 0  CCL19 2 0  

CCL2 7 0  S100P 2 0  

OTC 7 8 Clustered RELN 2 0  

FOS 7 0  PCK1 2 0  

CYP27A1 7 0  NPY1R 2 0  

CYP2A7 7 0  MT1M 2 0  

CPS1 7 8 Seed HRG 2 0  
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CDC20 7 0  HBB 2 0  

TTK 6 0  GSTZ1 2 0  

PON1 6 3 Clustered FMO3 2 0  

MBL2 6 2 Clustered CLGN 2 0  

MAT1A 6 0  BCHE 2 0  

HSD11B1 6 0  ADRA1A 2 0  

FCN2 6 2 Clustered SHARPIN 1 0  

ADH1B 6 5 Clustered KDM8 1 0  

COLEC11 5 2 Clustered GBA3 1 0  

AKR1B10 5 0  INAVA 1 0  

ZWILCH 5 0  C1orf112 1 0  

RACGAP1 5 0  STAB2 1 0  

SDS 5 0  P2RY13 1 0  

MASP2 5 2 Clustered DCXR 1 0  

COLEC10 5 2 Seed SAC3D1 1 0  

FCN3 5 2 Clustered NPC1L1 1 0  

CDC45 5 7 Clustered CDH19 1 0  

AKR1D1 5 0  SLCO1B3 1 0  

NOTCH1 5 0  GNMT 1 0  

MME 5 0  GLS2 1 0  

LCAT 5 3 Clustered ABCA6 1 0  

KLKB1 5 0  CPEB3 1 0  

IGFBP3 5 4 Clustered SLC27A5 1 0  

HMGA1 5 0  LYVE1 1 0  

HELLS 5 0  SLCO1B1 1 0  

FOXM1 5 0  TACC3 1 0  

FBP1 5 0  ABCA8 1 0  

FANCG 5 0  CLEC4M 1 0  

CTH 5 0  GAL3ST1 1 0  

C7 5 6 Clustered MARCO 1 0  

ADH6 5 5 Clustered RDH16 1 0  

ADH1C 5 5 Clustered SPP2 1 0  

ADH1A 5 5 Seed SLC10A1 1 0  

ASPM 4 0  SERPINI1 1 0  

CENPM 4 0  PAFAH1B3 1 0  

MCM10 4 7 Clustered NGFR 1 0  

HJURP 4 0  MT1F 1 0  

CEP55 4 0  MT1E 1 0  

SPDL1 4 0  LUM 1 0  

GINS2 4 7 Seed IGLC1 1 0  

GMNN 4 0  IGHM 1 0  

GINS1 4 7 Clustered IFIT1 1 0  

MELK 4 0  HPD 1 0  

CFP 4 0  HGFAC 1 0  

MYBL2 4 0  GPM6A 1 0  

LPA 4 3 Clustered GPD1 1 0  

IL13RA2 4 0  DPT 1 0  
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IGFALS 4 4 Seed DBH 1 0  

FOSB 4 0  COL15A1 1 0  

CETP 4 3 Seed CHI3L1 1 0  

SERPINH1 4 0  CD14 1 0  

C6 4 6 Clustered ACADL 1 0  

APOF 4 3 Clustered     

 

 

Supplementary Table 3. MCODE components. 

Network Annotation 

MyList 
R-HSA-211945|Phase I - Functionalization of compounds|-22.4;R-HSA-211859|Biological 

oxidations|-21.4;GO:0008202|steroid metabolic process|-21.3 

MyList_MCODE_ALL 
R-HSA-211945|Phase I - Functionalization of compounds|-28.2;WP206|Fatty acid omega-

oxidation|-25.4;hsa00830|Retinol metabolism|-24.3 

MyList_SUB1_MCODE_1 
R-HSA-211897|Cytochrome P450 - arranged by substrate type|-32.4;R-HSA-

211945|Phase I - Functionalization of compounds|-29.7;WP43|Oxidation by cytochrome 
P450|-28.8 

MyList_SUB1_MCODE_2 
R-HSA-166662|Lectin pathway of complement activation|-22.6;GO:0001867|complement 

activation, lectin pathway|-21.7;R-HSA-166786|Creation of C4 and C2 activators|-20.5 

MyList_SUB1_MCODE_3 
GO:0008203|cholesterol metabolic process|-9.0;GO:1902652|secondary alcohol metabolic 

process|-8.8;GO:0016125|sterol metabolic process|-8.7 

MyList_SUB1_MCODE_4 
R-HSA-381426|Regulation of Insulin-like Growth Factor (IGF) transport and uptake by 

Insulin-like Growth Factor Binding Proteins (IGFBPs)|-12.0;CORUM:541|IGF1-IGFBP3-
ALS complex|-11.7;hsa04935|Growth hormone synthesis, secretion and action|-6.2 

MyList_SUB1_MCODE_5 
GO:0006069|ethanol oxidation|-14.4;R-HSA-71384|Ethanol oxidation|-13.8;WP206|Fatty 

acid omega-oxidation|-13.4 

MyList_SUB1_MCODE_6 
R-HSA-166665|Terminal pathway of complement|-14.7;GO:0019835|cytolysis|-

12.8;WP545|Complement activation|-12.7 

MyList_SUB1_MCODE_7 
R-HSA-176974|Unwinding of DNA|-9.7;GO:0006261|DNA-templated DNA replication|-

9.4;GO:0006268|DNA unwinding involved in DNA replication|-8.9 

MyList_SUB1_MCODE_8 
GO:0043604|amide biosynthetic process|-4.7;GO:0043603|cellular amide metabolic 

process|-4.2 

Pathway and process enrichment analysis has been independently applied to each MCODE component, and the three best-
scoring terms by P-values were retained as functional descriptions of the corresponding components (Top three best P-value 
terms were retained). 

 

 

Supplementary Table 4. A total of 31 CXP-active compounds were identified in TCMSP based on two criteria of DL  
≥0.18 and OB ≥30%. 

MOL ID Molecule name OB (%) DL Herb 

MOL000098 Quercetin 46.43 0.28 Radix Bupleuri/Rhizoma Cyperi 

MOL000449 Stigmasterol 43.83 0.76 Radix Bupleuri/Rhizoma Cyperi 

MOL000354 Isorhamnetin 49.6 0.31 Radix Bupleuri/Rhizoma Cyperi 

MOL000422 Kaempferol 41.88 0.24 Radix Bupleuri/Rhizoma Cyperi 

MOL004598 
3,5,6,7-tetramethoxy-2-(3,4,5-
trimethoxyphenyl) chromone 

31.97 0.59 Radix Bupleuri 

MOL001645 Linoleyl acetate 42.1 0.2 Radix Bupleuri 

MOL004609 Areapillin 48.96 0.41 Radix Bupleuri 
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MOL013187 Cubebin 57.13 0.64 Radix Bupleuri 

MOL004624 Longikaurin A 47.72 0.53 Radix Bupleuri 

MOL004644 Sainfuran 79.91 0.23 Radix Bupleuri 

MOL004648 Troxerutin 31.6 0.28 Radix Bupleuri 

MOL004653 (+)-Anomalin 46.06 0.66 Radix Bupleuri 

MOL004702 Saikosaponin c_qt 30.5 0.63 Radix Bupleuri 

MOL004718 α-Spinasterol 42.98 0.76 Radix Bupleuri 

MOL000490 Petunidin 30.05 0.31 Radix Bupleuri 

MOL002776 Baicalin 40.12 0.75 Radix Bupleuri 

MOL004628 Octalupine 47.82 0.28 Radix Bupleuri 

MOL003542 8-Isopentenyl-kaempferol 38.04 0.39 Rhizoma Cyperi 

MOL000358 β-sitosterol 36.91 0.75 Rhizoma Cyperi 

MOL000359 Sitosterol 36.91 0.75 Rhizoma Cyperi 

MOL004027 
1,4-Epoxy-16-

hydroxyheneicos-1,3,12,14,18-
pentaene 

45.1 0.24 Rhizoma Cyperi 

MOL004053 Isodalbergin 35.45 0.2 Rhizoma Cyperi 

MOL004058 Khellin 33.19 0.19 Rhizoma Cyperi 

MOL004059 Khellol glucoside 74.96 0.72 Rhizoma Cyperi 

MOL003044 Chryseriol 35.85 0.27 Rhizoma Cyperi 

MOL004068 Rosenonolactone 79.84 0.37 Rhizoma Cyperi 

MOL004071 Hyndarin 73.94 0.64 Rhizoma Cyperi 

MOL004074 Stigmasterol glucoside_qt 43.83 0.76 Rhizoma Cyperi 

MOL004077 Sugeonyl acetate 45.08 0.2 Rhizoma Cyperi 

MOL000006 Luteolin 36.16 0.25 Rhizoma Cyperi 

MOL010489 Resivit 30.84 0.27 Rhizoma Cyperi 

 

 

Supplementary Table 5. Therapeutic targets of Radix Bupleuri (196), Rhizoma Cyperi (159), and 1110 DEGs of HCC. 

 

 

Supplementary Table 6. MCODE components. 

Network Annotation 

MyList 
WP2882|Nuclear receptors meta-pathway|-18.5;GO:0009410|response to xenobiotic 

stimulus|-15.4;GO:0046686|response to cadmium ion|-14.5 

MyList_MCODE_ALL 
hsa05207|Chemical carcinogenesis - receptor activation|-15.1;WP2882|Nuclear receptors 

meta-pathway|-13.6;GO:0009410|response to xenobiotic stimulus|-12.8 

MyList_SUB1_MCODE_1 
M176|PID FOXM1 PATHWAY|-13.7;WP2431|Spinal cord injury|-11.3;hsa05224|Breast 

cancer|-10.8 

MyList_SUB1_MCODE_2 
WP697|Estrogen metabolism|-12.3;GO:0001676|long-chain fatty acid metabolic process|-

12.2;GO:0006633|fatty acid biosynthetic process|-12.1 

Pathway and process enrichment analysis has been independently applied to each MCODE component, and the three best-
scoring terms by P-values were retained as functional descriptions of the corresponding components (Top three best P-value 
terms were retained). 

  



www.aging-us.com 9126 AGING 

Supplementary Table 7. Degree rank of nodes in the PPI network of 44 potential therapeutic targets for CXP in HCC 
(Blanks are represented as none). 

Symbol DEGREE MCODE_CLUSTER_ID MCODE_TYPE 

MYC 14 1 Clustered 

CDK1 13 1 Clustered 

FOS 11 1 Clustered 

MAPK1 10 1 Clustered 

ESR1 9 1 Clustered 

AR 7 0  

CDK4 7 1 Seed 

CYP1A2 5 2 Clustered 

CCL2 5 0  

CYP1A1 4 2 Clustered 

CYP3A4 4 2 Clustered 

GSTM1 4 2 Clustered 

HMOX1 4 0  

HSPB1 4 0  

MMP1 4 0  

TOP2A 4 0  

CAT 3 0  

CCNB1 3 0  

CDKN2A 3 0  

CHEK1 3 0  

PTGS2 3 0  

AKR1C3 3 2 Seed 

HK2 2 0  

IGFBP3 2 0  

SPP1 2 0  

MGAM 2 0  

NR1I3 2 0  

ACAA2 2 0  

ACACA 1 0  

ADH1C 1 0  

CA2 1 0  

NQO1 1 0  

PON1 1 0  

NR1I2 1 0  

NCF1 1 0  
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Supplementary Table 8. Binding energies of different CXP active components binding to cell cycle-related proteins 
based on molecular docking analysis. 

Protein (PDB ID) Molecule name Binding Energy (kcal/mol) Herb 

CCNB1 (4Y72) Luteolin −6.7 Rhizoma Cyperi 

CCNB1(4Y72) Quercetin −9.1 Radix Bupleuri/Rhizoma Cyperi 

CDK4 (2W9Z) Luteolin −8.6 Rhizoma Cyperi 

CDKN2A (1DC2) Quercetin −6.8 Radix Bupleuri/Rhizoma Cyperi 

CHEK1 (2HOG) 8-Isopentenyl-kaempferol −9.3 Rhizoma Cyperi 

CHEK1 (2HOG) Areapillin −7.6 Radix Bupleuri 

CHEK1 (2HOG) β-sitosterol −8.8 Rhizoma Cyperi 

CHEK1 (2HOG) Chryseriol −8.3 Rhizoma Cyperi 

CHEK1 (2HOG) Cubebin −9 Radix Bupleuri 

CHEK1 (2HOG) Hyndarin −9 Rhizoma Cyperi 

CHEK1 (2HOG) Isorhamnetin −8.5 Radix Bupleuri/Rhizoma Cyperi 

CHEK1 (2HOG) Kaempferol −8.5 Radix Bupleuri/Rhizoma Cyperi 

CHEK1 (2HOG) Khellin −7.3 Rhizoma Cyperi 

CHEK1 (2HOG) Quercetin −8.8 Radix Bupleuri/Rhizoma Cyperi 

 

 


