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ABSTRACT 
 

Background: The evolution of multimorbidity patterns during aging is still an under-researched area. We lack 
evidence concerning the time spent by older adults within one same multimorbidity pattern, and their 
transitional probability across different patterns when further chronic diseases arise. The aim of this study is to 
fill this gap by exploring multimorbidity patterns across decades of age in older adults, and longitudinal 
dynamics among these patterns. 
Methods: Longitudinal study based on the Swedish National study on Aging and Care in Kungsholmen (SNAC-K) 
on adults ≥60 years (N=3,363). Hidden Markov Models were applied to model the temporal evolution of both 
multimorbidity patterns and individuals' transitions over a 12-year follow-up. 
Findings: Within the study population (mean age 76.1 years, 66.6% female), 87.2% had ≥2 chronic conditions at 
baseline. Four longitudinal multimorbidity patterns were identified for each decade. Individuals in all decades 
showed the shortest permanence time in an Unspecific pattern lacking any overrepresented diseases (range: 
4.6-10.9 years), but the pattern with the longest permanence time varied by age. Sexagenarians remained 
longest in the Psychiatric-endocrine and sensorial pattern (15.4 years); septuagenarians in the Neuro-vascular  
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INTRODUCTION 
 

Extended human longevity is a goal achieved in the last 

century, and a reality in middle- and high-income 

countries [1]. Improvements in health resources and 

medical sciences, and decreases in preventable mortality 

have been key to living longer [2]. However, increasing 

life expectancy comes along with a higher burden of 

chronic diseases [3]. The coexistence of multiple chronic 

diseases in a single person is known as multimorbidity. 

Multimorbidity is associated with a higher risk of 

polypharmacy and decreased quality of life, and 

challenges the decision-making of clinicians that lack 

effective guidelines for the management and treatment 

of patients with cohexisting complex diseases [4]. 

 

In an attempt to understand how chronic diseases are 

inter-related, several studies have explored so-called 

multimorbidity patterns [5–7]. In a previous systematic 

review, three patterns of multimorbidity involving 

cardiometabolic diseases, mental health problems, and 

musculoskeletal disorders have been consistently 

suggested to be the most prevalent in the older population 

[5]. Diseases cluster in specific patterns due to common 

pathophysiological pathways and risk factors, or because 

they may be the cause or consequence of other coexisting 

diseases. Along with the above mentioned patterns, a 

high number of less reproducible and sparse disease 

combinations have been described, often inconsistently 

across studies. Several factors may explain such disparate 

observations: first, the use of cross-sectional designs, 

which do not account for the dynamic nature of 

multimorbidity in old age; second, the use of different 

disease lists, spanning from less than ten to more than 

two hundred conditions; and third, the employement of 

statistical methods that cannot properly manage the 

complexity of the phenomenon. Recently, several 

advanced machine-learning techniques such as non-

hierarchical and hierarchical clustering tehcniques have 

been used to explore multimorbidity patterns. 

 

Exploring how multimorbidity patterns evolve 

throughout people’s lives and the time subjects remain 

within specific patterns is still an under-researched 

area [7, 8]. The understanding of how diseases cluster 

longitudinally in specific age groups would pave the 

way to the design of new prognostic tools, as well as 

new preventive and, eventually, therapeutic 

approaches. Hidden Markov Models (HMM) over-

come several of the limitations of previously employed 

methods, which were unable to account for the 

variability in chronic disease interactions throughout 

time [9]. HMM consider diseases in each person to be 

random variables conditioned by a hidden state or 

cluster. Despite the technique’s potential, only one 

previous register-based study has used HMM for the 

longitudinal study of multimorbidity [9], but the 

folllow-up time was insufficient to draw any relevant 

conclusions. Cohort studies with homogeneously 

collected data over long periods of time represent a 

unique resource for the longitudinal analysis of 

multimorbidity patterns, and their use for such a 

purpose is warranted. 

 

The aims of this study were: 1) to explore longitudinal 

multimorbidity patterns across decades of age after  

60 using HMM, and 2) to detect the dynamics 

underlying such patterns in terms of the time subjects 

remained within the same pattern, and the probability 

of transitioning across different patterns. 

 

RESULTS 
 

Multimorbidity patterns 

 

The study population included 3,363 individuals aged 

60+ of whom 87.2% had multimorbidity at baseline. 

Participants’ mean age at baseline was 76.1 years, and 

66.6% were female. Over the 12-year follow-up, 1346 

(40%) deaths occurred (25% within the first 6 years and 

15% within the next 6 years). Moreover, 719 (21.4%) 

individuals dropped out (13.7% within the first 6 years 

and 7.7% within the next 6 years). Descriptive statistics 

of each age cohort at each follow-up wave can be found 

in Table 1. 

 

In the three age groups, a total of 44, 49 and 47 chronic 

disease categories, respectively, showed a median 

prevalence ≥2% during the study period, and were thus 

included in the HMM estimations (Supplementary Table 

1). Overall, four multimorbidity patterns were identified 

for each age group, and two additional patterns were 

artificially added to account for death and dropout 

during the follow-up period (Supplementary Table 2). 

and skin-sensorial pattern (11.0 years); and octogenarians and beyond in the Neuro-sensorial pattern  
(8.9 years). Transition probabilities varied across decades, sexagenarians showing the highest levels of stability. 
Interpretation: Our findings highlight the dynamism and heterogeneity underlying multimorbidity by 
quantifying the varying permanence times and transition probabilities across patterns in different decades. 
With increasing age, older adults experience decreasing stability and progressively shorter permanence time 
within one same multimorbidity pattern. 



www.aging-us.com 9807 AGING 

Table 1. Sociodemographic, clinical, and functional characteristics of the study population by baseline age group 
(N=3,363). 

 

Sexagenarians Septuagenarians Octogenarians and beyond 

Baseline 

N=1304 

6 years 

follow-up 

N=1045 

12 years 

follow-up 

N=846 

Baseline 

N=939 

6 years 

follow-up 

N=639 

12 years 

follow-up 

N=358 

Baseline 

N=1120 

6 years 

follow-up 

N=374 

12 years 

follow-up 

N=94 

Age, mean (SD) 63.0 (2.91) 68.9 (2.89) 74.9 (2.88) 75.3 (3.00) 81.1 (2.98) 86.6 (2.89) 87.9 (5.10) 91.5 (4.11) 95.5 (2.84) 

Female, n (%) 735 (56.4%) 603 (57.7%) 503 (59.5%) 598 (63.7%) 419 (65.6%) 245 (68.4%) 849 (75.8%) 276 (73.8%) 71 (75.5%) 

Education, n (%)          

  Elementary 93 (7.14%) 61 (5.84%) 45 (5.32%) 150 (16.1%) 95 (14.9%) 48 (13.4%) 347 (31.7%) 95 (25.7%) 22 (23.4%) 

  High school 561 (43.1%) 445 (42.6%) 346 (40.9%) 514 (55.1%) 343 (53.7%) 189 (52.8%) 576 (52.6%) 197 (53.4%) 53 (56.4%) 

  University 648 (49.8%) 539 (51.6%) 455 (53.8%) 269 (28.8%) 201 (31.5%) 121 (33.8%) 173 (15.8%) 77 (20.9%) 19 (20.2%) 

# chronic diseases, mean (SD) 2.72 (1.78) 4.87 (2.78) 7.70 (3.57) 4.24 (2.28) 7.71 (3.46) 12.0 (4.56) 5.47 (2.51) 9.70 (3.58) 14.2 (4.41) 

# drugs, mean (SD) 2.66 (2.77) 4.13 (3.37) 5.18 (3.92) 4.39 (3.42) 6.10 (3.92) 7.44 (4.50) 5.37 (3.48) 7.25 (3.97) 8.47 (4.46) 

Walking speed, mean (SD) 1.26 (0.31) 1.20 (0.35) 1.08 (0.35) 1.00 (0.38) 0.79 (0.41) 0.66 (0.41) 0.54 (0.41) 0.43 (0.36) 0.37 (0.35) 

MMSE, mean (SD) 29.3 (1.45) 28.7 (1.59) 28.5 (2.27) 28.4 (3.32) 26.9 (4.25) 25.5 (5.73) 24.8 (7.39) 24.1 (6.99) 21.9 (8.64) 

Abbreviations: MMSE, Mini Mental State Examination; SD, standard deviation. 

 

Among sexagenarians, subjects in the Unspecific 

pattern were the youngest across all follow-ups, while 

those in the Cardiovascular and anemia pattern were 

the oldest (Supplementary Table 3). Subjects in the 

Cardio-metabolic pattern were more frequently male 

while those in the Psychiatric-endocrine and sensorial 

pattern were more likely to be female. Subjects in the 

latter pattern showed the highest level of education. 

 

Among septuagenarians, subjects in the Unspecific 
pattern were the youngest, while those in the Neuro-

vascular and skin-sensorial pattern were the oldest. 

Subjects in the Cardiovascular and diabetes pattern 

were more frequently male while those in the Neuro-

vascular and skin-sensorial and Neuro-psychiatric and 
sensorial patterns were more likely to be female. 

Subjects in the Cardiovascular and diabetes pattern had 

the lowest proportion of university education. 

 

In the group of octogenarians and beyond, those in the 

Respiratory-circulatory and skin pattern were the 

youngest, while those in the Cardio-respiratory and 

neurological were the oldest. All patterns had a higher 

proportion of females. Subjects in the Neuro-sensorial 

pattern showed the highest level of education. 

 

Evolution and transitions across multimorbidity 

patterns 
 

The evolution and transitions of and among 

multimorbidity patterns are graphically represented 

through river plots in Figure 1. For all age groups, 

pattern prevalence varied over time, showing that people 

commonly transition from one pattern to another. A 

general trend was that the most represented patterns at 

baseline (i.e., containing the healthiest subjects) evolved 

towards smaller ones over time, and the smallest ones 

(i.e., presumably containing the sickest subjects) tended 

to become larger over time. For example, among 

sexagenarians, subjects in the Unspecific pattern 

represented 80% of the study population at baseline, but 

the figure went down to 52.4% after 6 years and to 

22.6% after 12 years. The prevalence of the death and 

dropout patterns increased in older age groups; an 

important part of the transitions among octogenarians 

and beyond were in fact towards death. 

 

The estimated mean permanence times were computed 

for each age group. As an example, for sexagenarians 

belonging to the Cardiovascular and anemia pattern at 

baseline, it was estimated that they would remain in the 

same pattern for a mean time of 14.9 years before 

transitioning to other patterns. In all age groups, the 

Unspecific patterns showed the shortest sojourn times, 

and the Psychiatric-endocrine and sensorial, Neuro-

vascular and skin-sensorial and Neuro-sensorial were 

the patterns with the longest sojourn time for 

sexagenarians, septuagenarians and octogenarians and 

beyond, respectively. 

 

The transition probability matrices by age group are 

shown in Figure 2. Regarding the interpretation of these 

probabilities, the models show that, for example, 

sexagenarians belonging to the Unspecific pattern at 

baseline had a probability of 0.9% of transitioning to the 

Cardiovascular and anemia pattern and of 20.0% of 

staying in the same pattern in the next 12 years. In 

general, sexagenarians showed the highest levels of 

stability, as the probabilities of staying in the same 
pattern were higher than in the other age groups. More 

specifically, among sexagenarians, the most likely 

transition between patterns was from the Unspecific to 
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Figure 1. Evolution and transitions of multimorbidity patterns over time by age group (N=3,363). Sexagenarians: Unspecific 
(Unsp); Cardiovascular and anemia (CV and Anemia); Cardio-metabolic (Cardio-Meta) and Psychiatric-endocrine and sensorial (Psy-Endoc and 
Sens). Septuagenarians: Unspecific (Unsp); Cardiovascular and diabetes (CV and Diab); Neuro-vascular and skin-sensorial (NeuroVasc and 
Skin); and Neuro-psychiatric and sensorial (NeuroPsy and Sens). Octogenarians and beyond: Unspecific (Unsp); Respiratory-circulatory and 
skin (Resp-Circula and Skin); Cardio-respiratory and neurological (CardioResp and Neuro); and Neuro-sensorial (Neuro-Sens).  
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Figure 2. Transition probability matrices by age group from baseline to the 12-year follow-up (N=3,363). Sexagenarians: 

Unspecific (Unsp); Cardiovascular and anemia (CV and Anemia); Cardio-metabolic (Cardio-Meta) and Psychiatric-endocrine and 
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sensorial (Psy-Endoc and Sens). Septuagenarians: Unspecific (Unsp); Cardiovascular and diabetes (CV and Diab); Neuro -vascular and 
skin-sensorial (NeuroVasc and Skin); and Neuro-psychiatric and sensorial (NeuroPsy and Sens). Octogenarians and beyond: Unspecific 
(Unsp); Respiratory-circulatory and skin (Resp-Circula and Skin); Cardio-respiratory and neurological (CardioResp and Neuro); and 
Neuro-sensorial (Neuro-Sens). 

 

the Psychiatric-endocrine and sensorial pattern (30.0%) 

after 12 years. Among septuagenarians, the most likely 

transition was from the Unspecific to the Neuro-
psychiatric and sensorial pattern (24.0%) after 12 years. 

Finally, in octogenarians and beyond, the transition  

from the Unspecific to the Cardio-respiratory and 
neurological pattern (5.0%) after 12 years was the 

likeliest. The Cardiovascular and anemia, Neuro-
vascular and skin-sensorial, and Respiratory-circulatory 

and skin patterns showed the highest probabilities of 

transitioning to death after 12 years in the three age 

groups, respectively. 

 

Characterization of multimorbidity patterns 

 

Estimations of the longitudinal trends (predicted values 

from linear mixed models) for different clinical and 

functional variables by patterns and for each age group 

are shown in Figure 3. An increasing trend was observed 

for the number of chronic conditions and drugs across 

age groups, with subjects in the Unspecific patterns 

consistently showing the lowest values. Conversely, a 

decreasing trend was observed for walking speed and 

MMSE in all age groups. While subjects in the 

Unspecific patterns showed the slowest changes over 

time, except for octogenarians, those in the patterns 

characterized by cardiovascular and/or neurological 

diseases showed the worse baseline values and fastest 

declines for all studied variables. 

 

DISCUSSION 
 

In this study we identified and characterized longitudinal 

multimorbidity patterns among older adults from a 

Swedish urban population, and estimated the time they 

spent in each pattern as well as the probability of 

transitioning across different patterns throughout a  

12-year follow-up period. 

 

Our findings highlight the dynamism and heterogeneity 

underlying multimorbidity. The dynamism among 

multimorbidity patterns was reflected by the  

varying sojourn times across patterns, which differed  

by age group, and the specific patterns people  

presented with. In sexagenarians, the average time  

was 13.3 years, while in octogenarians and beyond, it 

 

 
 

Figure 3. Longitudinal trends (predicted values from linear mixed models) in clinical and functional characteristics associated 
with the multimorbidity patterns by age group (N=3,363). Sexagenarians: Unspecific (Unsp); Cardiovascular and anemia (CV and 
Anemia); Cardio-metabolic (Cardio-Meta) and Psychiatric-endocrine and sensorial (Psy-Endoc and Sens). Septuagenarians: Unspecific (Unsp); 
Cardiovascular and diabetes (CV and Diab); Neuro-vascular and skin-sensorial (NeuroVasc and Skin); and Neuro-psychiatric and sensorial 
(NeuroPsy and Sens). Octogenarians and beyond: Unspecific (Unsp); Respiratory-circulatory and skin (Resp-Circula and Skin); Cardio-
respiratory and neurological (CardioResp and Neuro); and Neuro-sensorial (Neuro-Sens). MMSE: Mini Mental State Examination. 
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was 6.5 years. This observation implies that, as expected, 

the time of permanence in each pattern is greater in the 

younger age groups, especially when less burdensome 

patterns are at play. For example, the Unspecific pattern 

was characterized in all age groups by a lack of 

overrepresentation of any of the low-severity chronic 

conditions the pattern was composed of (e.g., cardio-

vascular risk factors, osteoarthritis, hearing impairment, 

etc.). Consequently, people belonging to this pattern 

could be regarded as being the healthiest, and thus the 

target for primary and secondary preventive strategies. 

Indeed, almost one third of sexagenarians in the 

Unspecific pattern at baseline transitioned to the 

Psychiatric and sensorial pattern, and almost one in ten 

to the Cardio-metabolic pattern during the follow-up. 

The heterogeneity of multimorbidity was evidenced by 

the different patterns obtained within, but especially, 

across age groups. Despite being similar, patterns at 

different ages represent different states of the disease 

severity continuum. These different stages may be 

associated with differential probabilities of developing 

complications and functional decline, and may trigger 

different pharmacological and non-pharmacological 

treatments. In relation to mortality, trajectories 

characterized by cardiovascular and circulatory diseases 

were found to concentrate the highest death probabilities. 

All these aspects may contribute to increase the 

heterogeneity of the multimorbidity landscape. 

 

Moreover, our study serves as an example of how 

longitudinal data may be used to explore the trajectories 

of multimorbidity – that is, the evolution of and 

transitions among patterns of diseases. To date, studies 

on patterns of multimorbidity have predominantly 

focused on analyzing the association between diseases, 

paying less attention to individuals’ “journeys” in and 

out of these patterns [5, 10]. This is mainly because most 

studies, even those using longitudinal data [11], were 

based on cross-sectional designs. Indeed, studies 

incorporating the entire longitudinal structure of the data 

are scarce [12–14]. Studying patterns of multimorbidity 

longitudinally is a challenging endeavor given that the 

heterogeneity in disease clustering originates both from 

the cross-sectional and longitudinal axes. Therefore, to 

understand the interdependence among diseases when 

looking at longitudinal multimorbidity patterns, dynamic 

machine learning methodologies such as the HMM are 

required. These models integrate a dynamic Bayesian 

network that accounts for the temporal sequence of the 

person-level data observed. This allows considering the 

longitudinal structure of the data (i.e., time series) and 

the correlations among observations. 

 
Comparing our results with those from previous 

studies is difficult for the reasons mentioned above. 

Nevertheless, two previous studies analyzed disease 

progression and multimorbidity pattern trajectories 

using primary care electronic health records in the 

United Kingdom [15] and the Netherlands [16]. The 

studies by Strauss et al. [15] and Lappenschaar et al. 

[16] were carried out on adult populations, older than 

35 and 50, and with a follow-up period of 3 and 5 

years, respectively; and both included a lower number 

of chronic diseases than that used in this study. In 

terms of the analytical approach, the latent class 

growth models employed by Strauss et al. are designed 

to identify longitudinal trajectories, but one cannot 

infer transitions among classes. Also, Lappenschaar et 

al. used multilevel temporal Bayesian networks, which 

are aimed at analyzing the relationships between 

diseases (i.e., networks) but not the transitions across 

clusters. Other studies [17, 18] have focused on the 

incidence of new chronic diseases across time, but 

failed to examine patterns of multimorbidity. In brief, 

none of the previously applied statistical methods 

makes it possible to study the evolution and transitions 

between patterns of multimorbidity. In contrast, when 

applying HMM, one can explore the variability of 

chronic disease evolution over time by considering 

each subject’s diseases as random variables 

conditioned by a hidden or conglomerate state, which 

further enables depicting people’s transitions among 

different patterns of multimorbidity. Other studies 

looking at multimorbidity patterns within large 

databases have considered disease trajectories rather 

than individual trajectories as the main axis of interest 

[19]. This approach, which is somewhat disease- rather 

than person-oriented, is limited by the inability to 

identify homogenous groups of patients. Another 

example is the work by Giannoula et al., which 

focused on the identification of complex time-

dependent disease associations using dynamic time 

warping, a machine learning technique [20]. Similar 

problems are present in the study by Xu et al., which 

moreover only considered three pathologies [21]. 

 

This study has several strengths. First, thanks to  

the exhaustive clinical evaluation that SNAC-K 

participants undergo in each follow-up wave, the 

reliability of the diagnostic data, which moreover 

integrates data from electronic health records, lab tests 

and drug use, is optimal. Second, the statistical 

methods applied allowed us to cluster people by their 

co-occurring diseases taking both the cross-sectional 

and longitudinal axes into account: HMM and the 

fuzzy c-means cluster algorithm. The latter is the 

choice method for pattern recognition when clusters 

tend to overlap, which is often the case as older adults 

show a high prevalence of co-occurring conditions. 
Furthermore, in this study we were able to explore 

longitudinal multimorbidity patterns by age group and 

the time that people remained in each pattern. As far as 
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we know, these aspects have not been previously 

studied and are key to personalized clinical decision-

making. Moreover, by stratifying our study sample by 

decade age groups, we were able to account for the 

selection bias inherent to aging cohorts, whereby the 

oldest age groups tend to represent healthier 

individuals characterized by better biological and 

environmental living conditions. 

 

Some limitations must also be considered. First, the 

relatively small size of the SNAC-K cohort and the 

further stratification of the study sample into three 

different age groups led to some of the patterns including 

few people (i.e., <14 people). However, the methods 

applied have been shown to be responsive enough for the 

identification of subgroups of people even in small 

samples. Additionally, the iterative estimation process 

and the number of realizations allowed us to maximize 

the likelihood of the models applied given the data. 

Second, participant dropout (14% within the first 6 years 

and 8% within the next 6 years) may have affected the 

cluster definition process. Still, to the best of our 

knowledge, this is an exceptionally low figure compared 

with studies of this type. Third, the discontinuous follow-

up carried out in SNAC-K (i.e., every 3 or 6 years 

depending on the age of participants) may have affected 

the rate of disease detection and, consequently, the 

longitudinal cluster analysis, especially among people 

who died or dropped out during the observation  

period. To adapt to the assumptions of our study  

design, participant data were analyzed in accordance 

with the available follow-up waves, avoiding any data 

extrapolation. Last, differences in the baseline 

composition and evolution of patterns across age groups 

could be due to variations in exposure history, and not 

only to age, given that there is up to 40 years of a gap 

between the youngest and oldest subjects at study 

baseline. 

 

The analysis of longitudinal multimorbidity patterns is 

fundamental for the provision of personalized medical 

care that is not based merely on the application of 

guidelines targeting each chronic condition individually. 

While some of our findings can be explained through 

known pathophysiological mechanisms, others may serve 

to generate new hypotheses worth exploring in future 

studies. Our statistical approach enabled us to model the 

evolution and transitions of multimorbidity over time, 

and the results of this could be applied in the interests of 

healthier aging. Moreover, the age-stratified analyses 

allowed us to identify which disease combinations and 

transitions were more prevalent in each decade. This 

information is key to defining specific care plans to 
prevent or delay the negative consequences of the most 

frequent diseases identified. The characterization of 

multimorbidity patterns using HMM could moreover be 

expanded, for instance, by aggregating information on 

complementary health indicators such as frailty and 

biological and physiological variables, which could 

further optimize patient stratification and management 

efforts. 

 

Our study provides evidence that multimorbidity is 

dynamic and heterogeneous in old age. With increasing 

age, older adults experience decreasing clinical stability 

and progressively shorter permanence time within one 

same multimorbidity pattern. Moreover, a significant 

proportion ranging between 5.9%-22.6% belongs to an 

Unspecific pattern with a low burden of diseases  

and a promising preventive potential. Adding new 

variables related to drug use, environmental and genetic 

factors, and/or frailty to the longitudinal analysis of 

multimorbidity patterns may allow optimizing the 

epidemiological understanding and applicability of these 

models for patient-tailored prevention and management 

strategies. 

 

MATERIALS AND METHODS 
 

Study population 
 

Longitudinal data from the population-based Swedish 

National study on Aging and Care in Kungsholmen 

(SNAC-K) was used [22]. The study population 

consisted of adults ≥60 years of age living in the 

community or in institutions in the Kungsholmen district 

of Stockholm, Sweden. A random sample of 11 age 

cohorts (ages 60, 66, 72, 78, 81, 84, 87, 90, 93, 96 and 

≥99) born between 1898 and 1943 (the youngest and 

oldest age cohorts were oversampled) was invited to 

participate in the study. People who agreed to participate 

were evaluated for the first time between 2001 and 2004. 

Participants who were <78 years of age were then 

followed up every six years and participants ≥78 every 

three years. The present study is based on data collected 

at baseline, the six-year follow-up, and the 12-year 

follow-up. At baseline, 3363 people were examined 

(participation rate: 73%). For our study, the sample was 

stratified into three age groups: sexagenarians (age 

cohorts of 60 and 66 years), septuagenarians (age cohorts 

of 72 and 78 years) and octogenarians and beyond (age 

cohorts of 81 years and over). 

 

Chronic diseases 
 

At each follow-up wave, SNAC-K participants undergo 

an approximately five-hour-long comprehensive clinical 

and functional assessment carried out by trained 

physicians, nurses, and neuropsychologists. Physicians 

collect information on diagnoses via physical 

examination, medical history, examination of medical 

charts, self-reported information, and/or proxy 
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interviews. Clinical parameters, lab tests, drug 

information, and inpatient and outpatient care data are 

also used to identify specific conditions. All diagnoses 

are coded in accordance with the International 

Classification of Diseases, 10th revision (ICD-10). In 

the current study we classified all the ICD-10 codes into 

60 chronic disease categories in accordance with a 

clinically driven methodology [23]. In SNAC-K, drugs 

are coded in accordance with the Anatomical 

Therapeutic Chemical (ATC) classification. 

 

Covariates 

 

Information on demographics (age, sex, education) was 

collected during nurse interviews. We divided education 

into elementary, secondary, university or higher. 

Information about vital status was derived from death 

certificates provided by Statistics Sweden, the Swedish 

governmental statistics agency. Survival status was 

assessed throughout the follow-up period. Participants 

were considered lost to follow-up if they or a proxy 

declined to participate, could not be contacted, had 

moved out of the study area, or cancelled an 

assessment. Walking speed (m/s) was assessed by 

asking participants to walk 6 m at their usual speed or 

2.44 m if the participant reported walking quite slowly 

[24]. Cognitive status was assessed by physicians using 

the Mini-Mental State Examination (MMSE), with a 

score range of 30 at best to 0 at worst [25]. 

 

Statistical analysis 

 

The sample characteristics at baseline, the 6-year 

follow-up and the 12-year follow-up for all age groups 

were described as appropriate. Additionally, 3-year and 

9-year follow-up data was considered for the group of 

octogenarians and beyond. 

 

To model the temporal evolution of multimorbidity 

patterns and individuals’ transitions across these 

patterns, a dynamic random process represented by a 

HMM was assumed [9]. Disease information from all 

individuals and across all follow-up waves is used by the 

HMM to identify so-called hidden states (i.e., 

longitudinal multimorbidity pattern). HMM estimates 

the transition probabilities between patterns, i.e., the 

probability that any individual moves from one pattern 

to another in a given time-frame. Furthermore, by using 

HMM, one can examine individuals’ probability of 

following different longitudinal multimorbidity patterns, 

and subsequently identify the one that is most likely to 

happen. 

 
The dataset was pre-processed by applying a Multiple 

Correspondence Analysis (MCA) to the categorical 

features (i.e., diseases), in order to reduce the 

dimensionality of the longitudinal dataset. To prevent 

statistical noise and spurious findings from the models, 

only diseases that achieved a median prevalence of 2% 

across all follow-up waves were included (Supplementary 

Table 1). Afterwards, a fuzzy segmentation procedure 

(Fuzzy C-means algorithm, FCM) [11] was applied on the 

new dataset to identify an initial set of clusters, which was 

used to initialize some of the HMM parameters in the next 

stage. Finally, two more clusters were added in order to 

account for dropout and/or death. 

 

The set of HMM parameters, composed of the  

initial cluster probabilities, the inter-cluster transition 

probabilities and the emission distributions provided by 

the FCM, were fitted into the observation dataset by 

applying the Baum-Welch (BW) algorithm. This made 

it possible to infer the longitudinal trajectories followed 

by each individual. The best cluster trajectory was 

identified by maximizing the probability of the 

observed sequence conditioned to the computed model 

parameters (Viterbi Algorithm). To validate the model, 

a comparison between BW and Viterbi transition 

probability matrices was conducted, showing a  

good agreement between theoretical and observed 

values [26]. 

 

The time unit considered for each transition across 

clusters/states was the time between follow-up waves, 6 

years for sexagenarians and septuagenarians and 3 years 

for octogenarians and beyond. The time spent in a 

specific cluster/state before moving to other clusters/ 

states was assumed to follow a geometric distribution. 

Subsequently, the expected average time spent or mean 

sojourn (permanence) time was computed. 

 

To optimize the performance of the selected 

mathematical model, the iterative process involved in 

the application of the BW algorithm was initialized 

using a range of 100 different values of the parameters 

to be learned. The best model was selected using a 

procedure that is equivalent to applying the Bayes 

Information Criterion to choose the best set of HMM 

parameters [9]. 

 

Multimorbidity patterns 

 

For each age group, a final number of longitudinal 

patterns was selected. To evaluate the consistency and 

utility of the final clusters, we contrasted the clinical 

relevance of our findings in the context of previous 

literature, and we dicussed the findings within the 

research team (2 GPs, 2 geriatricians, 3 epidemiologists 

and 2 statisticians). 
 

To characterize the multimorbidity patterns, we 

calculated the frequency of chronic diseases in each 
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cluster. Observed/expected ratios (O/E-ratios) were 

calculated by dividing the prevalence of a given disease 

within a cluster by its prevalence in the overall 

population. The exclusivity of different diseases, 

defined as the fraction of participants with the disease in 

the cluster over the total number of participants with the 

disease, was also calculated. We considered a disease to 

be associated with a given cluster of individuals when 

the O/E ratio was ≥2 or the exclusivity was ≥ 20% [12]. 

Such criteria were used to name multimorbidity patterns 

after the diseases that predominantly characterized 

them. 

 

The longitudinal trends of clinical and functional 

characteristics (no. of chronic diseases, no. of drugs, 

walking speed and MMSE) associated with the 

multimorbidity patterns were estimated through linear 

mixed models, assuming a random intercept and 

including an interaction between the patterns and 

follow-up time, both as linear and quadratic. The 

models were additionally adjusted by age, sex and 

education. 

 

The analyses were carried out using Stata version 17 

and R version 4.1.2. The significance level was set at 

α=0.05. 
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Supplementary Table 1. Disease prevalence by age group and  follow-up wave. 
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by age group and follow-up wave. 
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characteristics by age group and follow-up wave. 


