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INTRODUCTION 
 

As a hematologic malignancy, Multiple myeloma 

(MM) accounts for 1.3% of all malignancies and 15% 

of hematologic neoplasms, with an incidence of 4.5 to 

6 cases per 100,000 inhabitants [1]. As a malignant 

clonal plasma cell disease, MM originates in the  

bone marrow and the main clinical manifestations are 

the accumulation of clonal plasma cells predominantly 

in bone marrow, triggering the overproduction  

of nonfunctional intact immunoglobulins or immuno-

globulin chains [2–4]. With improved understanding 

of MM and the application of new drugs and 

treatments, MM patient survival has increased in 
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ABSTRACT 
 

Background: Multiple myeloma (MM) is a malignant hematopoietic disease that is usually incurable. However, the 
ubiquitin-proteasome system (UPS) genes have not yet been established as a prognostic predictor for MM, despite 
their potential applications in other cancers. 
Methods: RNA sequencing data and corresponding clinical information were acquired from Multiple Myeloma 
Research Foundation (MMRF)-COMMPASS and served as a training set (n=787). Validation of the prediction 
signature were conducted by the Gene Expression Omnibus (GEO) databases (n=1040). To develop a prognostic 
signature for overall survival (OS), least absolute shrinkage and selection operator regressions, along with Cox 
regressions, were used. 
Results: A six-gene signature, including KCTD12, SIAH1, TRIM58, TRIM47, UBE2S, and UBE2T, was established. 
Kaplan-Meier survival analysis of the training and validation cohorts revealed that patients with high-risk 
conditions had a significantly worse prognosis than those with low-risk conditions. Furthermore, UPS-related 
signature is associated with a positive immune response. For predicting survival, a simple to use nomogram and the 
corresponding web-based calculator (https://jiangyanxiamm.shinyapps.io/MMprognosis/) were built based on the 
UPS signature and its clinical features. Analyses of calibration plots and decision curves showed clinical utility for 
both training and validation datasets. 
Conclusions: As a result of these results, we established a genetic signature for MM based on UPS. This genetic 
signature could contribute to improving individualized survival prediction, thereby facilitating clinical decisions in 
patients with MM. 
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recent years [2]. Despite recent progress in treatment, 

MM remains incurable with high recurrence rates and 

drug resistance rates, with a median survival time of 

only 5-6 years [5], and the pathogenesis has not been 

elucidated [6]. Therefore, it is vital to research the 

complex biology and heterogeneous clinical course of 

MM, and research novel biomarker to better predict 

MM patients’ prognosis. 

 

The ubiquitin proteolysis system (UPS) plays a crucial 

role in regulating targeted protein degradation in 

eukaryotes, thus is essential for maintenance of protein 

homeostasis at the level of protein degradation. The 

UPS consists of numerous proteins, including 

ubiquitin-activating enzymes (E1), ubiquitin-

conjugating enzymes (E2), and ubiquitin ligases (E3) 

[7]. In the biochemical physiology, the enzymes E1 

and E2 prepare ubiquitin for conjugation, while E3 is 

responsible for recognizing the specific substrate 

before catalyzing the transfer of activated ubiquitin to 

it [8]. Recently, there is accumulating evidence that 

ubiquitylation plays a crucial role in cancer patho-

genesis and that targeting ubiquitylation may provide a 

very promising therapeutic approach in a variety of 

cancers [9–12]. For instance, the NF-κB pathway, 

which is frequently altered in MM, is highly regulated 

by ubiquitination. Thus, the UPS provides many 

opportunities for pharmacologic intervention. In the 

past two decades, proteasome inhibitors have emerged 

as one of the most important classes of agents for 

treating MM [13]. There are several downstream 

effects of inhibiting the proteasome, including the 

inhibition of NF-κB signaling, etc. UPS related genes 

are the key regulators of ubiquitin proteolysis system 

[14]. So far, the clinical significance of UPS genes  

has not been systematically investigated in patients 

with MM.  

 

In the present study, we established and validated a UPS 

gene signature for predicting MM patient outcomes, and 

then built a nomogram by classifying patients based on 

UPS signature risk score and other clinicopathological 

factors to improve our ability to predict the survival of 

MM cases, and could guide comprehensive MM 

therapeutic strategies. The visualization model was 

created using a web-based calculator, and the estimation 

performance was assessed based on discrimination, 

calibration, and clinical value.  

 

MATERIALS AND METHODS 
 

Data collection 

 
The transcriptome and clinical data, including survival 

information, are publicly available through the Multiple 

Myeloma Research Foundation (MMRF) CoMMpass 

data (https://research.themmrf.org) and Gene Expression 

Omnibus (GEO) database (https://www.ncbi. 

nlm.nih.gov/geo/). MMRF- CoMMpass dataset which 

contains 787 cases with MM was set as the training set. 

Three independent datasets, GSE2658 (n=559), 

GSE136377 (n=426), and GSE57317 (n=55) were set as 

the validation sets. GSE118985 included bone marrow 

samples from 68 normal controls and 460 newly 

diagnosed patients with MM and 132 MM patients in 

complete remission. A list of 804 UPS genes 

(Supplementary Table 1) were identified in the previous 

studies and used as the basis of our evaluations in the 

current study [15, 16]. 

 

Construction prognostic UPS signature 

 

To narrow the range of candidate prognostic UPS 

genes, we first performed univariate Cox analyses based 

on MMRF-COMMPASS and GSE2658 by the 

“survival” package. The overlapping prognostic genes 

in MMRF-COMMPASS and GSE2658 was selected for 

subsequent studies. By using the R packages “glmnet” 

and “survival,” the LASSO regression analysis was 

carried out to screen potential genes based on variable 

screening and complexity adjustment. Finally, we 

conducted multivariate Cox regression analyses to 

identify highly correlated genes and construct the UPS 

gene signature on the basis of the following equation for 

risk scores: 
 

i

i 0

Risk score Risk score ( xp )
N

iE
=

= =   

 

In this equation, βi denotes the regression coefficient, i 

denotes the UPS genes used to construct the signature, 

Exp denotes the relative expression value of each UPS 

gene in the signature, whereas N signifies the sum of 

genes within the signature. Patients were divided into 

two groups according to their median risk scores:  

low-risk and high-risk, and the “survivalROC” 

package in R was used to create the receiver operating 

characteristic (ROC) curves. To evaluate the predictive 

power of the UPS gene signature, AUC values were 

calculated. 

 

Gene set variation analysis (GSVA) 

 

We use “GSVA” package calculate the concentration 

of each sample in the gene enrichment of scoring, and  

then predefined gene rank. Specifically, we first use of 

gene expression profile, Using Hanzelmann et al. 

method and obtained Molecular Signatures Database 

to download the c2. Cp. Kegg. V7.4. symbols.gmt and 
c6.all.v7.4.symbols.gmt collections [17], which were 

used to evaluate related pathways and molecular 

mechanisms. The minimum gene set was set as 5, and 
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the maximum gene set was set as 5000. The 

enrichment score of each sample in each gene set was 

calculated. 

 

Construction and evaluation of the nomogram 

 

We used univariate and multivariate Cox regression 

analyses to evaluate the independent prognostic value 

of the risk score. In the training set, a nomogram was 

developed based on independent risk factors, and risk 

scores were calculated for each patient [18, 19]. 

Training and validation sets were used to estimate the 

accuracy of the nomogram model. The web-based 

calculator for was built through package “DynNom”. 

 

Immune cell infiltration 

 

The immune cell infiltration in the high- and low-risk 

groups was calculated by the Cell-type Identification 

by Estimating Relative Subsets of RNA Transcripts 

(https://cibersort.stanford.edu/) [20]. Differences in 

the relative proportions of 22 types of immune cells 

between the high- and low-risk groups was calculated 

based on the absolute mode between the low- and 

high-risk groups.  

 

Statistical analysis 

 

Kaplan-Meier (KM) curves were plotted when median 

risk scores were used as cutoffs for comparing high-risk 

and low-risk survival rates. Statistics were considered 

significant for results with p values less than 0.05. R 

software version 4.2.1 is used for all analyses, with the 

exception of instructions performed with special 

parameters. 

 

Availability of data and materials 

 

All the data were obtained from the MMRF-

CoMMpass data (https://research.themmrf.org) and 

GEO database (https://www.ncbi.nlm.nih.gov/geo/). 

 

RESULTS 
 

Construction of UPS risk signature 

 

We evaluated the expression profile of UPS genes 

associated with MM prognosis through a univariate  

Cox regression analysis. Based on the analysis of 

MMRF-COMMPASS data, we identified 490 UPS 

genes related to overall survival (OS) (Supplementary 

Table 2). In addition, we identified 141 UPS genes 

related to OS in GSE2658 (Supplementary Table 3). 

The 97 intersections of the overall survival related  

UPS genes were selected for the subsequent analysis 

(Figure 1A). Then, the Lasso-Cox proportional hazards 

regression and tenfold cross-validation were 

performed based on the 97 genes to generate the best 

gene model, and 20 candidate UPS genes were 

ultimately selected (Figure 1B, 1C). Furthermore, a 

multivariate Cox regression was performed to 

construct the UPS gene risk signature, and six genes 

were finally selected as predictors of OS (Figure 1D). 

Figure 1E shows the mRNA levels of the 6 identified 

genes. The weights assigned to each gene are shown in 

Figure 1F. 

 

Evaluation the reliability of the risk signature 

 

Based on the UPS signature was established to predict 

MM survival according to the formula: risk score = 

(KCTD12 × 0.09469841) + (SIAH1 × 0.375796476) + 

(TRIM47 × 0.123243103) + (TRIM58 × 0.187060727) 

+ (UBE2S × 0.22107747) + (UBE2T × 0.37637129). In 

MMRF-COMMPASS training set, each patient’s risk 

score was calculated. The median was used to 

categorize the patients as either high-risk or low-risk. 

Figure 2A summarizes the distribution of risk scores, 

the survival status of patients, and the expression of 

UPS genes in the training set. A time-dependent ROC 

analysis showed the AUC value were 0.70, 0.75, and 

0.81 for 1-, 3-, and 5-years OS (Figure 2B). 

Additionally, survival analysis demonstrated that low-

risk MM patients have significantly longer OS as 

compared with high-risk MM patients (Figure 2C).  

 

Diagnostic value of UPS genes 

 

As a first step, we compared the UPS genes expression 

in normal and tumor tissues in GSE118985 dataset. It 

was found that the expression level of KCTD12, 

SIAH1, TRIM58, UBE2S, and UBE2T were 

significantly decreased in tumor tissue compared with 

the normal tissue, but TRIM47 was upregulated 

(Figure 3A). We further investigated the diagnostic 

effectiveness of the six identified UPS genes. As 

displayed in the ROC analysis, the diagnostic ability of 

each gene to distinguish MM from the normal samples 

shows a superior diagnostic efficiency (Figure 3B). 

 

GSVA 

 

We explored biological processes and KEGG 

pathways associated with risk signature using GSVA. 

As shown in Figure 4A, volcano map showed the 

enriched biological processes terms between low- and 

high- risk groups. Top five enriched biological 

processes terms were shown in Figure 4B. As shown 

in Figure 4C, volcano map showed the enriched 
KEGG pathways between low- and high- risk groups. 

Top five enriched KEGG pathways were shown in 

Figure 4D. 

https://cibersort.stanford.edu/
https://research.themmrf.org/
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Validation the UPS signature 

 

Risk scores were calculated for each patient in the 

validation sets, including GSE2658, GSE136377, and 

GSE57317, and the median was used to categorize the 

patients as either high-risk or low-risk.  

 

For GSE2658 validation set, Figure 5A summarizes 

the distribution of risk scores, the survival status  

of patients, and the expression of UPS in the training 

set. A time- dependent ROC analysis showed the  

AUC value were 0.70, 0.71, and 0.71 for 1-, 3-, and 5-

years OS (Figure 5B). Additionally, survival analysis 

demonstrated that low-risk MM patients have 

significantly longer OS as compared with high-risk 

MM patients (Figure 5C).  

 

For GSE136377 validation set, Figure 6A summarizes 

the distribution of risk scores, the survival status of 

patients, and the expression of RBP in the training set. 

A time-dependent ROC analysis showed the AUC value 

were 0.63, 0.64, 0.66, 0.67, and 0.72 for 1-, 3-, 5-, 7-, 

and 9-years OS (Figure 6B). Additionally, survival 

analysis demonstrated that low-risk MM patients have 

significantly longer OS as compared with high-risk MM 

patients (Figure 6C).  

 

 
 

Figure 1. Selection of robust biomarkers to establish a prognostic UPS gene signature. (A) The 97 intersections of the OS related 
genes in MMRF-COMMPASS and GSE2658. (B) The LASSO coefficient profiles of the candidate OS-related UPS genes with nonzero 
coefficients. (C) A dotted vertical line represents the optimal value of the parameter (lambda) used in the LASSO model. (D) Multivariate Cox 
regression was used to establish the UPS gene signature, and six genes were finally selected as predictors of OS. (E) The mRNA levels of the 6 
identified genes in training set (MMRF-COMMPASS). (F) Coefficient distribution of the gene signature. 
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For GSE57317 validation set, Figure 7A summarizes 

the distribution of risk scores, the survival status of 

patients, and the expression of RBP in the training set. 

A time-dependent ROC analysis showed the AUC value 

were 0.78 and 0.85 for 1-, and 3-years OS (Figure 7B). 

Additionally, survival analysis demonstrated that low- 

risk MM patients have significantly longer OS as 

compared with high-risk MM patients (Figure 7C). 

 

Immune cell infiltration estimation 

 

To further study immune characteristics in MM with a 

different immune risk score. We investigated the 

infiltrating immune cells by using the CIBERSORT 

algorithm. Supplementary Figure 1A illustrates the 

percentage of immune cells infiltrating the tumor. A 

comparison was made between high-risk and low-risk 

groups in terms of immune infiltration levels of a 

variety of immune infiltrating cells. The results showed 

High-risk participants had higher proportions of plasma 

cells, T cells CD8, T cells CD4 memory resting, NK 

cells activated, Dendritic cells activated, and Eosinophils 

(Supplementary Figure 1B). 

 

Independent prognostic factor 

 

In order to identify independent risk factors for MM, a 

univariate and multivariate Cox regression analyses was 

performed as described above. The results indicated that 

age, stage, and risk score were the independent 

prognostic indicator in both MMRF-COMMPASS 

(Supplementary Figure 2A, 2B). Moreover, age, stage, 

and risk score also served as the independent prognostic 

indicators in GSE136377 (Supplementary Figure 2C, 2D). 

 

Construction of a prognostic nomogram 
 

Based on the training set, we established a nomogram 

for accurate clinical prediction of MM survival, by 

independent prognostic factors, including age, stage,  

 

 
 

Figure 2. Evaluation the reliability of the risk signature in the training set (MMRF-COMMPASS). (A) summarizes the distribution 

of risk scores, the survival status of patients, and the expression of UPS genes in the training set. (B) A time-dependent ROC analysis for 1-, 3-, 
and 5-years OS prediction. (C) Survival analysis between low-risk and high-risk MM patients. 
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Figure 3. Diagnostic value of the identified UPS genes for MM. (A) The expression level of KCTD12, SIAH1, TRIM58, TRIM47, UBE2S, 

and UBE2T in tumor normal tissue. (B) ROC analysis showed the diagnostic ability of KCTD12, SIAH1, TRIM58, TRIM47, UBE2S, and UBE2T to 
distinguish MM from the normal samples (**P<0.01 and ****P<0.0001). 
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and risk score (Figure 8A). The C-index values were 

0.76 in OS nomogram. The calibration plots based on 

the training set showed good agreement between 

predictions and observations (Figure 8B). Time-

dependent ROC analysis showed the AUC value were 

0.75, 0.79, and 0.86 for 1-, 3-, and 5-years OS (Figure 

8C). Additionally, survival analysis demonstrated that 

low-risk MM patients have significantly longer OS as 

compared with high-risk MM patients (Figure 8D). The 

results also showed MM exhibited a greater mortality 

risk with an increasing risk score (Figure 8E). Further, a 

decision curve analysis (DCA) was conducted for age, 

stage, signature risk score, and nomogram, and showed 

that nomogram were clinically useful (Figure 8F–8H). 

 

In addition, we also performed a validation of the 

prognostic nomogram in the validation set (GSE136377). 

Time-dependent ROC analysis showed the AUC value 

 

 
 

Figure 4. GSVA analysis between low- and high- risk groups. (A) Volcano map showed the enriched biological processes terms 
between low- and high- risk groups. (B) Top 50 enriched biological processes terms. (C) Volcano map showed the enriched KEGG pathways 
terms between low- and high- risk groups. (D) Top 50 enriched KEGG pathways terms. 
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were 0.80, 0.73, and 0.74 for 1-, 3-, and 5-years OS 

(Figure 9A). Survival analysis demonstrated that low-

risk MM patients have significantly longer OS as 

compared with high-risk MM patients (Figure 9B). The 

results also showed MM exhibited a greater mortality 

risk with an increasing risk score (Figure 9C). 

 

Establishment of a web-based calculator 

 

In order to make our findings more practical, we 

developed a web calculator (https://jiangyanxiamm. 

shinyapps.io/MMprognosis/) to predict the OS of MM 

according to the nomogram (Supplementary Figure 3A–

3C). By drawing a perpendicular line from the total 

point axis to the outcome axis, we can estimate the odds 

of survival time. 

 

DISCUSSION 
 

In the last decade, patients with MM have had 

significantly better outcomes and survival rates  

[21, 22]. As MM is complicated in its etiology  

and is difficult to predict in terms of prognosis. 

Improve the prognosis prediction of patients with  

MM through the development of new methods is  

also essential for making informed treatment 

decisions. In this study, we analyzed RNA-seq 

transcriptome profiles to develop a comprehensive 

UPS gene expression signature for MM prognosis.  

As far as we know, this is the first study to develop a 

UPS signature and nomogram for MM prognosis 

prediction. 

 

In the current study, we developed an UPS-based 

signature of 6 genes, including KCTD12, SIAH1, 

TRIM58, TRIM47, UBE2S, and UBE2T. In the training 

set, the AUC value was 0.70, 0.75, and 0.81 for 1-, 3-, 

and 5-years OS prediction. Furthermore, we established 

a model based on independent prognosis factor. The 

multivariable model based on three features (age, stage, 

and risk score) showed promising predictive power in 

both training and validation sets. Based on our findings, 
 

 

 

Figure 5. Validation the reliability of the risk signature in the validation set (GSE2658). (A)  summarizes the distribution of risk 
scores, the survival status of patients, and the expression of UPS genes in the training set. (B) A time-dependent ROC analysis 
for 1-, 3-, and 5-years OS prediction. (C) Survival analysis between low-risk and high-risk MM patients. 

https://jiangyanxiamm.shinyapps.io/MMprognosis/
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this signature and model can be used to predict MM 

prognosis and assist in clinical decision-making. 

 

Among the identified UPS genes, most of the genes 

were first identified as diagnostic and prognostic 

genes in MM. KCTD12 has been reported to be a 

prognostic biomarker of colorectal cancer and breast 

cancer [23, 24]. However, relevant research focused 

on MM remains limited. We found the downregulated 

KCTD12 expression and was associated worse 

outcome in MM. SIAH1, an E3 ubiquitin ligase, has 

been the topic of a range of investigations due to its 

varied functions both physiologically and 

pathologically, and its numerous new functions that 

have been identified [25]. There are a growing 

number of SIAH1 substrate proteins, which are mostly 

associated with fundamental cellular processes, 

including hypoxia responses, DNA damage responses, 

and cell division within cells [26–29]. There are 

reports that TRIM58 plays a role in a variety of 

cancers. Previous study reported that TRIM58 

suppresses the tumor growth in tumor by inactivation 

of β-catenin signaling via ubiquitination [30]. There 

are, however, still questions regarding the expression 

level and functional role of TRIM58 in MM. A 

member of the TRIM family, TRIM47 plays an 

essential role in many cellular processes, including 

cell proliferation. It has been demonstrated that 

TRIM47 has E3 ligase activity, which is likely to play 

a role in tumor occurrence and prognosis [31]. 

Research shows tumor tissues express TRIM47 at a 

higher level than normal tissue [32], which is 

consistent with our findings. UBE2S is a ubiquitin-

conjugating enzyme that is essential for the proper 

functioning of cellular processes [33]. The UBE2S 

gene is associated with a poor prognosis for cancers 

such as breast and gliomas, liver, and other malignant 

tumors [34]. UBE2T belongs to the E2 family of 

ubiquitin proteasomes. A variety of cellular functions 

are impacted by UBE2T, including DNA damage, 

genome instability, proliferation, and differentiation 

[35–37]. 

 

 
 

Figure 6. Validation the reliability of the risk signature in the validation set (GSE136377). (A) summarizes the distribution of 
risk scores, the survival status of patients, and the expression of UPS genes in the training set. (B) A time-dependent ROC 
analysis for 1-, 3-, 5-, 7-, and 9-years OS prediction. (C) Survival analysis between low-risk and high-risk MM patients. 
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The UPS plays an important role in regulating immune 

cell function and response [38]. A comparison of 

immune cells types between low- and high-risk MM 

groups was performed here. The results showed High-

risk participants had higher proportions of plasma cells, 

T cells CD8, T cells CD4 memory resting, NK cells 

activated, Dendritic cells activated, and Eosinophils. 

These results implied that these immune cells are 

associated with poor prognosis.  

 

Nomograms are simple tools that create a visual 

representation of risk; they are extensively used in 

clinical settings to estimate risk. Clinical practitioners 

can use this tool to diagnose and estimate the prognosis 

of various patient groups since it has several key 

features. Our study used a nomogram to estimate the 

survival rate of MM patients based on their UPS risk 

score and other clinical features. Besides the classic 

nomogram, we developed a dynamic nomogram for 

estimating patient prognosis through web page 

operations. It may be more accurate to use a dynamic 

nomogram rather than previous nomograms that 

calculated an estimate. 

 

A comprehensive analysis of UPS genes related to MM 

prognosis was conducted in our study. In this study, we 

developed a six-gene signature to predict patient 

outcomes with satisfactory prediction performance, but 

we encountered some limitations as well. First, since 

LUAD has a high degree of heterogeneity, some 

important clinical variables were not available from the 

public datasets. Therefore, greater number of clinical 

variables should therefore be included in future studies. 

Second, A deeper understanding of the mechanisms 

underlying the prognostic ability of the UPS genes in 

MM is required. Third, more independent MM cohorts 

should be used to validate the identified prognostic UPS 

genes. 

 

In conclusion, our study developed and validated a 

prognostic model that includes the UPS signature as 

well as other clinical features in patients with MM, 

 

 
 

Figure 7. Validation the reliability of the risk signature in the validation set (GSE57317). (A) summarizes the distribution of risk 
scores, the survival status of patients, and the expression of UPS genes in the training set. (B) A time-dependent ROC analysis for 1- and 3-
years OS prediction. (C) Survival analysis between low-risk and high-risk MM patients. 
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Figure 8. Construction of a prognostic nomogram in the training set based on the independent risk factors. (A) Nomogram 
based on the age, stage, and UPS signature. (B) Calibration plot of the nomogram for the prediction of OS. (C) A time-dependent ROC analysis 
for 1-, 3-, and 5-years OS prediction. (D) Survival analysis between low-risk and high-risk MM patients. (E) The relative proportion of alive and 
death cases between two groups. (F) DCA of the nomogram for the prediction of 1-year OS. (G) DCA of the nomogram for the prediction of 3-
year OS. (H) DCA of the nomogram for the prediction of 5-year OS. 
 

 
 

Figure 9. Validation the prognostic nomogram in the validation set (GSE136377). (A) A time-dependent ROC analysis for 1-, 3-, and 

5-years OS prediction. (B) Survival analysis between low-risk and high-risk MM patients. (C)The relative proportion of alive and death cases 
between two groups. 
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which performed well in predicting the survival of MM 

patients. It may be useful in determining treatment 

strategies and potential outcomes for MM using this 

model. 
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SUPPLEMENTARY MATERIALS  

Supplementary Figures 

 

 

 
 

Supplementary Figure 1. Immune cell infiltration differences between low-risk groups and high-risk groups of MM in MMRF-
COMMPASS. (A) Relative proportions of immune cells between different groups. (B) Vioplot visualization of significantly different 
proportions of immune cells between different groups (*<0.05, **<0.01, and ***<0.001). 
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Supplementary Figure 2. Identification of independent risk factors for MM based on univariate and multivariate analysis.  
(A) Univariate analysis for MMRF. (B) Multivariate analysis for MMRF. (C) Univariate analysis for GSE136377. (D) Multivariate analysis for 
GSE136377.  
 



www.aging-us.com 9967 AGING 

 
 

Supplementary Figure 3. Predicting OS of MM patients via a web-based dynamic nomogram 
(https://jiangyanxiamm.shinyapps.io/MMprognosis/). (A) Web survival rate calculator. (B) 95% confidence interval of the survival 
probability. (C) Numerical summary of different cases. 

https://jiangyanxiamm.shinyapps.io/MMprognosis/
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–3. 

 

Supplementary Table 1. Ubiquitin proteasome system genes. 

Supplementary Table 2. Survival related ubiquitin-proteasome genes in MMRF-COMPASS.  

Supplementary Table 3. Survival related ubiquitin-proteasome genes in GSE2658.  

 


