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INTRODUCTION 
 

Preeclampsia(PE) is a multisystem disease diagnosed 

after 20 weeks of gestation without a history of 

hypertension, accounting for 4.6% of pregnancy-related 

complications [1]. It is one of the most common causes 

of fetal growth restriction, stillbirth and maternal 

pregnancy-related deaths [2]. Current research has 

found that preventive measures, such as oral low-dose 

aspirin, for high-risk groups of PE can reduce the 

incidence of PE and preterm birth [3]. However, the 

development of PE cannot be accurately predicted by 

ultrasound in combination with biophysical parameters, 

so it is essential to find appropriate biomarkers to help 

aid the clinician in a comprehensive judgement. 

Available studies suggest that the onset of PE is 

associated with poor placental formation, inadequate 

blood perfusion, excessive inflammatory activation, and 

endothelial cell damage [4]. Studies have shown that 

placental trophoblast autophagy is associated with the 

development of PE [5, 6]. Autophagy is the most 

fundamental life phenomenon in eukaryotes and can be 

triggered by a wide range of stresses. Through the 

catabolic process of lysosomes, damaged proteins, 

senescent or damaged organelles and other structures 

are degraded to maintain the stability of the intracellular 

environment [7]. In physiologically hypoxic early 

pregnancy placentas, enhanced levels of autophagy are 

observed to support trophoblast invasion and vascular 

remodeling and to protect trophoblasts from cell death 
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ABSTRACT 
 

The pathogenesis of preeclampsia(PE) is complex and placental internal homeostasis is regulated by cellular 
autophagy. However, there are fewer studies related to the role of placental autophagy in the pathogenesis of 
PE. The GSE75010 and GSE10588 datasets were downloaded from the gene expression omnibus(GEO) database. 
In the GSE75010 (test cohort), 103 differentially expressed genes(DEGs) were screened using “Limma” package, 
and 281 PE characteristic genes were screened by weighted gene coexpression network analysis(WGCNA). 
Combined with the autophagy gene set, a total of 5 autophagy-related hub genes were obtained. Three 
biomarkers (HK2, PLOD2, and TREM1) were then further screened by random forest(RF) model and least 
absolute shrinkage and selection operator(LASSO) algorithm as diagnostic of PE. In the unsupervised consensus 
clustering analysis, HK2, PLOD2, and TREM1 may be synergistically involved in hypoxia-induced autophagy and 
hypoxia-inducible factor 1(HIF-1) signaling pathway to induce PE. In addition, we constructed and evaluated a 
nomogram model for PE diagnosis using these three key diagnostic biomarkers, and the results showed that the 
model had significantly excellent predictive power (AUC values of GSE75010 and GSE10588 datasets were 0.869 
and 0.876, respectively). In terms of immune infiltration, a higher proportion of T cells CD8, and a lower 
proportion of Macrophages M2 were found in PE placentas compared to normal tissue, and high expression of 
HK2, PLOD2, and TREM1 were accompanied by low levels of Macrophages M2 infiltration. HK2, PLOD2, and 
TREM1 may be associated with the development of pre-eclampsia, and their mechanisms of action in 
preeclampsia need to be further investigated. 
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caused by hypoxia or nutrient deficiency [8]. However, 

when too much damaged tissue accumulates beyond 

what autophagy can tolerate, it causes excessive cellular 

autophagy leading to autophagic death. On the one 

hand, autophagic death of placental trophoblast cells is 

induced to inhibit their ability to infiltrate, and on the 

other hand, autophagic death of endothelial cells is 

induced to inhibit angiogenesis, thus triggering a series 

of pathophysiological processes in PE [9, 10]. Li Gao et 

al. found that the level of autophagy in the placental 

tissue of PE patients was highly increased compared 

with that of normal pregnant women [6]. It is also noted 

that in PE patients, as the placental microenvironment  

is altered, a series of abnormal responses such as 

oxidative stress occurs, inducing excessive autophagy 

of trophoblast or endothelial cells, which in turn 

promotes the development of PE. 

 

This suggests that the internal homeostasis of the 

placenta is regulated to some extent by the autophagic 

mechanism, and that dysfunctional autophagy can lead 

to disruption of placental homeostasis and consequently 

to the development of pregnancy complications such as 

PE. However, there is still a lack of systematic 

exploration of the pathogenesis of autophagy in PE. In 

this study, based on the gene expression omnibus 

(GEO) database, the R language was used to 

systematically evaluate the potential mechanisms of 

autophagy-related genes in PE. The autophagy-related 

genes were further screened as diagnostic biomarkers 

for PE patients, and diagnostic models were developed 

based on the biomarkers. Finally, the relationship 

between the biomarkers and immune cell infiltration 

was explored. 

 

MATERIALS AND METHODS 
 

Extraction of PE data based on GEO database 

 

A large amount of genome-wide RNA expression 

microarray data is available in the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/). The data used in 

this study were downloaded from the GSE75010 

dataset [11] and the GSE10588 dataset [12]. The 

GSE75010 was used as the test cohort (including 80 

PE placentas and 77 non-PE placentas) and the 

GSE10588 as the validation cohort (including 17 PE 

placentas and 26 non-PE placentas), as shown in Table 1. 

Information on the clinical data for each sample of the 

GSE75010 dataset is detailed in Supplementary File 1. 

First, the platform annotation information was 

downloaded to match gene probes to gene names, and 

when multiple probes identified the same gene, the 

mean was calculated to determine its expression, and 

when a gene was expressed in all samples at 0, the 

gene was removed. Then, based on the R software 

(version 4.1.2) “limma” package, the data were 

normalized again by the “quantile normalization” 

algorithm in the “normalizeBetweenArrays” function. 

 

The autophagy-associated gene set was obtained from the 

Human Autophagy Database (HADb: http://autophagy.lu/) 

and the Gene Set Enrichment Analysis (GSEA: 

https://www.gsea-msigdb.org/gsea/index.jsp) autophagy-

associated gene set, a total of 531 autophagy-associated 

genes were collected (Supplementary File 2). 

 

Weighted gene coexpression network analysis 

(WGCNA) 

 

The scale-free weighted gene co-expression network of 

the GSE75010 dataset was constructed using the 

“WGCNA” toolkit [13] in R to identify co-expressed 

genes and modules associated with PE. A soft threshold 

is set so that the network approximates a scale-free 

network for subsequent network construction. 

Hierarchical clustering trees were used to identify gene 

modules, and hierarchical clustering based on a 

topological overlap matrix (TOM)-based dissimilarity 

measure (1-TOM) was used to construct the relevant 

gene modules. Pearson correlation coefficients were 

calculated to determine the correlation of each module 

with the disease, to obtain the module with the highest 

correlation with the disease and to obtain the genes 

within the module. 

 

Differentially expressed gene(DEG) identification 

and functional enrichment analysis 

 

Next, DEGs were screened for differentially expressed 

genes between PE and normal placental tissue samples 

using the LIMMA package [14] in R with a setting of 

|Log2FC| > 0.5 and adjusted P-value < 0.05. The PE-

related differential autophagy genes were obtained by 

taking the intersection of the gene set within the module 

most related to the PE, DEGs and autophagy-related 

genes. These genes were subjected to Gene ontology 

(GO) functional enrichment analysis using the 

“clusterProfiler” and “org.Hs.eg.db” packages [15]. 

 

Diagnostic gene screening and diagnostic model 

construction 

 

A random forest (RF) model and a support vector 

machine (SVM) model were established based on the 

PE- related differential autophagy genes in the 

GSE75010 dataset. The “DALEX” package in R 

language was used to analyze and compare the above 

two models, draw the residual distribution and generate 

the receiver operating characteristic (ROC) curve, so as 

to obtain the best model. Finally, the “randomForest” 

package in R language and the least absolute shrinkage 
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Table 1. GEO data collection table. 

Datasets Accession Platform Cohort PE samples Normal samples 

Microarray 
GSE75010 GPL6244 Test cohort 80 77 

GSE10588 GPL2986 Validation cohort 17 26 

 

and selection operator (LASSO) logistic regression [16] 

were used to screen out the corresponding diagnostic 

genes and take the intersection to obtain the PE 

diagnostic biomarkers. 

 

A nomogram model was built to predict the occurrence 

of PE by using the “rms” package [17], and the 

predictive ability of the nomogram model was evaluated 

using the concordance index (C-index), calibration 

curve, and decision curve analysis (DCA). In addition, 

the area under the curve (AUC) values for each the PE 

diagnostic biomarkers were calculated to understand the 

value of these genes in the diagnosis of the PE, and to 

validate the expression and diagnostic value of these 

genes using the GSE10588 dataset. Finally, based on 

the clinical characteristics of GSE75010 dataset 

samples, the correlation between the PE diagnostic 

biomarkers expression and clinical characteristics was 

further explored. 

 

Consensus cluster analysis 

 

Based on the diagnostic biomarkers expression in the 

PE samples of the GSE75010 dataset, the 

“ConsensusClusterPlus” package was used to cluster 

and type the PE samples, and the maximum cumulative 

distribution function (CDF) index was selected as the 

best k value [18]. Principal component analysis (PCA) 

was performed on the clustering results to screen out 

DEGs between clusters, and perform functional 

enrichment analysis to explore the potential regulatory 

mechanisms of PE diagnostic biomarkers in PE. 

 

Evaluation of immune cell infiltration 

 

By using the CIBERSORT algorithm [19], the relative 

proportions of 22 infiltrating immune cells in each 

sample of the GSE75010 dataset were estimated and 

visualised by R software, and the abundance of immune 

cells was visualised and compared between the PE and 

Normal groups using the “vioplot” package. Finally, the 

correlation of each PE diagnostic biomarkers with the 

abundance of 22 infiltrating immune cells was determined 

by calculating the spearman correlation coefficient. 

 

Statistical analysis 

 

All statistical analyses were carried out using R software 

(version 4.1.2). Differences in expression of selected 

biomarkers and immune cell infiltration between the 

normal and PE groups were compared using the 

Wilcoxon test. Spearman analysis of correlation between 

expression of selected biomarkers and immune cell 

infiltration. The diagnostic accuracy of the selected 

biomarkers and nomogram model was assessed by 

differentiating the AUC generated by the ROC. For all 

statistical methods, P-value<0.05 or adjust P-value<0.05 

were considered a significant difference. In this paper, 

adjust P-value<0.05 was used for both differentially 

expressed genes (DEGs) and functional enrichment 

analysis, and P-value<0.05 was used for the rest of the 

analysis. Also, the false positive discovery rate <5% was 

used as the threshold for statistical significance. When 

performing multiple hypothesis tests, in order to avoid 

increasing the probability of making Type I errors, we 

use the Benjamini-Hochberg (BH) method to correct the 

P value to make the P value larger to control the number 

of false positives. The method is to sort all original  

P values from large to small, assign the largest P value 

as n, and assign the smallest P value as 1. Corrected  

P-value = original P-value * (n/i). 

 

RESULTS 
 

Identification and enrichment analysis of autophagy 

genes among key modules and DEGs 

 

Figure 1 illustrates the workflow of the study. GSE75010 

was downloaded from the GEO database, and the R 

software was used to construct the co-expression 

network. According to the scale-free fitting index of 0.9, 

the optimal soft threshold β=4 was determined 

(Supplementary Figure 1B). At this time, the average 

degree of connectivity of the network is relatively high 

and can contain enough information to construct a co-

expression network (Figure 2A). Four gene modules 

were obtained, with the highest correlation of 0.67 

between the turquoise module and PE (Figure 2B), and 

281 genes within the module (Supplementary File 3). The 

GSE75010 dataset yielded 103 DEGs, of which 76 were 

up-regulated and 27 were down-regulated (Figure 3A and 

Supplementary File 4). Genes within the turquoise 

module, differentially expressed genes and autophagy-

related genes were intersected to obtain the key 5 PE-

related differential autophagy genes, including HK2, 

PLOD2, TREM1, STBD1, and HAPLN1 (Figure 3B). 

GO functional enrichment analysis mainly focused on 

regulation of autophagy of mitochondrion in response to 
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mitochondrial depolarization, response to hypoxia, 

carbohydrate metabolic process, phagocytosis (Figure 2C 

and Supplementary Table 1). These results suggest that 

these genes may play an important role in PE through 

cellular activities such as autophagy, hypoxia, energy 

metabolism, and inflammation. 

Autophagy-related diagnostic biomarker identification 

and verification 

 

To screen autophagy biomarkers with more diagnostic 

value, RF and SVM models were separately established. 

RF model has the lowest residual distribution compared 

 

 
 

Figure 1. General overview of the study. 
 

 
 

Figure 2. Construction of WGCNA network. (A) Screening the co -expression module of the PE. (B) Heatmap of the module-trait 

correlations. WGCNA, weighted gene coexpression network analysis. PE, preeclampsia. 
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with the SVM model (Figure 4A, 4B). ROC curve 

analysis indicated that the AUC value of the RF model 

was higher than that of the SVM model (Figure 4C). 

Based on these results, we believed that the RF  

model was the most suitable model. Based on the 

“randomForest” package, the 3 genes (HK2, PLOD2, and 

TREM1) with the highest importance scores in the RF 

model were selected for further analysis (Figure 4D, 4E). 

 

 
 

Figure 3. Identification of autophagy genes among key modules and DEGs, and enrichment analysis. (A) Heatmap plot of 

the DEGs in GSE75010. Blue represents down-regulation, red represents up-regulation, and the darker the color in the heatmap, the 
higher the significance. (B) Venn plot exhibiting the autophagy genes among key modules and DEGs, including HK2, PLOD2, TREM1, 
STBD1, and HAPLN1. (C) GO enrichment analysis of autophagy genes among key modules and DEGs. DEGs, differentially expressed 
genes. GO, gene ontology. 
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Next, five genes were extracted as candidate biomarkers 

by the LASSO regression algorithm (Figure 5A). The 

genes screened by the above two algorithms were then 

intersected by Venn diagram to obtain three reliable 

diagnostic biomarkers, including HK2, PLOD2, and 

TREM1 (Figure 5B). Compared with the normal group, 

the expression of HK2, PLOD2, and TREM1 was 

observed to be significantly upregulated in PE samples 

of the test cohort (GSE75010) (P < 0.05, Figure 6A), and 

the results were validated in the validation cohort 

(GSE10588) (P < 0.05, Figure 6E). To estimate disease 

prediction efficacy, ROC curves were performed and 

found that the AUC values for HK2, PLOD2, and 

TREM1 were 0.825, 0.807, and 0.779 (Figure 6B–6D) in 

the test cohort (GSE75010), and 0.824, 0.586, and 0.873 

(Figure 6F, 6G) in the validation cohort (GSE10588), 

respectively. Interestingly, HK2, PLOD2, and TREM1 

were significantly upregulated in the early-onset 

preeclampsia cohort (Supplementary Figure 2A), and 

TREM1 was also significantly upregulated in PE 

patients with concomitant hemolysis, elevated liver 

enzymes and low platelets (HELLP) complications 

(Supplementary Figure 2B). 

 

Establishment and assessment of a nomogram model 

for PE diagnosis 

 

Based on the expression of HK2, PLOD2, and TREM1 

from the test cohort (GSE75010), the PE diagnostic 

nomogram model was established using the Rms 

 

 
 

Figure 4. Construction and assessment of RF and SVM model. (A) Reverse cumulative residual distribution of RF and SVM model.  

(B) Boxplots of the residuals of RF and SVM model. (C) ROC of RF and SVM model. (D, E) RF algorithm of the sample. RF, random forest. SVM, 
support vector machine. ROC, receiver operating characteristic curve. 
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Figure 5. Identification of the reliable autophagy biomarkers of PE. (A) LASSO regression analysis of five autophagy genes among key 

modules and DEGs. (B) Venn plot exhibiting the reliable autophagy biomarkers among LASSO and RF model, including HK2, PLOD2, and 
TREM1. PE, preeclampsia. LASSO, least absolute shrinkage and selection operator. DEGs, differentially expressed genes. RF, random forest. 
 

 
 

Figure 6. Verification of the PE-related diagnostic biomarkers. (A) The gene expression levels of HK2, PLOD2, and TREM1 in the test 

cohort (GSE75010). (B–D) ROC curves for evaluating the diagnostic ability of HK2, PLOD2, and TREM1 in the test cohort (GSE75010). (E) The 
gene expression levels of HK2, PLOD2, and TREM1 in the validation cohort (GSE10588). (F–H) ROC curves for evaluating the diagnostic ability 
of HK2, PLOD2, and TREM1 in the validation cohort (GSE10588). ROC, receiver operating characteristic curve. 
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package (Figure 7A). The error between the predicted 

and true event probabilities in the calibration curve had 

very small (Figure 7B), and the DCA indicated that the 

nomogram model had a higher clinical benefit than all 

(Figure 7C). At high risk thresholds from 0.2 to 1, the 

“Number high risk” curve and the “Number high risk 

with event” curve gradually tended to overlap (Figure 

7D). In addition, this nomogram model showed high 

AUC values (0.869, 0.876; Figure 7E, 7F) in both the 

test cohort (GSE75010) and the validation cohort 

(GSE10588). These results indicate that this nomogram 

model has excellent predictive performance. 

 

Construction of unsupervised consensus clustering 

 

The PE samples were clustered and typed using  

the “ConsensusClusterPlus” package based on the 

expression of HK2, PLOD2, and TREM1 from the  

test cohort (GSE75010). When k = 2, it has cluster 

stability (Supplementary Figure 3A, 3B), PE samples 

 

 
 

Figure 7. Establishment of a nomogram model for PE diagnosis based on the test cohort (GSE75010). (A) Nomogram to predict 

the occurrence of PE. (B) Calibration curve for the predictive power of the nomogram model. (C) DCA for the nomogram model. (D) Clinical 
impact curve to assess the nomogram model. (E, F) ROC curve to assess the model’s ability to diagnose PE in the test cohort (GSE75010) and 
the validation cohort (GSE10588). PE, preeclampsia. DCA, decision curve analysis. ROC, receiver operating characteristic curve. 
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are divided into ClusterA (n = 32) and ClusterB (n = 48) 

(Supplementary Figure 3C), PCA also shows two 

subtype classifications better (Figure 8A). HK2, PLOD2, 

and TREM1 were significantly upregulated in ClusterA 

(P<0.05, Figure 8B). Screening between the two 

subtypes yielded 38 DEGs (Figure 8C). GO functional 

enrichment analysis focused on response to hypoxia, 

response to decreased oxygen levels, response to oxygen 

levels, etc. KEGG enrichment analysis showed that 38 

DEGs were mainly involved in the HIF-1 signaling 

pathway (Figure 8D and Supplementary Table 2), and 

these results suggest that HK2, PLOD2, and TREM1 

may play a key role in the PE process through hypoxia-

induced autophagy. 

 

Analysis of immune cell infiltration 

 

The “CIBERSORT” algorithm was used to estimate the 

abundance of immune cell infiltration in each sample of 

the GSE75010 dataset (Figure 9A). Compared to 

normal tissue samples, Plasma cells, T cells CD8,  

T cells regulatory (Tregs), NK cells activated and 

 

 
 

Figure 8. Identification of two clusters using unsupervised consensus clustering. (A) Principal component analysis of two clustered 

distributions. (B) Differences in gene expression levels of HK2, PLOD2, and TREM1 between the two clusters. (C) Heatmap plot of the DEGs 
between the two clusters. (D) GO and KEGG enrichment analysis of the DEGs. DEGs, differentially expressed genes. GO, gene ontology. KEGG, 
Kyoto Encyclopedia of Genes and Genomes. 
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Eosinophils were more abundantly infiltrated in PE 

samples, while Macrophages M2 and Neutrophils were 

less abundantly infiltrated (P < 0.05, Figure 9B). 

Correlation analysis showed that HK2 was positively 

correlated with T cells CD8 (Cor= 0.286, P<0.001), 

Plasma cells (Cor=0.255, P=0.001), Eosinophils 

(Cor=0.220, P=0.006), T cells regulatory (Tregs) (Cor 

=0.201, P=0.012), and negatively correlated with 

Monocytes (Cor=-0.172, P=0.031), Neutrophils (Cor=-

0.277, P<0.001), Macrophages M2 (Cor=-0.282 

P<0.001); PLOD2 was positively correlated with 

Eosinophils (Cor= 0.218, P= 0.006), Macrophages M1 

(Cor= 0.168, P= 0.035), and negatively correlated with 

Macrophages M2 (Cor= -0.189, P= 0.018), Monocytes 

(Cor= -0.190, P= 0.017); TREM1 was positively 

correlated with T cells CD8 (Cor= 0.374, P<0.001), 

Eosinophils (Cor= 0.303, P<0.001), Plasma cells (Cor= 

0.281, P<0.001), T cells regulatory (Tregs) (Cor= 0.247, 

P=0.002), and negatively correlated with Monocytes 

(Cor= -0.220, P=0.006), Macrophages M2 (Cor= -

0.311, P<0.001), Neutrophils (Cor= -0.313, P<0.001) 

(Figure 10). 

 

 
 

Figure 9. Analysis of immune cell infiltration in the test cohort (GSE75010). (A) Distribution map of infiltrated immune cells.  

(B) Differences of the infiltrated immune cells between the PE group and Normal group. PE, preeclampsia. 
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DISCUSSION 
 

PE is one of the unique conditions of pregnancy that 

poses a serious threat to the life and health of the 

mother and baby. The only treatment is interruption of 

the pregnancy, but this may increase the risk of preterm 

complications for both mother and baby. Although 

screening indicators such as the biomarkers soluble 

fms-like tyrosine kinase 1 (sFlt-1) and placental growth 

factor (PlGF) have been used to predict PE by national 

and international scholars [20, 21], the predictive effect 

of these tests alone is not satisfactory, and there is an 

urgent need to find biomarkers with high specificity and 

sensitivity. 

 

Studies have shown that autophagy, as an important 

mechanism for maintaining homeostasis within the 

placenta, is involved in its energy regulation, stress 

protection, immune regulation and other processes, 

maintaining the dynamic homeostasis of tissues and 

ensuring cellular activity for normal physiological 

functions of the placenta [22]. Disruption of placental 

homeostasis due to autophagy dysfunction can cause the 

development and exacerbation of PE [9]. Studies over 

the last decade or so have shown that autophagy also 

plays a key role in mobilizing various cellular energy 

and nutrient stores, including carbohydrates (glycophagy 

i.e., the autophagic degradation of glycogen) [23]. 

Glycophagy plays a critical role in maintaining energy 

homeostasis in many tissues, including heart, liver and 

skeletal muscle [24], however, the importance in 

preeclampsia remains unclear. In this study, five 

WGCNA screened differentially expressed autophagy-

related genes were obtained, and the results showed that 

these genes were associated with behaviors such as 

carbohydrate catabolic, hypoxia and mitochondrial 

autophagy. The RF model and LASSO were further 

screened for three key diagnostic biomarkers (HK2, 

PLOD2, and TREM1). Hexokinase 2 (HK2) is a key 

enzyme in the glycolytic pathway and current studies 

have found that abnormal elevations in HK2 are 

associated with the development and malignant 

proliferation of a variety of tumors [25, 26]. Hou S et al. 

reported that HK2 expression was elevated in 

endometriosis tissues and that inhibition of HK2 

expression effectively attenuated the migration, 

invasion, and proliferation of endometrial stromal cells 

[27]. Lv H et al. also found HK2 to be significantly 

upregulated in PE tissue [28]. TREM1 has been reported 

to be upregulated in pre-eclamptic placentas and to 

enhance trophoblast migration and invasion through 

activation of the NF-κB pathway [29]. However, a role 

for PLOD2 in PE has not been reported. We then used 

these three key diagnostic biomarkers to construct and 

evaluate a nomogram model for PE diagnosis, and the 

nomogram models have excellent predictive power 

based on the evaluation indicators (Calibration curve, 

DCA, Clinical impact curve, ROC curve). 

 

In our cluster typing analysis HK2, PLOD2, and TREM1 

may be synergistically involved in hypoxia-induced 

autophagy and the hypoxia-inducible factor 1(HIF-1) 

signaling pathway, contributing to the development and 

progression of pre-eclampsia. In normal placental 

development, physiological hypoxia increases the 

expression of hypoxia-inducible factor 1-alpha (HIF-1α), 

which activates autophagy via the PIK3 pathway and 

becomes a source of energy for trophoblast invasion, 

thereby maintaining intracellular homeostasis. It has  

been shown that multi-organ ischemia induces the 

production of HIF-1α further causing an increase in  

sFlt-1 levels and ultimately impairing placental function 

[30]. In PE cases, severe or persistent placental  

hypoxia accelerates the overexpression of HIF-1α in 

extravillous trophoblast (EVT) cells, leading to increased 

levels of soluble endothelial factor (sENG), which 

inhibits EVT autophagy. Autophagy damage prevents 

HIF-1α-mediated cellular energy depletion from being 

 

 
 

Figure 10. Correlation analysis between the infiltrated immune cells and the expression of the PE-related diagnostic biomarkers, including 

HK2 (A), PLOD2 (B), and TREM1 (C). PE, preeclampsia. 
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compensated in a timely manner, affecting energy 

balance, further impairing EVT invasiveness and 

vascular remodeling, resulting in superficial placental 

deposition and triggering PE [8, 31]. This is corroborated 

by the significantly lower adenosine triphosphate (ATP) 

levels in placentas with severe PE compared to normal 

placentas [32]. 

 

The inflammatory response is a recognized cause of PE 

and any local imbalance in the immune response may 

lead to abnormalities in placental structure or 

angiogenesis, contributing to the development of PE [33]. 

During placental insemination, the increase in immune 

cells such as NK cells and macrophages at the maternal-

fetal interface not only has a local immune function, but 

also promotes the recruitment of trophoblast cells, the 

recasting of spiral arteries and the production of 

angiogenic factors, which play an important role in 

placental formation [34–36]. In the decidua of patients 

with preeclampsia, the expression of CD14+, CD163+ 

and Macrophages was increased, and the number of 

Macrophages M2 with anti-inflammatory effect was 

decreased. The decrease in the number of Macrophages 

M2 is related to the increased production of sflt-1, so it is 

speculated that the decrease in the number of 

Macrophages M2 may be related to the pathogenesis of 

preeclampsia [37], which is consistent with our findings. 

Interestingly, we also found that HK2, PLOD2, and 

TREM1 were all significantly and negatively correlated 

with Macrophages M2 infiltration levels. In addition, PE 

patients often suffer from immune imbalance due to 

inadequate trophoblast invasion and placental hypoxia, 

resulting in an increase and sequential activation of pro-

inflammatory immune cells (e.g., CD8+ T cells) [38, 39]. 

We also observed elevated levels of placental CD8+ T 

cell infiltration in pre-eclampsia. However, our finding of 

higher numbers of Tregs in PE placental tissue is 

inconsistent with previous reports [40]. Overall, multiple 

infiltrating immune cells are collectively involved in the 

development and progression of PE. 

 

There are also some limitations to our study. Firstly, 

this study is based on published data and key diagnostic 

biomarkers still need to be experimentally validated and 

their biological function in PE explored. Secondly, 

placental tissue needs to be obtained invasively, which 

carries a high risk, and the nomogram model is likely to 

be limited in clinical use. 

 

CONCLUSIONS 
 

We identified HK2, PLOD2, and TREM1 as biomarkers 

for PE prediction using the WGCNA, RF, and LASSO 

algorithms, and thus developed a nomogram model for 

PE diagnosis with significantly better predictive power. 

The study also confirmed the potential association of 

infiltrating immune cells with the development of PE. 

These findings therefore provide a new perspective on 

the management and treatment of PE. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Construction of WGCNA network. (A) Sample clustering of GSE75010. (B) Soft threshold determination.  

(C) Analysis of the mean connectivity for various soft-thresholding powers. WGCNA, weighted gene coexpression network analysis. 
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Supplementary Figure 2. Correlation analysis between the expression of the PE-related diagnostic biomarkers and clinical features, 

including preeclampsia staging (A) and HELLP syndrome (B). PE, preeclampsia. HELLP, hemolysis, elevated liver enzymes and low platelets. 
 

 
 

Supplementary Figure 3. Unsupervised consensus clustering in the test cohort (GSE75010). (A) Delta area curve of consensus 

clustering for k = 2 to 9. (B) CDF for k = 2 to 9. (C) Heatmap showing the two clusters of PE samples. CDF, cumulative distributive function. PE, 
preeclampsia. 
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Supplementary Tables 
 

 

Supplementary Table 1. GO functional enrichment analysis of the PE-related differential autophagy genes. 

ONTOLOGY ID Description pvalue p.adjust qvalue 

BP GO:0016052 carbohydrate catabolic process 0.001096 0.036522 0.011503 

BP GO:0044262 cellular carbohydrate metabolic process 0.002206 0.036522 0.011503 

BP GO:1904925 

positive regulation of autophagy of 

mitochondrion in response to mitochondrial 

depolarization 

0.003477 0.036522 0.011503 

BP GO:0001666 response to hypoxia 0.003548 0.036522 0.011503 

BP GO:0030198 extracellular matrix organization 0.003725 0.036522 0.011503 

BP GO:1904923 
regulation of autophagy of mitochondrion in 

response to mitochondrial depolarization 
0.003744 0.036522 0.011503 

CC GO:0034045 phagophore assembly site membrane 0.004051 0.037995 0.007499 

CC GO:0030867 rough endoplasmic reticulum membrane 0.006577 0.037995 0.007499 

CC GO:0000407 phagophore assembly site 0.008089 0.037995 0.007499 

CC GO:0030315 T-tubule 0.013119 0.037995 0.007499 

CC GO:0101003 ficolin-1-rich granule membrane 0.015375 0.037995 0.007499 

CC GO:0016529 sarcoplasmic reticulum 0.017877 0.037995 0.007499 

MF GO:0030246 carbohydrate binding 3.47E-05 0.00066 7.31E-05 

MF GO:0048029 monosaccharide binding 0.000176 0.00167 0.000185 

MF GO:0031406 carboxylic acid binding 0.001158 0.0062 0.000687 

MF GO:0043177 organic acid binding 0.001305 0.0062 0.000687 

MF GO:0005536 glucose binding 0.003105 0.011797 0.001307 

MF GO:0031418 L-ascorbic acid binding 0.005639 0.013092 0.001451 

 

Supplementary Table 2. Functional enrichment analysis of the DEGs between the two clusters. 

Ontology ID Description pvalue p.adjust qvalue 

BP GO:0001666 response to hypoxia 1.58e-05 0.008 0.006 

BP GO:0036293 response to decreased oxygen levels 1.88e-05 0.008 0.006 

BP GO:0070482 response to oxygen levels 2.68e-05 0.008 0.006 

CC GO:0005925 focal adhesion 0.003 0.051 0.051 

CC GO:0005924 cell-substrate adherens junction 0.003 0.051 0.051 

CC GO:0030055 cell-substrate junction 0.003 0.051 0.051 

MF GO:0036122 BMP binding 1.32e-04 0.007 0.005 

MF GO:0048185 activin binding 2.17e-04 0.007 0.005 

MF GO:0048029 monosaccharide binding 2.22e-04 0.007 0.005 

KEGG hsa04066 HIF-1 signaling pathway 2.68e-04 0.009 0.007 
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Supplementary Files 
 

Please browse Full Text version to see the data of Supplementary Files 1–4. 

 

Supplementary File 1. Clinical features of GSE75010. 

 

Supplementary File 2. Autophagy-related gene. 

 

Supplementary File 3. 281 genes within turquoise module. 

 

Supplementary File 4. 103 DEGs of GSE75010 dataset. 


