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INTRODUCTION   
 

With the advent of combination antiretroviral therapy, 

HIV is now a manageable chronic condition, and people 

with HIV (PWH) have a similar life expectancy to that 
of seronegative controls [1, 2]. However, HIV is known 

to cross the blood-brain barrier in the early stages of 

systemic viremia, which can lead to infected neural cells 
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ABSTRACT 
 

Background: Despite effective antiretroviral therapy, cognitive impairment and other aging-related 
comorbidities are more prevalent in people with HIV (PWH) than in the general population. Previous research 
examining DNA methylation has shown PWH exhibit accelerated biological aging. However, it is unclear how 
accelerated biological aging may affect neural oscillatory activity in virally suppressed PWH, and more broadly 
how such aberrant neural activity may impact neuropsychological performance. 
Methods: In the present study, participants (n = 134) between the ages of 23 – 72 years underwent a 
neuropsychological assessment, a blood draw to determine biological age via DNA methylation, and a 
visuospatial processing task during magnetoencephalography (MEG). Our analyses focused on the relationship 
between biological age and oscillatory theta (4-8 Hz) and alpha (10 - 16 Hz) activity among PWH (n=65) and 
seronegative controls (n = 69). 
Results: PWH had significantly elevated biological age when controlling for chronological age relative to 
controls. Biological age was differentially associated with theta oscillations in the left posterior cingulate cortex 
(PCC) and with alpha oscillations in the right medial prefrontal cortex (mPFC) among PWH and seronegative 
controls. Stronger alpha oscillations in the mPFC were associated with lower CD4 nadir and lower current CD4 
counts, suggesting such responses were compensatory. Participants who were on combination antiretroviral 
therapy for longer had weaker theta oscillations in the PCC. 
Conclusions: These findings support the concept of interactions between biological aging and HIV status on the 
neural oscillatory dynamics serving visuospatial processing. Future work should elucidate the long-term 
trajectory and impact of accelerated aging on neural oscillatory dynamics in PWH. 
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and increased neuroinflammation [3]. Inflammatory 

processes have been thought to lead to epigenetic 

modifications resulting in advanced aging in PWH, as 

well as downstream effects on cognition [4]. Many 

structural and functional neuroimaging studies have 

shown differences between PWH and controls that 

would be consistent with accelerated aging in PWH  

[5–9], although to date, studies directly linking 

accelerated aging in PWH to structural and functional 

changes in the brain have been exceedingly rare. One 

recent structural neuroimaging study aiming to directly 

link accelerated aging to HIV-related aberrations 

revealed common structural changes with aging, such as 

gray matter thinning in the posterior cortices which is 

accentuated in PWH who exhibit accelerated biological 

aging [5]. 

 

To our knowledge, no study to date has directly linked 

accelerated biological aging in PWH to the neuro-

functional changes that occur in cognitively impaired 

PWH, which include deficits in visuospatial processing, 

attention, working memory, and motor function networks 

[10–19]. This paucity of work linking biological aging 

and functional brain activity persists despite a growing 

body of research showing chronological age- and 

disease-specific alterations to these functional networks 

in PWH. More specifically, impairments in visuospatial 

processing in PWH have been associated with decreased 

oscillatory theta activity and altered alpha activity 

recorded using magnetoencephalography (MEG) [11]. 

Additionally, chronological age has been shown to 

covary differentially with alpha and gamma neural 

oscillatory activity in the occipito-parietal cortices among 

PWH, with such alpha activity reflecting disinhibition of 

visual processing circuits [12]. Other studies have found 

differences in neural oscillatory activity related to aging 

in cognitively impaired PWH compared to cognitively 

unimpaired PWH and seronegative controls [12, 20], but 

none of these functional studies have included a marker 

of biological aging. Quantifying a biomarker of 

biological age could better characterize senescence, and 

therefore may enable more accurate representations of 

the aging processes occurring in the brain. 

 

The epigenetic clock is a promising measure of 

biological aging in PWH, as it has been found to 

independently predict mortality risk [21], and it 

quantifies the cytosine phosphate guanine sites (CpGs) 

measured in human cells [22, 23]. Among PWH, 

advanced aging using the epigenetic clock has been 

identified in peripheral blood and neural tissue [24], and 

is linked with cognitive impairment in PWH [25]. 

However, it is not clear how advanced biological aging 
as reflected by the epigenetic clock relates to changes in 

the neural oscillatory dynamics serving visuospatial 

discrimination. 

In this study, we quantified differences in the neural 

dynamics serving visuospatial processing among  

PWH and seronegative controls using advanced  

MEG methods and examined how these differences  

in neural dynamics may relate to biological age 

acceleration in PWH. Our measures of biological age 

were derived via DNA methylation analysis conducted 

on peripheral blood samples. Finally, we probed the link 

between aberrant neural dynamics and HIV disease 

metrics to identify phenotypes of accelerated biological 

aging. Our primary hypothesis was that PWH would 

exhibit accelerated biological aging, which would be 

associated with altered neural dynamics in regions 

serving visuospatial processing and clinical HIV 

indices. Specifically, we predicted that these altered 

neural dynamics would be in accordance with the 

compensation-related utilization of neural circuits 

hypothesis (i.e., CRUNCH) [13, 26], which suggests 

that older adults recruit greater neural resources relative 

to younger adults to perform cognitively demanding 

tasks. 

 

RESULTS 
 

Participant characteristics, neuropsychological, and 

behavioral results 

 

A total of 134 participants (65 PWH, 69 seronegative 

controls) successfully completed the visuospatial 

discrimination task, neuropsychological assessment, and 

provided a blood sample for DNA methylation analysis. 

The groups were similar in demographic characteristics 

such as chronological age (Range = 23 – 72 years), sex, 

race, and ethnicity, though they differed in several 

neuropsychological domains including memory, 

executive function, processing speed, and attention, and 

years of education achieved with the PWH performing 

worse than controls (Table 1). As predicted, the two 

groups differed in biological age when controlling for 

chronological age (t(132) = -1.79, p = 0.037; Table 1), 

which indicates greater age acceleration in PWH 

relative to the seronegative controls. Behavioral 

performance on the visuospatial processing task was 

similar between groups in terms of accuracy (t(132) = 

1.35, p = 0.180), but seronegative controls responded 

faster (M = 543.65 ms, SD = 95.08) than PWH (M = 

593.45 ms, SD = 93.98), t(132) = -3.04, p = 0.003 

(Figure 1B, left). Greater reaction times were also 

significantly associated with increasing biological age, 

r(135) = 0.285, p = 0.001 (Figure 1B, right). 

 

Oscillatory neural responses 

 
We observed robust neural oscillatory responses in  

five temporally and spectrally defined windows during 

visuospatial processing (Figure 2). These included 
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Table 1. Participant demographics and neuropsychological profiles. 

  HIV (n=65) Seronegative controls (n=69) P value 

Demographics 

Chronological Age (years) 47.48 (10.94) 44.74 (14.68) 0.221 

Biological Age (years) 49.27 (13.65) 44.72 (15.65) 0.037* 

Sex (n) 39 Male / 26 Female 34 Male / 35 Female 0.213 

Race (n) 42 white / 20 Black / 2 Other 49 white / 19 Black / 1 Other 0.711 

Ethnicity (n) 61 Not Hispanic / 3 Hispanic 65 Not Hispanic / 4 Hispanic 0.775 

Education (years) 14.67 (2.41) 17.10 (1.87) <0.001 

HIV Clinical Metrics 

CD4 Nadir (cells/µL) 240.05 (152.79) - - 

Current CD4 (cells/µL) 828.55 (439.93) - - 

Years Since HIV Diagnosis 11.37 (6.92) - - 

Years on cART 9.35 (6.15) - - 

Neuropsychological 

Performance 

Learning T-Score 43.25 (10.94) 46.36 (10.77) 0.099 

Memory T-Score 44.99 (9.60) 49.01 (8.66) 0.012 

Executive Function T-Score 46.96 (7.67) 50.30 (7.45) 0.012 

Processing Speed T-Score 47.60 (8.13) 52.59 (6.44) <0.001 

Attention T-Score 44.65 (8.74) 51.95 (8.67) <0.001 

Motor Dexterity T-Score 44.32 (11.06) 47.26 (8.22) 0.089 

Note. Means and standard deviations are displayed for each continuous variable. Domain T-scores were calculated by 
averaging the T-scores from the individual assessments comprising each cognitive domain. cART, Combination antiretroviral 
therapy. *One-tailed p-value. 

 

 
 

Figure 1. Experimental paradigm and behavioral results. (A) An illustration of the visuospatial processing task paradigm. Each trial 
had a fixation period lasting 2000 ms (variable ISI: 1900-2100 ms) and a stimulus-presentation period lasting 800 ms, which consisted of 
one of the four options displayed. Participants responded whether the checkered grid appeared to the left or to the right. (B) (Left) 
Reaction time (in ms) is displayed on the y-axis. There was a significant difference in reaction time by group such that people with HIV were 
slower to respond than controls, but they did not differ in terms of accuracy. (B) (Right) Biological age was associated with reaction time in 
all participants. *p < 0.05. 
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statistically significant increases in power relative to the 

baseline period in the theta band (0 – 250 ms; 4 – 8 Hz), 

a decrease in power in the alpha band (175 – 500 ms;  

10 – 16 Hz), an early decrease in power in the beta band 

(125 – 225 ms; 12-26 Hz), a late decrease in power in 

the beta band (350 – 500 ms; 14-24 Hz), and an increase 

in power in the gamma band (125 – 200 ms; 66 – 76 

Hz). All responses were significant at p < 0.001 

following multiple comparisons correction using 

nonparametric cluster-based permutation testing. At the 

cortex level, the theta, alpha, and early beta responses 

originated from the bilateral occipital regions and the 

late beta response originated from the left sensorimotor 

cortices (Figure 2, right). 

 

Group and biological age interactions 

 

To address our primary hypotheses, we assessed the 

interactive effects of biological age and HIV status on 

these neural responses by computing whole-brain Fisher 

Z comparisons separately for the theta, alpha, beta, and 

gamma band responses. In the theta band, a significant 

interaction between biological age and group was 

observed in the left posterior cingulate cortex (PCC;  

zpeak = 3.76, p < 0.005, k = 136 voxels). Specifically, 

PWH had decreasing oscillatory theta power in the  

left PCC with increasing biological age (r = -0.291,  

p = 0.025), while seronegative controls had increasing 

theta power in the left PCC with increasing biological 

age (r = 0.382, p = 0.002; Figure 3A). A significant 

interaction between biological age and group was also 

found in the alpha band, and this effect was centered  

on the right medial prefrontal cortex (mPFC; zpeak = 3.16, 

p < 0.005, k = 204 voxels), with PWH exhibiting 

decreasing oscillatory alpha power with increasing 

biological age (r = -0.375, p = 0.003) and controls 

showing no significant relationship (r = 0.030, p = 0.812; 

Figure 3B). There were no significant group-by-

biological age interactions observed in the beta and 

gamma bands. 

 

Next, we wanted to probe how these distinct neural 

oscillatory responses were related to clinical indices of 

HIV (i.e., CD4 nadir, current CD4 counts, duration on 

cART, disease duration). Pseudo-t values were extracted 

from peak voxels identified in the whole-brain 

interaction analyses and subjected to additional testing. 

Regarding clinical HIV metrics, we found that lower

 

 
 

Figure 2. Neural responses to the visuospatial discrimination task. (Left): Grand-averaged time frequency spectrograms of MEG 

sensors exhibiting one or more significant responses. Shown from top to bottom: gamma, motor beta, visual beta, alpha, and theta activity. 
In each spectrogram, frequency (Hz) is shown on the y-axis, and time (ms) is shown on the x-axis. Signal power data are expressed as a 
percent difference from the baseline period, with color legends shown with each spectrogram. (Right): Grand-averaged beamformer images 
(pseudo-t) across all participants for each time-frequency component. 
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CD4 nadir counts (cells/µL; r = 0.331, p = 0.009; Figure 

4A) and lower current CD4 counts (r = 0.284, p = 0.025; 

Figure 4B) were associated with stronger (i.e., more 

negative) alpha power in the left mPFC. Conversely, we 

found that weaker theta power in the left PCC was 

associated with being on cART for a longer period of 

time (r = -0.333, p = 0.010; Figure 4C), but was  

not significantly associated with HIV disease duration  

(r = -0.229, p = 0.080). 

 

DISCUSSION 
 

Previous work has identified aberrancies in neural 

dynamics during visuospatial processing in cognitively 

impaired PWH [11] and showed that such aberrations 

follow a distinct trajectory with chronological age [12]. 

However, to our knowledge, no studies to date have 

examined the relationship between such neural 

oscillatory dynamics and DNA methylation measures  

of biological aging in PWH relative to seronegative 

controls. Using sophisticated neuroimaging and 

statistical methods, we found that biological age and 

HIV status uniquely interact with the neural oscillatory 

dynamics serving visuospatial processing. In particular, 

we identified differential associations between biological 

age and theta and alpha neural oscillatory power among 

PWH and seronegative controls in the left PCC and right 

mPFC, respectively. Previous studies have reported 

evidence for an interaction between chronological age 

and HIV infection on neural and cognitive functioning 

[10, 12, 13, 16, 20]. Further, a systematic review 

highlighted that 45% of cross-sectional studies identified 

premature aging among PWH relative to age-matched 

seronegative controls, and 75% of longitudinal studies 

demonstrated that PWH exhibited accelerated aging 

[27]. However, none of these studies have investigated 

biological age as a factor. Thus, these findings are the 

first to identify the interaction between biological age 

and HIV status on neural oscillatory dynamics serving 

cognitive function, and more specifically, visuospatial 

 

 
 

Figure 3. Interaction between biological age and HIV status on the posterior cingulate theta response and the medial 
prefrontal cortex alpha response. (A) The brain image (middle) represents the voxel-wise interaction between biological age and HIV 

status (i.e., people with HIV vs. seronegative controls) in oscillatory theta power in the left posterior cingulate. (B) The brain image (middle) 
represents the voxel-wise interaction between biological age and HIV status in oscillatory alpha power in the right medial prefrontal cortex. 
Peak voxel power values were extracted from both clusters depicted in these images and plotted as a function of biological age by HIV status 
to visualize the differing relationships between biological age and oscillatory neural activity. *p < 0.05. 
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processing. Thus, the present study adds a critical 

component to this literature and extends previous 

findings by relating previously reported abnormalities in 

neuronal oscillations to biological epigenetic aging. 

Notably, the two key regions identified in the present 

study (i.e., the PCC and mPFC) have been associated 

with diminished gray matter volume in PWH relative to 

seronegative controls [10, 28], and were previously 

linked to accelerated biological aging in a structural 

neuroimaging study [10]. 

 

The PCC is highly metabolically active and connected 

with many areas across the cortex, though it is 

typically less active during cognitively demanding 

tasks [29]. The PCC is thought to play a critical role in 

regulating the focus of attention both internally and 

externally [29], and at least one study showed that 

neural response strength in the PCC scales with 

cognitive load in healthy individuals [30]. Further, 

those who fail to adequately reduce activity in the PCC 

while undergoing cognitively-demanding tasks often 

exhibit cognitive inefficiencies [31–35], and studies 

have shown that healthy older individuals express 

stronger PCC activity while undergoing an externally 

directed task relative to younger individuals [36–38]. 

Further, HIV has been linked to reduced regional and 

global cortical myelin [39] and weaker activity in the 

PCC [40–44], which has been associated with poorer 

cognitive functioning in PWH [45]. In contrast to the 

PCC, the mPFC is critical for executive functions 

including attention, cognitive flexibility, working 

memory, and decision-making [46]. Independent of 

executive functions, there is a strong relationship 

between deterioration in information processing speed 

and age-related changes in the mPFC [47]. 

By integrating epigenetic data with neural oscillatory 

theta measures during a visuospatial processing task, we 

identified an HIV-by-biological age interaction, such 

that theta power in the left PCC was weaker with older 

biological age in PWH but was stronger with older 

biological age in seronegative controls. This may reflect 

a progressive deficit in recruiting greater neural 

resources to compensate for age-related decreases in 

neural efficiency in biologically older PWH. In line 

with the CRUNCH hypothesis [26], biologically older 

seronegative controls were able to sufficiently recruit 

more neural resources to compensate for biological age-

related decreases in neural efficiency during this 

relatively simple visuospatial processing task, while 

biologically older PWH appeared unable to adequately 

recruit the extra neural resources needed to meet the 

cognitive demands of the task [13, 26]. Finally, in 

further support for the notion that weaker theta activity 

with older biological age is pathological, we found that 

those who had been on cART longer had weaker (i.e., 

less optimal) theta power in the left PCC, which may 

reflect legacy effects of earlier antiretrovirals or simply 

cumulative effects of cART exposure. In contrast to 

theta, PWH exhibited stronger (i.e., more negative) 

alpha oscillations in the mPFC with greater biological 

age, which we propose was likely compensatory given 

the overall pattern of relationships with HIV clinical 

indices. Specifically, the stronger oscillatory alpha 

responses in the mPFC were associated with lower nadir 

CD4 counts and lower current CD4 counts, which may 

reflect that those with the most severe legacy effects 

and/or weaker immune systems rely on the strongest 

compensatory activity to complete this relatively simple 

visuospatial processing task. In sum, we suggest  

that HIV-related changes to theta and alpha neural 

 

 
 

Figure 4. Relationship between HIV metrics and oscillatory alpha and theta power. Lower nadir CD4 counts (A) and lower current 
CD4 counts (B) were associated with stronger (i.e., more negative) oscillatory alpha power in the right medial prefrontal cortex. (C) The 
longer PWH had been on combination antiretroviral therapy (cART), the weaker their oscillatory theta power in the left posterior cingulate 
cortex. *p < 0.05. 
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oscillations are closely associated with measures of 

biological age at a molecular level. Of note, epigenetic 

age of brain tissue and of peripheral blood measured via 

DNA methylation have been shown to correspond 

highly with one another [22, 48]. 

 

Aging in the brain has largely been studied using only 

chronological age, though biological age has been 

showed to be associated with greater mortality risk [21]. 

Therefore, our study not only illuminates the nature of 

HIV-related alterations to neural oscillations, but also 

suggests that epigenetic measures of biological age may 

be important in understanding HIV-related neural 

aberrations. Such increases in biological age in PWH 

may be related to legacy effects, cART exposure, viral 

reservoirs in the CNS and periphery, or other factors, 

any of which could lead to inflammation, cellular 

damage, and ultimately epigenetic modifications that 

reflect accelerated biological age, potentially driving 

changes in neural structure and function [10]. More 

specifically, epigenetic modifications to immune cells 

are thought to contribute most to accelerated biological 

aging and cognitive impairment in PWH by way of HIV-

infected monocyte and macrophage lineages crossing the 

blood brain barrier, infecting microglia and astrocytes in 

the brain, thereby inducing a neuroinflammatory state 

that results in synaptic and neuronal loss and 

degeneration of brain circuits, thus contributing to HIV-

related cognitive impairment and accelerated biological 

aging [49]. However, further investigation is warranted 

to establish the causality of this relationship. While these 

findings replicate previous epigenetic changes that occur 

with HIV and extend structural imaging findings of a 

link between HIV and biological aging in the brain to 

neural function, many questions remain for future 

studies to investigate. 

 

Despite the novelty of this study, there were some 

limitations that govern the generalizability of the results. 

For example, we only recruited PWH who were virally 

suppressed, receiving an effective cART regimen, and 

had no diagnosed neurologic/psychiatric comorbidities, 

including substance use disorders. We also did not assess 

the impact of socioeconomic status, health behaviors, or 

comorbidities such as cardiovascular (e.g., hypertension) 

and metabolic (e.g., diabetes) diseases, which should be 

assessed in the future. These limitations may also be why 

the difference in biological age that we observed in PWH 

was smaller than that reported in previous studies [50]. 

 

In conclusion, our study identified differences in the 

relationship between biological age and theta and 

alpha oscillatory neural activity serving visuospatial 
processing in PWH and seronegative controls. 

Specifically, epigenetic alterations revealed that 

biologically older PWH were not able to adequately 

recruit neuronal populations underlying oscillatory 

theta responses in the left PCC. Conversely, PWH 

exhibited stronger oscillatory alpha power in the right 

mPFC, and this activity appeared to be compensatory 

and may underlie their ability to adequately perform 

the visuospatial processing task. In sum, these findings 

provide compelling evidence linking epigenetic 

biological aging and aberrations in neural oscillatory 

activity in PWH, suggesting that biological aging may 

underlie some of the key neurological findings in the 

neuroHIV literature. 

 

MATERIALS AND METHODS 
 

Participants 

 

We studied participants between the ages of 22 to 72 

years who were originally enrolled as part of a larger 

project examining chronological aging in HIV (R01-

MH103220; see Table 1). PWH were required to be on 

an effective cART regimen and have an HIV RNA viral 

load of less than 50 copies/mL within three months of 

participation in the study. All controls were confirmed 

seronegative using the OraQuick ADVANCE® Rapid 

HIV Antibody Test at the time of neuropsychological 

testing. Exclusion criteria for the study included any 

diagnosed neurological or psychiatric disorder (except 

HIV-associated cognitive impairment), any medical 

illness associated with CNS dysfunction (other than 

HIV), history of head trauma, current substance use 

disorder, the presence of metallic implants that could 

affect MEG signal quality or MRI safety, and pregnancy. 

Additionally, we excluded participants who did not have 

DNA methylation data, had artifactual or missing  

MEG data, or had incidental findings (e.g., tumor). All 

participants completed a neuropsychological assessment 

in accordance with the Frascati criteria [51] that assessed 

for HIV-associated cognitive impairment. Raw scores 

were converted to demographically corrected scores 

using published normative data [52–56] and the resulting 

T-scores of similar assessments were averaged together 

to create domain composite scores [28]. These are 

reported in Table 1. 

 

DNA methylation and biological age 

 

Peripheral whole blood samples were collected from 

each participant using BD Vacutainer EDTA tubes to 

assess DNA methylation metrics of predicted biological 

age based on the Hannum, Horvath, and consensus 

models, as previously described by Lew and colleagues 

[10] and Spooner and colleagues [57, 58]. Briefly, DNA 

was purified from whole blood using DNeasy blood 

tissue extraction kits (Qiagen, Germantown, MD). 

Methylation analysis was performed using Infinium 

HumanMethylation450 BeadChip Kits (Illumina, San 
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Diego, CA). Following hybridization, BeadChips were 

scanned using the Illumina HiScan System. All data 

were processed through the Minfi R processing pipeline 

[59]. Methylome data were downloaded from Hannum 

[23] and EPIC [60] (GEO: GSE40279 and GSE51032), 

and these data were processed together along with 

methylation data generated from the larger study 

mentioned above. Beta values were extracted and 

quantile normalized using Minfi; cell counts were 

estimated using the estimateCellComposition function 

and resulting normalized beta values were adjusted for 

cell types [50, 61]. All data was then normalized using a 

modified BMIQ procedure provided by Horvath [22]. 

The gold standard was set to the median beta observed 

in the Hannum study [23]. For the current study, the 

“consensus model” of predicted biological age (i.e., 

both Hannum and Horvath predictions) was used, as 

this has been shown to outperform either prediction 

model in isolation [50]. In addition, relative age 

acceleration was calculated using the residuals of a 

regression of the consensus model of predicted 

biological age on chronological age for our sample. 

 

MEG experimental paradigm 

 

Participants underwent a 12-minute visuospatial 

discrimination task (Figure 1), which has been validated 

and described in previous work [11, 12, 62, 63]. 

Participants were seated in a magnetically-shielded 

room and were instructed to fixate on a centrally located 

crosshair with a variable ISI (range: 1900 – 2100 ms) 

followed by the presentation of an 8 × 8 grid for 800 ms 

in one of four positions laterally offset by 75% relative 

to the crosshair: top left, top right, bottom left, or 

bottom right. Participants were instructed to respond 

with their index finger via button response if the grid 

was positioned to the left and with their middle finger if 

the grid was positioned to the right. The trials were 

equally divided between the four different positions and 

pseudorandomized. Reaction time and accuracy 

measures were collected and used for behavioral 

analysis. Independent samples t-tests were used to 

assess differences in reaction time and accuracy 

between seronegative controls and PWH, and a Pearson 

correlation was used to examine the association 

between reaction time and biological age. 

 

MEG and MRI data acquisition 

 

Functional MEG data were collected using an 

Elekta/MEGIN MEG system (Helsinki, Finland) 

equipped with 306 sensors (204 planar gradiometers, 

102 magnetometers) using a 1 kHz sampling rate and 
an acquisition bandwidth of 0.1-330 Hz in a one-layer 

magnetically shielded room with active shielding 

engaged. Prior to MEG acquisition, four coils were 

attached to the participant’s head and localized along 

with fiducial and scalp surface points using a three-

dimensional (3D) digitizer (FASTRAK 3SF0002, 

Polhemus Navigator Sciences, Colchester, Vermont). 

Once the participants were positioned for MEG 

recording, an electric current with a unique frequency 

label (e.g., 322 Hz) was fed to each of the four coils, 

thus inducing a measurable magnetic field and thereby 

allowing each coil to be localized in reference to the 

MEG sensor array throughout the recording session. 

Structural T1-weighted images were collected using a 

3D-fast-field echo sequence on a Philips Achieva 3.0T 

X-Series scanner with an eight-channel head coil. The 

parameters for the 3D-fast-field echo sequence were as 

follows: TR: 8.09 ms; TE: 3.7 ms; field of view: 24 

cm; matrix: 256 × 256; slice thickness: 1 mm with no 

gap; in-plane resolution: 0.9375 × 0.9375 mm; sense 

factor: 1.5. 

 

MEG and MRI processing 

 

MEG and MRI data processing closely followed 

previously reported pipelines [11, 12, 64, 65]. The 

structural MRI data were aligned parallel to the anterior 

and posterior commissures and transformed into 

standardized space. MEG data were subjected to 

environmental noise reduction and corrected for head 

motion using the signal space separation method with a 

temporal extension [66]. Only data from the 204 planar 

gradiometers were used for further analysis. All MEG 

and MRI data were further processed in BESA 

(Research: Version 7.0; MRI: Version 2.0; Statistics: 

Version 2.0). Cardiac and ocular artifacts were 

regressed out of the MEG data using signal space 

projection (SSP) [67]. 

 

MEG time-frequency transformation 

 

The continuous magnetic time series was then filtered 

between 0.5 – 200 Hz with a 60 Hz notch filter. Epochs 

were 2700 ms, with the baseline extending from -400 to 

0 ms prior to visual stimulus onset. Only trials with 

correct responses were considered for further analysis. 

Epochs containing artifacts were rejected using a fixed 

threshold method that was set per participant and 

supplemented with visual inspection. Briefly, in MEG, 

the raw signal amplitude is strongly affected by the 

distance between the brain and the MEG sensor array, 

as the magnetic field strength falls off sharply as the 

distance from the current source (i.e., brain) increases. 

To account for this source of variance across 

participants, as well as other sources of variance, we 

used an individualized threshold based on the signal 
distribution for both amplitude and gradient to reject 

artifacts. The average amplitude threshold across all 

participants was 1021.16 (SD = 280.63) fT/cm, the 
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average gradient threshold was 208.92 (SD = 102.17) 

fT/(cm*ms), and an average of 203.66 (SD = 20.30) 

trials out of the original 240 were used for further 

analysis. The number of trials included in the final 

MEG analyses did not statistically differ by group  

(t = 0.53, p = 0.60). 

 

Sensor-level statistics 

 

We then transformed the artifact-free epochs into the 

time-frequency domain (resolution: 2 Hz, 25 ms) using 

complex demodulation [68, 69]. Each sensor’s spectral 

power estimations were averaged over trials to produce 

time-frequency plots of mean spectral density, which 

were then normalized by the baseline power of each 

respective bin, calculated as the mean power from -400 

to 0 ms. The time-frequency windows for subsequent 

source imaging were identified using a stringent two-

stage statistical approach that utilized paired-sample t-
tests on each pixel in the spectrogram (per sensor) at the 

first stage, followed up with cluster-based 

nonparametric permutation testing at the second level. 

This testing was conducted across all participants and 

the entire frequency range (4 – 100 Hz) and used an 

initial cluster threshold of p < 0.001 and 10,000 

permutations. These methods are described in depth in 

our recent publications [11–13, 65]. The resulting time-

frequency clusters that survived permutation testing 

were selected for source imaging analyses. 

 

MEG source imaging 

 

Time-frequency resolved source images were computed 

using the dynamic imaging of coherent sources (DICS) 

beamformer to image oscillatory activity in the time-

frequency windows of interest per participant [70–72]. 

Following convention, we used task and baseline 

periods of equal duration and bandwidth for each time-

frequency cluster identified in the sensor analysis to 

derive noise-normalized source power per voxel for 

each participant. The resulting pseudo-t maps represent 

noise-normalized source power differences (i.e., active 

versus baseline) per participant and voxel (resolution:  

4 × 4 × 4 mm). These maps were then transformed into 

standardized space and spatially resampled by applying 

the same transform that was applied to the native space 

structural images per participant. Individual participant-

level maps containing significant artifacts were 

excluded from further analysis. 

 

Whole-brain statistics 

 

To probe the interaction between biological age and 
HIV status on neural oscillatory networks serving 

visuospatial processing, the spectrally specific whole-

brain maps for each participant were used. Briefly, we 

first computed voxel-wise correlations between 

biological age and spectrally specific neural activity 

within each group (i.e., PWH vs. control) and then 

compared the resulting statistical maps by group using a 

whole-brain Fisher Z transformation [12, 73]. To 

account for multiple comparisons, a significance 

threshold of p < 0.005 was used for the identification of 

significant clusters in all whole-brain statistical maps, 

accompanied by a cluster (k) threshold of at least 45 

contiguous voxels (i.e., 2,880 mm3 of brain tissue). All 

whole-brain statistical analyses were computed using a 

custom function in MATLAB (MathWorks; Natick, 

Massachusetts) and other statistical analyses were 

conducted in IBM SPSS v.25. 

 

Data availability 

 

The data that support the findings of this study are 

available upon reasonable request from the corresponding 

author, Dr. Tony W. Wilson. 
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