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INTRODUCTION 
 

The incidence and mortality of renal cell carcinoma 

(RCC) are on the rise, making it one of the most 

common genitourinary cancers worldwide [1]. KIRC 

remains the most prevalent histological subtype of renal 

cancer (accounting for 80–85%). Approximately 25–

30% of patients have metastasis at the time of diagnosis, 

and over 20% of patients develop metastases after 

curative surgery [2]. Although great progress has been 

made in the diagnosis and treatment of KIRC over the 

past decades, the overall survival (OS) rate remains 

unsatisfactory, especially for metastatic KIRC, with a  

5-year survival rate of less than 20% [3]. Targeted 

therapy has opened a new era for oncological therapies 

[4, 5]. However, the issue of drug resistance has also 

gradually come to the forefront, with most patients 

developing secondary drug resistance within 1 year, and 

no prolonged progression-free survival has been 

observed in patients with advanced KIRC [6, 7]. These 
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ABSTRACT 
 

Previous studies have confirmed that the forkhead box (FOX) superfamily of transcription factors regulates 
tumor progression and metastasis in multiple cancer. The purpose of this study was to develop a model based 
on FOX family genes for predicting kidney renal clear cell carcinom (KIRC) prognosis. We downloaded the 
transcriptional profiles and clinical data of KIRC patients from the Cancer Genome Atlas (TCGA) and 
International Cancer Genome Consortium (ICGC) datasets. To build a new prognosis model, we screened 
prognosis-related FOX family genes using Lasso regression and Multivariate Cox regression analyses. Receiver 
operating characteristic (ROC) curves were used to evaluate model performance. Additionally, a prognostic 
nomogram was developed using clinical information and selected genes to improve the accuracy of prognostic 
prediction. We also investigated whether prognosis-related FOX family genes are related to the immune 
response in KIRC. Finally, we validated the oncogenic role of FOXG1 in KIRC using an in vitro tumor function 
assay. Six prognosis-related FOX family genes were screened: FOXO1, FOXM1, FOXK2, FOXG1, FOXA1, and 
FOXD1. The ROC curves indicated that our model was capable of making accurate predictions for 1-, 3-, and 5-
year overall survival (OS). The nomogram further improved the accuracy of prognostic predictions. In addition, 
compared to those in patients with low-risk scores, high-risk scores predicted a decreased level of immune cell 
infiltration and a lower immune response rate. Moreover, the results of in vitro studies confirmed that FOXG1 
supports the proliferation and invasion of KIRC. 
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harsh realities have pushed us to research the 

pathogenesis of KIRC and new therapeutic targets. 

Moreover, it has become increasingly important to 

construct a prognostic model that can accurately predict 

patient prognosis and allow for the formulation of 

effective treatment strategies. 

 

The forkhead box (FOX) superfamily of transcription 

factors comprises at least 49 members [8]. These 

proteins are characterized by a forkhead domain that 

contains a ~100-amino acid monomeric domain for 

DNA binding [9]. As conserved transcription factors, 

FOX family genes play a vital role in regulating 

diverse biological processes, including tumor 

metabolism, proliferation, migration, and invasion. 

Different FOX transcription factors play complicated 

roles by activating or suppressing their target genes. 

For instance, FOXH and FOXK are oncogenic, while a 

few FOX genes function as tumor suppressors, 

including FOXL and FOXD3. A special focus should 

be placed on some FOX members, as some FOX 

proteins such as FOXJ, FOXO, and FOXP3 may 

function differently or contradictorily depends on the 

type of cancer [10–12]. Given that they play an 

important role in tumor development, we hypothesized 

that they could serve as potential prognostic bio-

markers for KIRC. 

 

In this study, the data from TCGA were classified into 

training and internal test cohorts. A comprehensive 

analysis of the FOX family genes in KIRC was 

performed using LASSO regression and multivariate 

Cox regression analyses. We then constructed a 

prognostic model using the prognosis-related FOX 

family genes. The accuracy and specificity of this 

model were validated in internal and external testing 

(ICGC) cohorts. In addition, we established a 

nomogram to improve the accuracy of the prognostic 

prediction for KIRC by combining clinical information 

and prognosis-related FOX family genes. The 

correlation between prognosis-related FOX family 

genes and immune response was also evaluated. Finally, 

we explored the function of a prognosis-related FOX 

family gene, FOXG1, in KIRC using in vitro 

experiments. 

 

MATERIALS AND METHODS 
 

Study datasets 
 

An analysis of the transcriptome profiles and clinical 

information of 539 KIRC and 78 adjacent normal 

tissues was downloaded from TCGA database 

(https://portal.gdc.cancer.gov/). Using a random ratio  

of 7:3, all TCGA cohorts were divided into training  

and internal testing cohorts. In addition, information 

about the clinical data and gene expression of 91  

KIRC patients was downloaded from the ICGC  

cohort and used as the external testing cohort 

(https://dcc.icgc.org/projects). 

 

Identification of differentially expressed genes 

(DEGs) 

 

Differential expression analysis was performed on 533 

ccRCC and 78 control samples using the limma package 

in R version 4.1.2. Significant DEGs were defined with 

a cut-off value of log2|fold change| >2 and p-value 

< 0.05. 

 

Construction and validation of gene risk models 

 

In a random ratio of 7:3, patients in TCGA datasets 

were divided into training and internal testing cohorts. 

The prognostic role of these DEGs was assessed using 

univariate Cox regression analysis. Based on these 

prognosis-related DEGs, LASSO regression analysis 

was employed to select a panel of genes using “Glmnet” 

packages in R software. Subsequently, the coefficients 

of these candidate genes were calculated using 

multivariate Cox proportional hazards regression 

analysis, and a risk model was constructed. The risk 

score was calculated based on the expression and 

coefficient of expression of the candidate genes. 

According to the mean risk scores, KIRC patients were 

further divided into high-risk and low-risk groups. By 

using R version 3.4.2’s “rms” package, the nomogram 

model was constructed based on the final Cox 

proportional hazard regression model. Receiver 

operating characteristic (ROC) curves were used to 

estimate the model accuracy by calculating the area 

under the curve (AUC). Higher AUC values indicate 

better accuracy of the predictive model. 

 

Construction and validation of a predictive 

nomogram 

 

The “survival” and “rms” packages were used to 

establish a nomogram that incorporates risk scores and 

clinical variables. ROC curves were constructed to 

evaluate the predictive accuracy at 1, 3, and 5 years. 

The model fit was evaluated using calibration plots. 

 

Immune cell infiltration analysis 

 

Cell-type identification by estimating relative subsets 

of RNA transcripts (CIBERSORT) is a deconvolution 

method that quantifies 22 human hematopoietic cell 

phenotypes based on tissue gene expression profiles 
[13]. A P-value less than 0.05 was used to filter out 

22 types of immune cells in the high- and low-risk 

groups. 

https://portal.gdc.cancer.gov/
https://dcc.icgc.org/projects
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TIDE and MSI score calculation 

 

Tumor immune dysfunction and exclusion (TIDE) scores 

are often used to predict patient response to immuno-

therapy. A higher TIDE score indicates that the tumor 

may be able to evade the immune system, while micro-

satellite instability (MSI) scores are positively correlated 

with immune response. The scores for TIDE and MSI 

were calculated online as previously described [14, 15]. 

 

Clinical specimens 

 

We collected 82 ccRCC specimens from 98 patients who 

underwent partial nephrectomy or radical nephrectomy at 

the Peking Union Medical College Hospital between 2018 

and 2020. Study participants who met the following 

criteria were included: (1) initially diagnosis of ccRCC 

and no preoperative treatment history; (2) no distant 

metastases before surgery; and (3) Partial nephrectomy or 

radical nephrectomy. We collected small sections of 

ccRCC tissues and adjacent tissues, immediately frozen 

them, and embedded them in paraffin wax. The study 

protocol was approved by the Research Ethics Committee 

of the Peking Union Medical College Hospital (Beijing, 

China) and conducted in accordance with the ethical 

guidelines outlined in the Declaration of Helsinki. For the 

use of human tissue samples, informed consent forms 

were obtained from each patient or their relatives. 

 

Cell culture 

 

786-O and ACHN cells were purchased from Cell Bank 

in Chinese Academy of Sciences (Shanghai, China). 

Cells were cultured in a humidified 5% CO2 

environment at 37°C using 10% FBS DMEM (100 

units/mL penicillin, 100 g/mL streptomycin). 

 

Quantitative real-time PCR (qRT-PCR) 

 

In accordance with standard RNA extraction procedures, 

total RNA was extracted with Trizol reagent. Total RNA 

was converted into complementary DNA (cDNA) using 

the PrimeScript RT Reagent kit (Vazyme Biotech Co., 

Ltd., Nanjing, China). The RNA expression levels of the 

genes of interest were measured using a Bio-Rad CFX96 

system with SYBR Green. We listed the prime sequences 

as follows: FOXG1 forward (5′-CTG CTT CCA GAT 

GAA AAC TTC AG-3′) and reverse (5′-GGC ATC GGA 

CTA TTT TCA CAG G-3′); GAPDH forward (5′-GGA 

GCG AGA TCC CTC CAA AAT-3′) and reverse (5′-

GGC TGT TGT CAT ACT TCT CAT GG-3′). 

 

Western blot analysis 

 

Following the previous description [16], western blot 

analysis was carried out using the following primary 

antibodies: FOXG1 (ab196868, Abcam, Cambridge, 

UK) and GAPDH (ab8245, Abcam, Cambridge, UK). 

 

FOXG1 knockdown and overexpression 

 

We generated FOXG1 expression vectors by cloning 

full-length cDNA into the pCDNA3.1 (+) vector. Small 

interfering RNA (siRNA) specific for FOXG1 was 

synthesized by GenePharma Co., Ltd. (Shanghai, 

China) and a nonspecific duplex oligonucleotide was 

used as a negative control. Western blotting and qRT-

PCR were used to measure FOXG1 expression. 

 

Cell proliferation and colony formation capability 

 

According to previous studies, the cell-counting kit 8 

(CCK-8) assay was used to evaluate cell proliferation. 

For the colony formation assay, we incubated 2000 

cells for 14 days in a 60-mm dish. The cell colonies 

were fixed with paraformaldehyde for 20 min, 

washed twice with PBS, stained with 0.5% crystal 

violet (Sigma-Aldrich Corporation, St. Louis, MO, 

USA) for 15 min, and counted. 

 

Wound healing assay 

 

Cells were seeded on six-well plates, cultured overnight, 

scraped with a sterile 200 µL pipette tip, and washed 

three times with PBS. After scratching, photographs 

were taken at 0 and 24 h. Three positions were 

measured for each well to determine the area covered by 

scratching. 

 

Transwell assay 

 

Cell invasion assays were performed in polycarbonate 

membrane filters with pore sizes of 8 µm coated with 

Matrigel Transwell chambers (Corning, NY, USA). 

Ten-thousand cells were added to the upper chamber. 

Photographs were obtained after 24 h. 

 

Statistical analysis 

 

All bioinformatics analyses and machine learning 

algorithms were performed using R software (version 

4.1.2). The overall survival of the high-risk and low-risk 

groups was compared using Kaplan-Meier survival 

curve analysis and a log-rank test. Statistical 

significance was set at P < 0.05. 

 

Data availability statement 

 

The datasets presented in this study can be found in 
online repositories. The names of the repository/ 

repositories and accession number(s) can be found in 

the article. 
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RESULTS 
 

Identification of prognosis-related FOX family genes 

in KIRC 

 

Among the 49 FOX family genes, 34 genes 

demonstrated significant differential expression levels 

between tumors and adjacent tissues using the adjusted 

p-value < 0.05 and log FC (fold change) >2 threshold 

(Figure 1A, 1B). Univariate Cox regression analysis and 

screening of differentially expressed FOX genes 

revealed that 17 genes were significantly differentially 

expressed and strongly associated with KIRC prognosis 

(Figure 1B). 5 of these 17 genes were protective (HR 

<1), and 12 of these 17 genes were risky genes (HR >1) 

(Supplementary Table 1). 

Establishment of prognosis model based on six FOX 

family genes in the training cohort 

 

LASSO regression analysis was conducted to screen for 

FOX family genes that were significantly associated 

with KIRC patient prognosis. Minimum partial 

likelihood deviance was used to determine the optimal 

lambda value. The model was trained using 10-fold 

cross-validation in the training cohort (Figure 1C, 1D). 

As a result, we developed a prognostic model based on 

six FOX family genes namely, FOXO1, FOXM1, 

FOXK2, FOXG1, FOXA1, and FOXD1. Multivariate 

Cox proportional hazards regression analysis was used 

to calculate the Cox coefficients for the six FOX family 

genes. Risk scores were calculated based on the 

coefficients and expression levels of six FOX 

 

 
 

Figure 1. Identification of prognosis-related FOX family genes in KIRC. (A) FOX family genes expression profiles in tumors and 

adjacent normal tissues. (B) A Venn plot showing the differential expression of prognosis-related FOX family gens in KIRC tissues and 
adjacent non-tumor tissues. (C) Profiles of prognosis-related FOX family genes using Lasso coefficients. (D) Indicators of deviance and 
logarithms (lambdas). 



www.aging-us.com 10111 AGING 

family genes: risk score = (−0.5478 × FOXO1) + 

(0.4943 × FOXM1) + (0.3012 × FOXK2) + (0.3691 × 

FOXG1) + (0.6456 × FOXA1) + (0.066 × FOXD1). In 

the training cohort, each patient's risk score was 

calculated. The patients were divided into high- and 

low-risk groups based on their median risk scores 

(Figure 2A). Figure 2B depicts the patients’ survival 

status and survival duration in the high-risk and low-

risk groups. The expression profiles of the six FOX 

family genes in the training cohort are shown in 

Figure 2C. There was a lower mortality rate and better 

survival among patients in the low-risk group 

(Figure 2D). To evaluate the accuracy of this prognostic 

model, ROC curves for 1-, 3-, and 5-year OS were 

constructed. The AUC values of this model for 

predicting 1-, 3-, and 5-year OS were 0.73, 0.71, and 

0.73, respectively (Figure 2E). 

 

Validation of the six FOX family genes prognosis 

model 

 

In the internal and external testing cohorts, the same 

algorithm was used to calculate the patients' risk scores 

and divide them into high- and low-risk groups 

(Figure 3A, 3B). The survival rate was lower in high-

risk groups (Figure 3C, 3D). The expression profiles of 

six FOX family genes in the internal and external 

testing cohorts indicated that FOXM1, FOXK2, FOXG1, 

FOXA1 and FOXD1exhibited higher expression in the 

high-risk group (Figure 3E, 3F). Patients in the low-risk 

 

 
 

Figure 2. Establishment of prognosis model based on six FOX family genes in the training cohort. (A) KIRC patients’ risk scores 

in the training cohorts. (B) KIRC patients’ survival times in the training cohorts. (C) Correlation between the risk scores and six FOX family 
genes expression profile. (D) Survival analysis with Kaplan-Meier in the training cohorts. (E) AUC values of model at 1, 3, and 5 year OS in 
the training cohorts. 
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group had better OS than those in the high-risk group, 

based on Kaplan-Meier curves (Figure 4A, 4B). The 

AUC values of this model for the prediction of 1-, 3-, 

and 5-year OS were 0.67, 0.69, and 0.70, respectively, 

in the internal test cohort, and 0.66, 0.67, and 0.69 in 

the external test cohort (Figure 4C, 4D). 

 

Construction of a six FOX family genes prognosis 

model-based nomogram 

 

To further improve the accuracy of prognostic 

predictions, univariate and multivariate Cox regression 

analyses were performed to analyze other potential 

variables in addition to risk scores, namely age, sex, 

grade, T stage, M stage, and clinical stage. The results 

indicated that the risk scores, age, grade, and M stage 

were independent prognostic factors for patients 

(Table 1). Subsequently, we developed a prognostic 

nomogram to predict OS in patients with KIRC. Risk 

scores, age, grade, and M stage were integrated into the 

nomogram (Figure 5A). The AUC values of this model 

for the prediction of 1-, 3-, and 5-year OS were 0.76, 

0.77, and 0.78, respectively, in the TCGA cohort and 

0.71, 0.70, and 0.75 in the ICGC cohort (Figure 5B, 5C). 

The calibration plots indicated that this model had good 

agreement between the prediction and real-life survival 

(Figure 5D, 5E). 

 

Correlation analyses of risk scores and immune 

response 

 

Previous studies have revealed that besides their 

functions in regulating tumor development, FOX family 

genes also contribute to the regulation of the immune 

response [17]. Firstly, we assessed the correlation 

between these six FOX family genes and tumor immune 

cell infiltration. The results demonstrated that patients 

in the low-risk group had a higher infiltration levels of 

both innate and adaptive immune cells (Figure 6A). 

Next, we explored the association between the six FOX 

family genes and immune responses. The results 

demonstrated that every step in the cancer immunity 

cycle was downregulated in high-risk patients 

(Figure 6B). A higher TIDE and lower MSI score were 

 

 
 

Figure 3. Validation of the six FOX family genes prognosis model. (A, B) KIRC patients’ risk scores in the internal and external 

testing cohorts. (C, D) KIRC patients’ risk scores in the internal and external testing cohorts. (E, F) Correlation between the risk scores and 
six FOX family genes expression profile. 
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Table 1. Univariable and multivariable analysis of the signature based on FOX genes and clinical factors in the 
TCGA cohort. 

Characteristic 
Univariable analysis Multivariable analysis 

HR (95% CI) p-value  HR (95% CI) p-value  

Risk Score (High vs. Low) 2.8502 (2.0442–3.9741) <0.0001 2.1014 (1.4907–2.9624) <0.0001 

Age (≥60 vs. <60) 1.7584 (1.2862–2.4039) 0.0004 1.5884 (1.1555–2.1834) 0.0002 

Gender (Female vs. Male) 0.9331 (0.6797–1.2810) 0.6685 0.8486 (0.6124–1.1759) 0.3241 

Grade (III/IV vs. I/II) 2.6387 (1.8637–3.7360) <0.0001 1.5698 (1.0811–2.27964) 0.0178 

Stage (III/IV vs. I/II) 3.7675 (2.7215-5.2155) <0.0001 2.0852 (0.9077–4.3149) 0.0576 

T (T3/4 vs. T1/2) 3.1139 (2.2808–4.2512) <0.0001 0.8794 (0.4682–1.6514) 0.6893 

M (M1 vs. M0) 4.3263 (3.1552–5.9321) <0.0001 2.3598 (1.5986–3.4834) <0.0001 

 

found in the high-risk group, indicating a poor clinical 

immunotherapy efficacy (Figure 6C, 6D). These results 

show that the six prognosis-related FOX family genes 

we selected may play a vital role in predicting the 

efficacy of immunotherapy in KIRC patients. 

Expression and Kaplan-Meier survival analysis of 

the six FOX family genes 

 

To explore the effects of the six FOX family genes on 

the prognosis of patients with KIRC, we examined the 

 

 
 

Figure 4. Validation of the six FOX family genes prognosis model. (A, B) Survival analysis with Kaplan-Meier in the internal and 

external testing cohorts. (C, D) AUC values of model at 1, 3, and 5 year OS in the internal and external testing cohorts. 
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expression of six FOX family genes in TCGA datasets. 

The expression of FOXO1 and FOXK2 in KIRC tumors 

was significantly lower than that in adjacent normal 

tissues, whereas the expression of FOXM1, FOXG1, 

FOXA1, and FOXD1 was significantly higher in tumor 

tissues (Figure 7A–7F). Moreover, Kaplan-Meier 

curves showed that higher expression of FOXM1, 

FOXK2, FOXG1, FOXA1, and FOXD1 was associated 

with poorer OS, whereas higher FOXO1 expression 

predicted a better OS (Figure 7G–7L). 

 

 
 

Figure 5. Construction of a six FOX family genes prognosis model-based nomogram. (A) A nomogram composed of 

clinicopathological factors including age, gender, age, M stage, as well as risk scores. (B) AUC values of nomogram at 1, 3, and 5 year OS in 
the TCGA cohorts. (C) AUC values of nomogram at 1, 3, and 5 year OS in the ICGC cohorts. (D) The calibration curves of nomogram in the 
TCGA cohorts. (E) The calibration curves of nomogram in the ICGC cohorts. 
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FOXG1 promotes proliferation of RCC cell lines 

 

Through a literature search, we found that, except for 

FOXG1, the remaining five genes have been 

experimentally studied in RCC. In this research, a total 

of 82 surgically resected tumor tissues and matched 

normal kidney tissues from ccRCC patient were 

collected. The results showed that FOXG1 protein and 

mRNA levels were higher in tumor tissues than 

matched adjacent normal tissues. (Supplementary 

Figure 1A, 1B). Previous studies have indicated the 

oncogene role of FOXG1 in multiple invasive cancers 

 

 
 

Figure 6. Correlation analyses of risk scores and immune response. (A) Comparison of 22 tumor-infiltrating immune cells in high 

risk and low risk group. (B) Differences in anti-cancer immunity cycle between high risk and low risk groups. (C, D) TIDE and MSI scores in 
high risk and low risk group. 
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such as glioblastoma, cutaneous squamous cell 

carcinoma, and cervical cancer [18–20]. However, the 

role of FOXG1 in KIRC remains to be elucidated. First, 

FOXG1 expression was upregulated in 786-O cells 

using a FOXG1-overexpression plasmid, whereas 

FOXG1 was silenced in ACHN cells using specific 

siRNAs. As shown in Figure 8A, 8B, western blotting 

and qRT-PCR analyses were performed to verify 

transfection efficiency. 

 

To evaluate the role of FOXG1 in RCC proliferation, 

CCK-8 and colony formation assays were performed. 

The CCK-8 assay showed that FOXG1 silencing curbed 

ACHN cell proliferation, while FOXG1 overexpression 

 

 
 

Figure 7. Expression and Kaplan-Meier survival analysis of the six FOX family genes. (A–F) A comparison of the expression levels 

of FOXO1, FOXM1, FOXK2, FOXG1, FOXA1 and FOXD1 in TCGA KIRC tumor tissue and adjacent normal tissue. (G–L) Kaplan-Meier curves for 
the six genes in the TCGA KIRC cohort. 
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promoted 786-O cell growth (Figure 8C). The results of 

colony formation assays further confirmed that 

downregulation of FOXG1 expression suppressed cell 

proliferation. FOXG1 therefore promoted tumor 

proliferation in RCC cells (Figure 8D). 

FOXG1 promotes migration and invasion of RCC 

cell lines 

 

Next, we investigated whether FOXG1 influences the 

migration and invasion of RCC cells. The 

 

 
 

Figure 8. FOXG1 promotes proliferation of RCC cell lines. The efficiency of FOXG1 overexpression and knockdown was evaluated by 

western blot (A) and qRT-PCR (B) analyses. (C) Results of the CCK-8 assay on 786-O and ACHN cells following FOXG1 overexpression or 
silencing. (D) Results of colony formation assays on 786-O and ACHN cells after FOXG1 was overexpressed or knocked down. The data are 
presented as the mean ± standard deviation (SD) of experiments performed in triplicate. *p < 0.05, **p < 0.01, ***p < 0.001. 
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wound-healing assay showed that overexpression of 

FOXG1 enhanced the migration ability of 786-O cells. 

However, the downregulation of FOXG1 inhibited the 

migration of ACHN cells (Figure 9A). Concordant with 

these results, the transwell invasion assay also revealed 

that knockdown of FOXH1 impaired the invasive 

properties of ACHN cells, whereas FOXG1 over-

expression promoted the invasive ability of 786-O cells 

(Figure 9B). Taken together, these data illustrate that 

FOXG1 enhances the migration and invasion of RCC cells. 

 

 
 

Figure 9. FOXG1 promotes migration and invasion of RCC cell lines. (A) Wound healing assay results of 786-O and ACHN cells after 

overexpression or knockdown of FOXG1. (B) Transwell assay result of 786-O and ACHN cells following FOXG1 overexpression or silencing. 
The data are presented as the mean ± standard deviation (SD) of experiments performed in triplicate. *p < 0.05, **p < 0.01, ***p < 0.001. 
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DISCUSSION 
 

Renal cell cancer (RCC) is a malignant tumor with 

remarkable heterogeneity and complex pathogenesis. 

Currently, the development of bioinformatics and the 

publication of large sequencing cohort data have 

provided the basis for the study of RCC pathogenesis 

and prognosis model construction. Ning et al. [21]. 

detected hypoxia-related genes in KIRC using TCGA 

and ICGC datasets. A six hypoxia-related gene 

prognostic model was established to predict OS in 

patients with KIRC. Zheng et al. [22]. Also established 

a similar prognostic model for KIRC patients via 

comprehensive analysis of tripartite motif (TRIM) 

proteins. In this study, we screened potential FOX 

family genes that are closely related to the prognosis of 

KIRC and constructed a prognostic model. We then 

combined these genes with other clinical indicators to 

construct a nomogram model for KIRC to improve the 

predictive accuracy of the model. In addition, we 

performed an experimental study on FOXG1. 

 

The FOX gene family plays a vital role in regulating 

proliferation, migration, and invasion of different types 

of cancers. It was also found that FOX family members 

are prone to drug resistance and stem cells [23]. 

Numerous FOX family members are abnormally 

expressed in RCC and may act as prognostic indicators 

of the disease. Univariate Cox regression analysis and 

screening of differentially expressed genes revealed that 

17 genes were significantly differentially expressed and 

were strongly associated with KIRC prognosis. Based 

on this, the LASSO regression method and multivariate 

Cox regression analyses were used to identify a six-

gene prognosis model to divide the patients into low- 

and high-risk groups. According to Kaplan-Meier 

curves, patients at high risk had worse OS. Time-

dependent ROC analysis was used to verify the 

sensitivity and specificity of our prognostic signature 

based on six FOX gene prognosis models. The 

nomogram further improved mode accuracy by 

incorporating additional clinical information, including 

age, grade, clinical stage, and M stage. These results 

indicated that the nomogram we built was helpful in 

predicting patient survival and understanding how to 

manage patients with KIRC on a more personalized 

basis. 

 

Immunotherapy, based on immune checkpoint 

inhibitors that target the cytotoxic T lymphocyte 

antigen-4 (CTLA-4) and programmed death-1 (PD-

1)/programmed cell death-ligand 1 (PD-L1) axis, has 

been successfully applied and clinically verified in a 

fraction of KIRC patients. Currently, a major obstacle to 

the widespread application of immunotherapy is the 

precise selection of patients who will benefit from this 

treatment. Predictive biomarkers, including PD-1/PD-

L1 expression level, microsatellite instability, tumor 

mutation burden, and monocyte-to-lymphocyte ratio, 

have been proposed to be correlated with progression-

free survival and overall survival [24]. Additionally, the 

quantity and composition of tumor-infiltrating immune 

cells (TIICs) are considered to be the new under-

pinnings of immunotherapy [25, 26]. In our study, we 

found that there were significant differences in immune 

status and immune cell infiltration proportions between 

the high- and low-risk groups. There was high 

infiltration of adaptive and innate immune cells in the 

low-risk group. Furthermore, compared to the low-risk 

group, the anticancer immune response might be 

significantly suppressed in the high-risk group. 

 

The prognosis model was comprised of six FOX family 

genes: FOXO1, FOXM1, FOXK2, FOXG1, FOXA1, 

and FOXD1. Among them, only high FOXO1 

expression was associated with the low-risk group, and 

the expression of the remaining five genes was 

positively associated with the high-risk group. There 

was a significant decrease in FOXO1 expression in 

KIRC tissues compared to that in non-tumor renal 

tissues at the RNA and protein levels. Downstream of 

multiple oncogenes and tumor suppressor genes, 

decreased FOXO1 expression promotes tumor 

metastasis and is positively correlated with poor 

survival outcomes [27, 28]. FOXK2 inhibits the 

proliferation, migration, and invasive ability of ccRCC 

cells and induces apoptosis in vitro by interacting with 

the potential downstream gene epidermal growth factor 

receptor (EGFR) [29]. In addition, FOXK2 acts as an 

important regulator of cellular metabolism to induce 

aerobic glycolysis and inhibit the reduction of pyruvate 

to lactate [30]. However, in the present model, FOXK2 

remained positively associated with patients in the high-

risk group; further studies are needed to support the 

relationship between FOXK2 and prognosis. Previous 

studies have also demonstrated that FOXA1 and 

FOXD1 are broadly involved in tumor development as 

well as mitochondrial metabolism. Silencing FOXA1 or 

FOXD1 in RCC inhibits tumor growth by inhibiting cell 

cycle progression [31, 32]. Moreover, recent research 

has indicated that FOXA1 may participate in sunitinib 

resistance in RCC [33]. Several studies have confirmed 

the vital role of FOXM1, which may serve as an 

essential prognostic biomarker and therapeutic target for 

renal cancer. MicroRNA-320a and pre-miR-149 serve 

as antitumor miRNAs by downregulating FOXM1 [34, 

35]. As transcription factors, FOXM1 can regulate 

downstream cell cycle-related genes, including PLK, 

cyclin B1, cyclin D1, and Cdk2, to promote cell 
proliferation and tumor progression [36]. Considering 

the lack of experimental studies on the role of FOXG1 

in kidney cancer, we conducted several experiments and 
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confirmed that FOXG1 promotes cell growth and 

invasion in vitro. 

 

This study has a few limitations. First, the analytical 

data were derived from TCGA and ICGC databases, 

and to clarify the accuracy of the model in predicting 

survival, we need to validate it based on real-world 

clinical data. Further in vivo and in vitro verification 

experiments are required to validate the role and 

mechanism of FOX family genes in KIRC. What’s 

more, artificial intelligence is currently used to improve 

the prediction efficacy of conventional statistical 

analysis and nomograms and is applied in the field of 

urology as well as for the prediction of recurrence or 

overall survival after surgery. Chan X, et al. constructed 

and validated a clinical prediction model for lung 

metastasis in renal cancer patients based on AI 

algorithm. The AUC of ranked from 0.907 to 0.934, 

which revealed the high applicability of the model [37]. 

We will include more patient data from the real world 

and compare machine learning algorithms with 

traditional algorithms in later studies. 

 

In conclusion, we comprehensively examined the 

relationship between FOX expression and survival in 

patients. An independent prognosis model based on the 

six FOX genes has been developed to predict the 

prognosis of KIRC patients. Furthermore, experimental 

evidence indicates that FOXG1 promotes KIRC 

progression, which fills a research gap and strengthens 

the rationality of our prognostic model. 

 

AUTHOR CONTRIBUTIONS 
 

Wenjie Yang, Hualin Chen and Lin Ma: acquisition of 

data. Wenjie Yang performed and monitored the 

production of the experiments. Xiaoqiang Xue and Jie 

Dong: analysis and interpretation of data. Mengchao 

Wei and Zhigang Ji: conception and design. Yingjie Li: 

data curation. Zhaoheng Jin: development of 

methodology. Weifeng Xu and Zhigang Ji: writing the 

manuscript and revision of the manuscript. All authors 

contributed to the article and approved the submitted 

version. 

 

CONFLICTS OF INTEREST 
 

The authors declare that the research was conducted in 

the absence of any commercial or financial relationships 

that could be construed as a potential conflict of 

interest. 

 

ETHICAL STATEMENT AND CONSENT 
 

The study protocol was approved by the Research 

Ethics Committee of the Peking Union Medical College 

Hospital (Beijing, China) and conducted in accordance 

with the ethical guidelines outlined in the Declaration of 

Helsinki. For the use of human tissue samples, informed 

consent forms were obtained from each patient or their 

relatives. 

 

FUNDING 
 

This work was supported by the National Nature 

Science Foundation of China (82171588). 

 

REFERENCES 
 
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer 

statistics, 2022. CA Cancer J Clin. 2022; 72:7–33. 
https://doi.org/10.3322/caac.21708 
PMID:35020204 

2. Méjean A, Ravaud A, Thezenas S, Colas S, Beauval JB, 
Bensalah K, Geoffrois L, Thiery-Vuillemin A, Cormier L, 
Lang H, Guy L, Gravis G, Rolland F, et al. Sunitinib 
Alone or after Nephrectomy in Metastatic Renal-Cell 
Carcinoma. N Engl J Med. 2018; 379:417–27. 
https://doi.org/10.1056/NEJMoa1803675 
PMID:29860937 

3. Voss MH, Reising A, Cheng Y, Patel P, Marker M, Kuo 
F, Chan TA, Choueiri TK, Hsieh JJ, Hakimi AA, Motzer 
RJ. Genomically annotated risk model for advanced 
renal-cell carcinoma: a retrospective cohort study. 
Lancet Oncol. 2018; 19:1688–98. 
https://doi.org/10.1016/S1470-2045(18)30648-X 
PMID:30416077 

4. Bagcchi S. Sunitinib still fi rst-line therapy for 
metastatic renal cancer. Lancet Oncol. 2014; 15:e420. 
https://doi.org/10.1016/s1470-2045(14)70366-3 
PMID:25328943 

5. Choueiri TK, Motzer RJ. Systemic Therapy for 
Metastatic Renal-Cell Carcinoma. N Engl J Med. 2017; 
376:354–66. 
https://doi.org/10.1056/NEJMra1601333 
PMID:28121507 

6. Lichner Z, Saleeb R, Butz H, Ding Q, Nofech-Mozes R, 
Riad S, Farag M, Varkouhi AK, Dos Santos CC, Kapus A, 
Yousef GM. Sunitinib induces early histomolecular 
changes in a subset of renal cancer cells that 
contribute to resistance. FASEB J. 2019; 33:1347–59. 
https://doi.org/10.1096/fj.201800596R 
PMID:30148679 

7. Li W, Feng C, Di W, Hong S, Chen H, Ejaz M, Yang Y, Xu 
TR. Clinical use of vascular endothelial growth factor 
receptor inhibitors for the treatment of renal cell 
carcinoma. Eur J Med Chem. 2020; 200:112482. 
https://doi.org/10.1016/j.ejmech.2020.112482 
PMID:32492594 

https://doi.org/10.3322/caac.21708
https://pubmed.ncbi.nlm.nih.gov/35020204
https://doi.org/10.1056/NEJMoa1803675
https://pubmed.ncbi.nlm.nih.gov/29860937
https://doi.org/10.1016/S1470-2045(18)30648-X
https://pubmed.ncbi.nlm.nih.gov/30416077
https://doi.org/10.1016/s1470-2045(14)70366-3
https://pubmed.ncbi.nlm.nih.gov/25328943
https://doi.org/10.1056/NEJMra1601333
https://pubmed.ncbi.nlm.nih.gov/28121507
https://doi.org/10.1096/fj.201800596R
https://pubmed.ncbi.nlm.nih.gov/30148679
https://doi.org/10.1016/j.ejmech.2020.112482
https://pubmed.ncbi.nlm.nih.gov/32492594


www.aging-us.com 10121 AGING 

 8. Gong Z, Yu J, Yang S, Lai PBS, Chen GG. FOX 
transcription factor family in hepatocellular 
carcinoma. Biochim Biophys Acta Rev Cancer. 2020; 
1874:188376. 
https://doi.org/10.1016/j.bbcan.2020.188376 
PMID:32437734 

 9. Jia Z, Wan F, Zhu Y, Shi G, Zhang H, Dai B, Ye D. 
Forkhead-box series expression network is associated 
with outcome of clear-cell renal cell carcinoma. Oncol 
Lett. 2018; 15:8669–80. 
https://doi.org/10.3892/ol.2018.8405 
PMID:29805604 

10. Laissue P. The forkhead-box family of transcription 
factors: key molecular players in colorectal cancer 
pathogenesis. Mol Cancer. 2019; 18:5. 
https://doi.org/10.1186/s12943-019-0938-x 
PMID:30621735 

11. Yamashita H, Amponsa VO, Warrick JI, Zheng Z, Clark 
PE, Raman JD, Wu XR, Mendelsohn C, DeGraff DJ. On a 
FOX hunt: functions of FOX transcriptional regulators 
in bladder cancer. Nat Rev Urol. 2017; 14:98–106. 
https://doi.org/10.1038/nrurol.2016.239 
PMID:27898096 

12. Katoh M, Igarashi M, Fukuda H, Nakagama H, Katoh 
M. Cancer genetics and genomics of human FOX 
family genes. Cancer Lett. 2013; 328:198–206. 
https://doi.org/10.1016/j.canlet.2012.09.017 
PMID:23022474 

13. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, 
Xu Y, Hoang CD, Diehn M, Alizadeh AA. Robust 
enumeration of cell subsets from tissue expression 
profiles. Nat Methods. 2015; 12:453–7. 
https://doi.org/10.1038/nmeth.3337 
PMID:25822800 

14. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, 
Bu X, Li B, Liu J, Freeman GJ, Brown MA, et al. 
Signatures of T cell dysfunction and exclusion predict 
cancer immunotherapy response. Nat Med. 2018; 
24:1550–8. 
https://doi.org/10.1038/s41591-018-0136-1 
PMID:30127393 

15. Zhou J, Nie RC, Yin YX, Wang Y, Yuan SQ, Zhao ZH, 
Zhang XK, Duan JL, Chen YB, Zhou ZW, Xie D, Li YF, Cai 
MY. Genomic Analysis Uncovers the Prognostic and 
Immunogenetic Feature of Pyroptosis in Gastric 
Carcinoma: Indication for Immunotherapy. Front Cell 
Dev Biol. 2022; 10:906759. 
https://doi.org/10.3389/fcell.2022.906759 
PMID:35912105 

16. Yang W, Ni Y, Yang S, Ji Y, Yang X, Cheng F, Wang X, 
Zhang F, Rao J. The oncogene Mct-1 promotes 
progression of hepatocellular carcinoma via 

enhancement of Yap-mediated cell proliferation. Cell 
Death Discov. 2021; 7:57. 
https://doi.org/10.1038/s41420-021-00413-3 
PMID:33753742 

17. Pignata C, Romano R. In this issue: FOX genes and the 
immune response. Int Rev Immunol. 2014; 33:81–2. 
https://doi.org/10.3109/08830185.2014.887827 
PMID:24621091 

18. Zeng F, Xue M, Xiao T, Li Y, Xiao S, Jiang B, Ren C. MiR-
200b promotes the cell proliferation and metastasis 
of cervical cancer by inhibiting FOXG1. Biomed 
Pharmacother. 2016; 79:294–301. 
https://doi.org/10.1016/j.biopha.2016.02.033 
PMID:27044840 

19. Bulstrode H, Johnstone E, Marques-Torrejon MA, 
Ferguson KM, Bressan RB, Blin C, Grant V, Gogolok S, 
Gangoso E, Gagrica S, Ender C, Fotaki V, Sproul D, 
et al. Elevated FOXG1 and SOX2 in glioblastoma 
enforces neural stem cell identity through 
transcriptional control of cell cycle and epigenetic 
regulators. Genes Dev. 2017; 31:757–73. 
https://doi.org/10.1101/gad.293027.116 
PMID:28465359 

20. Shao J, Liang J, Zhong S. miR-30a-5p modulates traits 
of cutaneous squamous cell carcinoma (cSCC) via 
forkhead box protein G1 (FOXG1). Neoplasma. 2019; 
66:908–17. 
https://doi.org/10.4149/neo_2018_181205N923 
PMID:31307196 

21. Ning XH, Li NY, Qi YY, Li SC, Jia ZK, Yang JJ. 
Identification of a Hypoxia-Related Gene Model for 
Predicting the Prognosis and Formulating the 
Treatment Strategies in Kidney Renal Clear Cell 
Carcinoma. Front Oncol. 2022; 11:806264. 
https://doi.org/10.3389/fonc.2021.806264 
PMID:35141153 

22. Zheng D, Zhang Y, Xia Y, Cheng F. A Novel Gene 
Signature of Tripartite Motif Family for Predicting the 
Prognosis in Kidney Renal Clear Cell Carcinoma and Its 
Association With Immune Cell Infiltration. Front 
Oncol. 2022; 12:840410. 
https://doi.org/10.3389/fonc.2022.840410 
PMID:35371994 

23. Wang J, Li W, Zhao Y, Kang D, Fu W, Zheng X, Pang X, 
Du G. Members of FOX family could be drug targets 
of cancers. Pharmacol Ther. 2018; 181:183–96. 
https://doi.org/10.1016/j.pharmthera.2017.08.003 
PMID:28830838 

24. Braun DA, Hou Y, Bakouny Z, Ficial M, Sant' Angelo M, 
Forman J, Ross-Macdonald P, Berger AC, Jegede OA, 
Elagina L, Steinharter J, Sun M, Wind-Rotolo M, et al. 
Interplay of somatic alterations and immune 

https://doi.org/10.1016/j.bbcan.2020.188376
https://pubmed.ncbi.nlm.nih.gov/32437734
https://doi.org/10.3892/ol.2018.8405
https://pubmed.ncbi.nlm.nih.gov/29805604
https://doi.org/10.1186/s12943-019-0938-x
https://pubmed.ncbi.nlm.nih.gov/30621735
https://doi.org/10.1038/nrurol.2016.239
https://pubmed.ncbi.nlm.nih.gov/27898096
https://doi.org/10.1016/j.canlet.2012.09.017
https://pubmed.ncbi.nlm.nih.gov/23022474
https://doi.org/10.1038/nmeth.3337
https://pubmed.ncbi.nlm.nih.gov/25822800
https://doi.org/10.1038/s41591-018-0136-1
https://pubmed.ncbi.nlm.nih.gov/30127393
https://doi.org/10.3389/fcell.2022.906759
https://pubmed.ncbi.nlm.nih.gov/35912105
https://doi.org/10.1038/s41420-021-00413-3
https://pubmed.ncbi.nlm.nih.gov/33753742
https://doi.org/10.3109/08830185.2014.887827
https://pubmed.ncbi.nlm.nih.gov/24621091
https://doi.org/10.1016/j.biopha.2016.02.033
https://pubmed.ncbi.nlm.nih.gov/27044840
https://doi.org/10.1101/gad.293027.116
https://pubmed.ncbi.nlm.nih.gov/28465359
https://doi.org/10.4149/neo_2018_181205N923
https://pubmed.ncbi.nlm.nih.gov/31307196
https://doi.org/10.3389/fonc.2021.806264
https://pubmed.ncbi.nlm.nih.gov/35141153
https://doi.org/10.3389/fonc.2022.840410
https://pubmed.ncbi.nlm.nih.gov/35371994
https://doi.org/10.1016/j.pharmthera.2017.08.003
https://pubmed.ncbi.nlm.nih.gov/28830838


www.aging-us.com 10122 AGING 

infiltration modulates response to PD-1 blockade in 
advanced clear cell renal cell carcinoma. Nat Med. 
2020; 26:909–18. 
https://doi.org/10.1038/s41591-020-0839-y 
PMID:32472114 

25. Shum B, Larkin J, Turajlic S. Predictive biomarkers for 
response to immune checkpoint inhibition. Semin 
Cancer Biol. 2022; 79:4–17. 
https://doi.org/10.1016/j.semcancer.2021.03.036 
PMID:33819567 

26. Zhang Y, Zhang Z. The history and advances in cancer 
immunotherapy: understanding the characteristics of 
tumor-infiltrating immune cells and their therapeutic 
implications. Cell Mol Immunol. 2020; 17:807–21. 
https://doi.org/10.1038/s41423-020-0488-6 
PMID:32612154 

27. Kojima T, Shimazui T, Horie R, Hinotsu S, Oikawa T, 
Kawai K, Suzuki H, Meno K, Akaza H, Uchida K. FOXO1 
and TCF7L2 genes involved in metastasis and poor 
prognosis in clear cell renal cell carcinoma. Genes 
Chromosomes Cancer. 2010; 49:379–89. 
https://doi.org/10.1002/gcc.20750 
PMID:20095040 

28. Zhao Z, Zhang M, Duan X, Chen Y, Li E, Luo L, Wu W, 
Peng Z, Qiu H, Zeng G. TRPM7 Regulates AKT/FOXO1-
Dependent Tumor Growth and Is an Independent 
Prognostic Indicator in Renal Cell Carcinoma. Mol 
Cancer Res. 2018; 16:1013–23. 
https://doi.org/10.1158/1541-7786.MCR-17-0767 
PMID:29545479 

29. Zhang F, Ma X, Li H, Zhang Y, Li X, Chen L, Guo G, Gao 
Y, Gu L, Xie Y, Duan J, Zhang X. FOXK2 suppresses the 
malignant phenotype and induces apoptosis through 
inhibition of EGFR in clear-cell renal cell carcinoma. 
Int J Cancer. 2018; 142:2543–57. 
https://doi.org/10.1002/ijc.31278 
PMID:29368368 

30. Sukonina V, Ma H, Zhang W, Bartesaghi S, Subhash S, 
Heglind M, Foyn H, Betz MJ, Nilsson D, Lidell ME, 
Naumann J, Haufs-Brusberg S, Palmgren H, et al. 
FOXK1 and FOXK2 regulate aerobic glycolysis. Nature. 
2019; 566:279–83. 
https://doi.org/10.1038/s41586-019-0900-5 
PMID:30700909 

31. Bond KH, Sims-Lucas S, Oxburgh L. Targets for Renal 
Carcinoma Growth Control Identified by Screening 
FOXD1 Cell Proliferation Pathways. Cancers (Basel). 
2022; 14:3958. 
https://doi.org/10.3390/cancers14163958 
PMID:36010951 

32. Tong Z, Meng X, Wang J, Wang L. MicroRNA‑212 

inhibits the proliferation and invasion of human renal 
cell carcinoma by targeting FOXA1. Mol Med Rep. 
2018; 17:1361–7. 
https://doi.org/10.3892/mmr.2017.7956 
PMID:29115609 

33. Liu W, Ren D, Xiong W, Jin X, Zhu L. A novel 
FBW7/NFAT1 axis regulates cancer immunity in 
sunitinib-resistant renal cancer by inducing PD-L1 
expression. J Exp Clin Cancer Res. 2022; 41:38. 
https://doi.org/10.1186/s13046-022-02253-0 
PMID:35081978 

34. Zhao S, Wang Y, Lou Y, Wang Y, Sun J, Luo M, Li W, 

Miao L. MicroRNA‑320a suppresses tumour cell 

proliferation and invasion of renal cancer cells by 
targeting FoxM1. Oncol Rep. 2018; 40:1917–26. 
https://doi.org/10.3892/or.2018.6597 
PMID:30066895 

35. Okato A, Arai T, Yamada Y, Sugawara S, Koshizuka K, 
Fujimura L, Kurozumi A, Kato M, Kojima S, Naya Y, 
Ichikawa T, Seki N. Dual Strands of Pre-miR-149 
Inhibit Cancer Cell Migration and Invasion through 
Targeting FOXM1 in Renal Cell Carcinoma. Int J Mol 
Sci. 2017; 18:1969. 
https://doi.org/10.3390/ijms18091969 
PMID:28902136 

36. Liu F, Li N, Liu Y, Zhang J, Zhang J, Wang Z. 
Homeodomain interacting protein kinase-2 
phosphorylates FOXM1 and promotes FOXM1-
mediated tumor growth in renal cell carcinoma. J Cell 
Biochem. 2019; 120:10391–401. 
https://doi.org/10.1002/jcb.28323 
PMID:30609136 

37. Tian M, Wang T, Wang P. Development and Clinical 
Validation of a Seven-Gene Prognostic Signature 
Based on Multiple Machine Learning Algorithms in 
Kidney Cancer. Cell Transplant. 2021; 
30:963689720969176. 
https://doi.org/10.1177/0963689720969176 
PMID:33626918 

 

 

https://doi.org/10.1038/s41591-020-0839-y
https://pubmed.ncbi.nlm.nih.gov/32472114
https://doi.org/10.1016/j.semcancer.2021.03.036
https://pubmed.ncbi.nlm.nih.gov/33819567
https://doi.org/10.1038/s41423-020-0488-6
https://pubmed.ncbi.nlm.nih.gov/32612154
https://doi.org/10.1002/gcc.20750
https://pubmed.ncbi.nlm.nih.gov/20095040
https://doi.org/10.1158/1541-7786.MCR-17-0767
https://pubmed.ncbi.nlm.nih.gov/29545479
https://doi.org/10.1002/ijc.31278
https://pubmed.ncbi.nlm.nih.gov/29368368
https://doi.org/10.1038/s41586-019-0900-5
https://pubmed.ncbi.nlm.nih.gov/30700909
https://doi.org/10.3390/cancers14163958
https://pubmed.ncbi.nlm.nih.gov/36010951
https://doi.org/10.3892/mmr.2017.7956
https://pubmed.ncbi.nlm.nih.gov/29115609
https://doi.org/10.1186/s13046-022-02253-0
https://pubmed.ncbi.nlm.nih.gov/35081978
https://doi.org/10.3892/or.2018.6597
https://pubmed.ncbi.nlm.nih.gov/30066895
https://doi.org/10.3390/ijms18091969
https://pubmed.ncbi.nlm.nih.gov/28902136
https://doi.org/10.1002/jcb.28323
https://pubmed.ncbi.nlm.nih.gov/30609136
https://doi.org/10.1177/0963689720969176
https://pubmed.ncbi.nlm.nih.gov/33626918


www.aging-us.com 10123 AGING 

SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. FOXG1 expression is significantly up-regulated in ccRCC tissues. FOXG1 mRNA (A) and protein (B) 

levels in ccRCC tumor tissues and corresponding adjacent nontumor tissues. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Supplementary Table 
 

Supplementary Table 1. Univariable analysis of different expressed FOX genes in KIRC. 

Gene names 
Univariable analysis 

HR (95% CI)  p-value 

FOXA1 1.7176 (1.3799–2.1380) <0.0001 

FOXB2 0.0127 (0.0002–0.8065) 0.0392 

FOXD1 1.5102 (1.2266–1.8594) <0.0001 

FOXD4L1 7.1292 (3.3840–26.7584) <0.0001 

FOXE1 2.3468 (1.6004–3.4412) <0.0001 

FOXE3 11.4500 (7.8558–43.6767) <0.0001 

FOXF2 1.5777 (1.0656–2.3358) 0.0227 

FOXG1 1.6476 (1.0749–2.5253) <0.0001 

FOXH1 6.3034 (2.3373–16.9996) 0.0002 

FOXK2 0.5133 (0.3877–0.7784) <0.0001 

FOXL1 1.4302 (1.1063–1.8490) 0.0063 

FOXM1 1.9101 (1.6329–2.2341) <0.0001 

FOXN2 0.6511 (0.4902–0.8647) 0.0033 

FOXO1 0.5653 (0.4365–0.7322) <0.0001 

FOXO4 0.5213 (0.3850–0.7058) <0.0001 

FOXP3 1.5007 (1.2248–1.8388) <0.0001 

FOXP4 1.8059 (1.3441–2.4263) <0.0001 

 

 


