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INTRODUCTION 
 

A sedentary or inactive lifestyle is one of the leading 

causes of mortality, accelerated aging, and a wide array 

of age-related diseases, such as metabolic diseases, 

cardiovascular diseases, and cancer. In contrast, being 

physically active has long been recognized as a safe and 

effective “medicine” for the aging population [1]. 

Nevertheless, according to the World Health 

Organization (WHO), approximately one in five men and 

one in three women globally fail to meet the 

recommendations for weekly minimal moderate–

vigorous physical activity (MVPA) [2]. The world is 

aging rapidly, with around 13% of the world population 

(one billion) aged 60 years and above, as reported by 

WHO in 2020 [3]. This has led to a dramatic increase in 

the burden of aging and aging-related diseases. Many 

studies have revealed that physical inactivity is a critical 

determinant of life and health spans [4, 5]. Additionally, 

due to the effectiveness and cost-effectiveness of physical 

activity (PA), being physically active during aging, 
known as “active aging,” is a promising strategy to 

reduce the burden of aging and age-related diseases [6, 

7]. In this context, a sedentary or inactive lifestyle serves 
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ABSTRACT 
 

Despite the well-known senolytic effects of physical exercise on immune cells in older adults, the effect of 
physical activity (PA) on premature immune senescence in sedentary adults with obesity remains largely 
unknown. This pilot study aimed to investigate the role of objectively measured physical behaviors and Fitbit 
watch-based free-living PA intervention in premature senescence of immune cells in sedentary adults with 
obesity. Forty-five participants were recruited in the cross-sectional analysis, and forty of them further 
participated in the randomized controlled trial. We found that objectively measured moderate–vigorous PA 
was independently and inversely correlated with the expression of p16INK4a and p21Cip1 in the peripheral blood 
mononuclear cell (PBMCs) of adults with obesity; however, chronological age, body mass index, body fat, 
maximal oxygen consumption, light PA, sedentary behaviors, and sleep duration were not. More importantly, 
the 12-week PA intervention mitigated the elevated p16INK4a levels in PBMCs, though it showed no effect on 
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as a therapeutic target for accelerated aging and multiple 

age-related diseases; however, its adverse effects on the 

health of the aging population and the relevant 

underlying mechanisms are not yet fully understood. 

 

Cellular senescence, an irreversible state of cell cycle 

arrest that occurs under conditions of stress, is a  

key mechanism underlying aging. The aberrant 

accumulation of senescent cells that express atypical 

levels of p16INK4a and p21Cip1, vital senescent markers, 

contributes to premature aging and age-related diseases 

[8]. Thus, senescent cells are therapeutic targets for 

cellular senescence in aging and age-related diseases 

and premature senescence in diseases that occur at a 

younger age, such as obesity [9]. Notably, a recent 

study revealed that senescent immune cells could 

trigger systemic and premature aging of organs and 

tissues throughout the body; in contrast, alleviation of 

immune senescence slows down whole-body aging 

[10]. Therefore, the removal or attenuation of senescent 

immune cells, also known as senolytics or senostatics, 

is a potential therapy for premature aging and age-

related diseases at not only the cellular but also the 

whole-organism level. Senolytics are a novel class of 

medicine that targets cellular senescence in various 

conditions, which have shown great potential in 

treating many diseases, such as diabetic kidney disease 

and idiopathic pulmonary fibrosis [11–13]. However, 

no senolytic targeting immune senescence is currently 

available, though many senolytic candidates have been 

discovered and are currently being tested in clinical 

trials [12, 13]. 

 

Previous studies have shown that self-reported exercise 

frequency is negatively correlated with p16INK4a levels 

in T lymphocytes, independent of age [14, 15]. This 

implies that premature senescence of immune cells may 

account for sedentary lifestyle-related accelerated aging 

and age-related diseases. However, studies on 

objectively measured physical behaviors, such as PA, 

standing, sedentary behaviors, and sleep, have not yet 

been reported. Nonetheless, our systematic review and 

other studies have uncovered the senolytic effect of 

physical exercise or activity interventions on the 

immune system in older individuals, and potentially in 

individuals with obesity [16, 17]. Undoubtedly, physical 

exercise is an effective senolytic against aging and age-

related diseases in older adults. However, the senolytic 

effects of habitual PA and PA interventions on 

premature senescence of immune cells, particularly in 

sedentary adults with obesity, remain unknown. 

Compared with administering treatments against severe 

diseases at a later stage, alleviating accelerated aging at 
a younger age is a better strategy for prolonging the 

health span and reducing the risk of diseases in the 

aging population. Therefore, this pilot study aimed to 

investigate the role of objectively measured physical 

behaviors and PA intervention in premature senescence 

of immune cells in sedentary adults with obesity. The 

findings generated by this study may contribute to 

understanding the associations between PA and 

premature senescence and provide a novel approach 

against accelerated aging in the aging population. 

 

RESULTS 
 

The demographic, anthropometric, and behavioral 

characteristics of the included 45 participants (age, 31.71 

± 7.30 years) are shown in Table 1. The cross-sectional 

analysis indicated that chronological age, maximal 

oxygen consumption (VO2max), body fat, and blood 

pressures (diastolic blood pressure and systolic blood 

pressure) were not associated with the log2-transformed 

p16INK4a and p21Cip1 levels in peripheral blood 

mononuclear cell (PBMCs) in sedentary adults with 

obesity (p > 0.05) (Figure 1A–1C, Tables 2, 3; 

Supplementary Figure 1). Notably, MVPA was 

independently and reversely correlated with log2-

transformed p16INK4a (B = −8.83, 95% CI = −15.98 to 

−1.68, p = 0.02) and p21Cip1 (B = −8.30, 95% CI = 

−14.74 to −1.85, p = 0.01) levels in PBMCs; however, 

no significant correlation was found in the other physical 

behaviors, including light PA (LPA), vigorous PA, 

standing, sedentary behaviors, and sleep duration (p > 

0.05) (Figure 1D and Table 2; Supplementary Figure 1). 

Although the body mass index (BMI) and daily steps 

were also significantly correlated with log2-transformed 

p16INK4a and p21Cip1 levels in PBMCs (p < 0.05) (Figure 

1C; Supplementary Figure 1), the correlation became 

non-significant after adjusting for other factors (p > 

0.05) (Table 2). These findings suggested that 

insufficient MVPA is a major driver of cellular 

senescence of immune cells in sedentary adults with 

obesity. 

 

Furthermore, a randomized controlled trial (RCT) was 

conducted to investigate the 12-week PA intervention 

on the anthropometric, behavioral, and senescent 

markers in adults with obesity. Significant increases in 

MVPA (group effect, p = 0.004) and steps (group effect, 

p = 0.04 [activPAL™]; group effect, p < 0.01 [Fitbit 

Watch]) were observed in the PA intervention group 

compared with those in the control group (Table 3; 

Supplementary Figures 2, 3). In contrast, the other 

physical behaviors, including sedentary behaviors, LPA, 

and sleep duration, remained unchanged after the 12-

week PA intervention (p > 0.05) (Table 3). However, 

the change in habitual MVPA showed no effect on the 

anthropometric measures, including BMI, body weight, 

body fat, and VO2max (p > 0.05). More importantly, the 

12-week PA intervention significantly attenuated the 

elevated log2-transformed p16INK4a levels in PBMCs 
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Table 1. Characteristics of participants. 

Characteristics Mean ± SD 

Number (female, %) 45 (42%) 

Age, years 31.71 ± 7.30 

Body mass index, kg/m2 29.54 ± 3.56 

Body weight, kg 84.45 ± 14.19 

Body fat, % 33.87 ± 7.45 

Waist circumference, cm 96.87 ± 15.35 

Diastolic blood pressure, mmHg 80.89 ± 9.20 

Systolic blood pressure, mmHg 113.56 ± 13.46 

VO2max, ml/kg/min 25.27 ± 4.82 

Sedentary time, hour/day 11.47 ± 1.74 

Light physical activity, min/day 48.97 ± 19.53 

Moderate to vigorous physical activity, min/day 7.07 ± 3.23 

Vigorous physical activity, min/day 1.13 ± 1.80 

Standing, hour/day 3.61 ± 1.38 

Steps, steps/day 7975 ± 2876 

Abbreviation: VO2max: maximal oxygen consumption. 
 

(interaction effect, p = 0.04) (Table 3; Supplementary 

Figure 4A). However, the intervention had no impact on 

the expression of p21Cip1, interleukin (IL)-1β, IL-6, and 

tumor necrosis factor (TNF)-α in PBMCs and serum IL-

1β, IL-6, IL-8, C-C motif chemokine ligand 2 (CCL2), 

intercellular adhesion molecule 1 (ICAM-I), vascular 

 

 
 

Figure 1. MVPA is independently and negatively correlated with senescent markers in immune cells of adults with obesity. 
(A) Correlation between chronological age and senescent markers (log2-transformed p16INK4a and p21Cip1) in peripheral blood mononuclear 
cells (PBMCs). (B) Correlation between maximum oxygen consumption (VO2max) and senescent markers in PBMCs. (C) Correlation between 
body mass index (BMI) or body fat and senescent markers in PBMCs. (D) Correlation between objectively measured physical behaviors, 
including moderate–vigorous physical activity (MVPA), standing, sedentary behaviors, sleep duration, and senescent markers in PBMCs. 
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Table 2. Determinants of premature senescence in sedentary adults. 

Measurement 
Log(p16INK4a) 

P value 
Log(p21Cip1) 

P value 
B (95% CI) B (95% CI) 

Demographics 

Age, years 0.05 (−0.01 to 0.10) .12a 0.05 (−0.003 to 0.10) .06a 

Anthropometry 

BMI, kg/m2 −0.08 (−0.18 to 0.03) .17a −0.10 (−0.19 to 1.41) .05a 

Body weight, kg −0.01 (−0.04 to 0.01) .32b −0.02 (−0.04 to 0.01) .17b 

Body fat, % 0.02 (−0.04 to 0.07) .57b −0.004 (−0.05 to 0.04) .87b 

VO2max, ml/kg/min 0.03 (−0.04 to 0.11) .41a 0.04 (−0.03 to 0.11) .24a 

Behavior  

SB, hr/day 0.16 (−0.09 to 0.42) .21a 0.15 (−0.08 to 0.38) .21a 

LPA, hr/day −0.26 (−1.91 to 1.39) .76c −0.37 (−1.87 to 1.12) .63c 

MVPA, hr/day −8.83 (−15.98 to −1.68) .02a −8.30 (−14.74 to −1.85) .01a 

Steps, 1000 steps/day −0.14 (−0.29 to 0.01) .06c −0.10 (−0.24 to 0.04) .15c 

Sleep duration, hr/day 0.20 (−0.19 to 0.58) .32a 0.13 (−0.23 to 0.48) .49a 

Abbreviations: BMI: body mass index; VO2max: maximal oxygen consumption; SB: sedentary behaviors; LAP: low-intensity 
physical activity; MVPA: moderate-vigorous intensity physical activity. aGeneralized Linear Models Analysis, Model 1: age, 
MVPA, BMI, SB, sleep duration, VO2max. bGeneralized Linear Models Analysis, Model 2: BMI in model 1 was replaced by 
indicated measurement. cGeneralized Linear Models Analysis, Model 3: MVPA in model 1 was replaced by indicated 
measurement. 

 

Table 3. Anthropometric, behavioral, and senescent responses to physical activity intervention. 

Measurement 
Mean (SD) P valuea 

Pre-control Post-control Pre-PA Post-PA 
Interaction 

effect 
Group 
effect 

Time 
effect 

Anthropometry 

BMI, kg/m2 28.82 (2.75) 28.91 (3.14) 29.69 (3.82) 29.25 (4.34) .69 .95 .80 

Body weight, kg 81.53 (14.01) 81.87 (15.56) 85.50 (12.08) 84.11 (12.79) .59 .74 .74 

Body fat, % 33.00 (5.54) 33.45 (5.73) 33.97 (9.00) 32.65 (9.60) .52 .61 .75 

VO2max, ml/kg/min 25.56 (4.34) 26.61 (6.60) 25.91 (5.40) 29.27 (7.74) .28 .26 .04 

Behavior  

SB, hr/day 11.32 (1.31) 11.12 (2.32) 10.93 (2.17) 10.95 (2.5) .44 .66 .38 

LPA, hr/day 0.86 (0.31) 0.94 (0.51) 0.73 (0.39) 0.77 (0.31) .53 .42 .78 

MVPA, hr/day 0.13 (0.04) 0.11 (0.08) 0.10 (0.08) 0.20 (0.07) .003 .004 .03 

Steps, steps/day 8490 (2557) 8430 (4133) 7082 (3812) 11544 (3988) .04 .04 .01 

Sleep duration, hr/day 7.86 (1.02) 7.35 (0.91) 7.48 (0.74) 7.40 (0.77) .56 .68 .07 

Cellular senescence 

-Log(p16INK4a) 6.10 (1.36) −3.76 (1.97) 5.55 (1.40) −2.86 (1.50) .04 .07 <.001 

-Log(p21Cip1) 0.43 (1.54) 2.67 (1.30) −0.18 (1.32) 3.11 (1.58) .14 .99 <.001 

-Log(IL-1β) −7.21 (1.12) −10.58 (0.85) −7.50 (0.87) −11.07 (0.92) .77 .52 .06 

-Log(IL-6) −10.12 (1.26) −7.56 (1.24) −10.19 (1.23) −7.97 (1.27) .26 .08 <.001 

-Log(TNF-α) −6.89 (0.81) −6.83 (0.83) −6.75 (0.61) −6.66 (0.69) .90 .69 .58 

IL-1β, pg/ml 19.16 (5.86) 19.20 (4.42) 23.94 (8.74) 23.28 (8.95) .18 .91 .19 

IL-6, pg/ml 16.45 (2.79) 16.72 (4.36) 18.13 (3.06) 16.27 (2.21) .09 .23 .21 

IL-8, pg/ml 21.33 (6.56) 20.51 (4.80) 22.74 (7.26) 19.28 (3.15) .12 .05 .01 

CCL2, pg/ml 107.61 (36.98) 95.64 (25.56) 134.30 (68.46) 97.32 (26.47) .13 .46 <.001 

ICAM-I, ng/ml 1224.30 (503.12) 1262.33 (408.97) 1099.13 (404.18) 1117.45 (419.60) .76 .53 .38 
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VEGF, pg/ml 23.04 (7.89) 22.30 (10.75) 24.06 (12.65) 19.53 (7.17) .34 .19 .003 

PAI-I, ng/ml 172.54 (82.01) 206.03 (36.23) 211.02 (90.27) 235.24 (57.12) .77 .18 .07 

Abbreviations: PA: physical activity intervention; BMI: body mass index; VO2max: maximal oxygen consumption; SB: 
sedentary behaviors; LAP: low-intensity physical activity; MVPA: moderate-vigorous intensity physical activity; IL: interleukin; 
TNF: tumor necrosis factor; CCL2: C–C motif chemokine ligand 2; ICAM-I: intercellular adhesion molecule 1; VEGF: vascular 
endothelial growth factor; PAI-I: plasminogen activator inhibitor-1. aGeneralized Estimated Equation Analysis. 

 

endothelial growth factor (VEGF), and plasminogen 

activator inhibitor-1 (PAI-I) (p > 0.05) levels, which are 

also known as senescence-associated secretory 

phenotypes (SASPs) (Table 3; Supplementary Figure 

4B). Intriguingly, while MVPA was inversely correlated 

with both p16INK4a and p21Cip1 levels in PBMCs, the 12-

week PA intervention showed a sole effect on p16INK4a 

but not on p21Cip1 and other SASPs. No adverse event 

was reported during the 12-week PA intervention. 

 

DISCUSSION 
 

Premature senescence accelerates aging and elevates the 

risk of many diseases in the aging population, including 

cancer, metabolic diseases, and neurological diseases, in 

an age-independent manner [18, 19]. Thus, effective 

senolytics or senostatics against premature senescence 

will contribute to a lower burden of aging and age-

related diseases worldwide. Although chronological age 

has long been identified as the main driver of 

senescence, the determinants of premature senescence 

in adults with obesity are less studied [20]. This pilot 

cross-sectional analysis and RCT demonstrated that a 

sedentary lifestyle, especially the lack of MVPA, was a 

major contributing factor to premature senescence of 

immune cells in adults with obesity in age-, VO2max-, 

and BMI-independent manners. Furthermore, the 12-

week PA intervention significantly attenuated the 

elevated p16INK4a levels in the immune cells of 

sedentary adults with obesity. These findings highlight 

the importance of an active lifestyle in maintaining a 

youthful immune system and the senolytic or senostatic 

effects of PA on premature senescent immune cells in 

sedentary adults with obesity. 

 

A strong correlation between log2-transformed 

p16INK4a mRNA level in immune cells and 

chronological age was previously reported in an aging 

population [14]. However, our findings suggested that 

chronological age and cardiorespiratory fitness 

(VO2max) were not the major drivers of cellular 

senescence of immune cells in sedentary adults with 

obesity. Instead, physical inactivity, especially lacking 

MVPA, was a determinant of premature senescence of 

immune cells in sedentary adults with obesity. 

However, sedentary behaviors, LPA, standing, and 

sleep duration were not determinants of premature 

senescence. Physical inactivity is a potential 

mechanism underlying the adverse effects of a 

sedentary lifestyle on healthy aging via accelerating 

immune system senescence [10]. Expectedly, 

chronological age was not a driver of premature 

senescence in a relatively younger population. 

Premature senescence is commonly triggered by other 

stressful conditions, such as an unhealthy lifestyle 

[21]. Besides, cardiorespiratory fitness (VO2max) has 

long been associated with a higher proportion of 

senescent immune cells, which are distinguished by 

the surface markers of immune cells in middle-aged 

but not in young adults [22]. While the surface 

markers of immune cells can also classify senescent 

cells by the stage of the cell cycle, such as the CD28-

CD57+KLRG1+ terminally-differentiated memory T 

cell subset, more reliable markers involved in the 

pathway of cellular senescence are needed [23]. By 

using golden standard markers of cellular senescence, 

including p16INK4a and p21Cip1, our findings showed 

that VO2max is not a determinant of cellular 

senescence in the immune cells of adults with obesity. 

Previous cohort studies have reported that self-

reported exercise frequency is independently and 

negatively correlated with p16INK4a levels in immune 

cells. However, the evidence is too preliminary since 

only a simple question about exercise was used in the 

questionnaire [14, 15]. To the best of our knowledge, 

this is the first study to report that insufficient 

objectively measured MVPA is a major factor 

contributing to the cellular senescence of immune cells 

in sedentary adults with obesity. Compared with 

previous studies, we identified MVPA, a specific type 

of PA, as a key determinant of cellular senescence in 

immune cells. We used activPAL™ to objectively 

measure physical behaviors, which provided a more 

precise therapeutic target against immune aging for the 

aging population, with more solid evidence than that 

of previous studies [14, 15]. In addition, sedentary 

behavior is another vital physical behavior-based risk 

factor for unhealthy aging, independent of PA [24]. 

Surprisingly, LPA and sedentary behaviors were not 

major contributing factors to the premature senescence 

of immune cells in sedentary adults with obesity. 

Collectively, inadequate MVPA was a vital driver of 

premature senescence of immune cells in sedentary 
adults with obesity; in contrast, chronological age, 

cardiorespiratory fitness, LPA, and sedentary behavior 

showed subtle effects. 
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Our previous systematic review and meta-analysis 

confirmed that chronic physical exercise is a senolytic 

for cellular senescence in immune cells [16]. 

Moreover, a novel study also reported that a 12-week 

constructed exercise training program effectively 

reduced senescent markers of immune cells and SASPs 

in older adults [17]. However, the effect of free-living 

PA on cellular senescence of immune cells in the 

aging population, especially premature senescence in 

adults with obesity, remains largely unknown. The 

current study was the first to demonstrate the senolytic 

effects of PA intervention on senescent immune cells 

in sedentary adults with obesity. Unlike the previous 

interventional studies using structured exercise 

programs [16, 17], the current study provides evidence 

that increasing daily MVPA is an effective strategy 

against premature senescence of immune cells in 

sedentary adults with obesity. More importantly, the 

habitual PA of participants was improved by our 

intervention program, which will bring more 

prolonged benefits than previous physical exercise 

programs. Alleviation of cellular senescence in 

immune cells is potentially a key molecular 

mechanism underlying “active aging,” and the 

“exercise as medicine” [7] approach can go a long way 

in alleviating premature immune senescence in adults 

with obesity. Additionally, this study focused on the 

premature senescence of immune cells in sedentary 

adults with obesity, who are neglected in currently 

available senolytic studies. Premature senescence may 

account for accelerated senescence and the elevated 

burden of aging and age-related diseases. A previous 

interventional study reported that exercise lowered 

elevated p16INK4a and p21Cip1 levels in immune cells 

and circulating SASPs in older individuals [17]. 

However, elevated p16INK4a and declined p21Cip1 levels 

were observed in sedentary adults with obesity, which 

probably indicated early-stage accumulation of 

senescence immune cells during aging. This is because 

p16INK4a maintains the senescent phenotypes while 

p21Cip1 initiates cellular senescence [25]. Moreover, 

consistent with the findings of previous animal studies, 

our results demonstrated that PA intervention only 

exerted a senolytic effect on p16INK4a in the immune 

cells but not on p21Cip1 and SASPs of sedentary adults 

with obesity [26, 27]. This suggested distinct senescent 

phenotypes and senolytic effects of exercise between 

older adults and adults with obesity. Specifically, the 

senolytic effects of PA in older adults involved both 

the inhibition of the production of senescent cells 

(p21Cip1) and the removal of excess senescent cells 

(p16INK4a), whereas it only reduced excess senescent 

cells in sedentary adults with obesity. It should be 

noted that cellular senescence is not only a key 

molecular mechanism behind aging but also a vital 

biological process that is essential for tissue repair, 

cancer suppression, and health maintenance [28]. Our 

results show that PA intervention is a relatively safe 

senolytic for sedentary adults with obesity during 

aging. This senolytic only targets p16INK4a+ excess 

senescent cells without affecting the p21Cip1-regulated 

initiation of cellular senescence [25]. 
 

This study has several limitations. The main limitation 

is that this small-scale pilot study only included 45 

participants with a narrow age range, which limits our 

ability to investigate the diversity of key senescent 

determinants in various age groups. In addition, the 

levels of p16INK4a and p21Cip1 in PBMCs measured in 

this study remained at the mRNA level. While it is a 

conventional and reliable method in the determination 

of cellular senescence in immune cells [14, 15], 

findings based on the level of p16INK4a and p21Cip1 at 

the protein level are more convincing. In addition, our 

primary protocol deviations from the planned trial are 

as follows: we included senescent markers as out-

comes for studying immune senescence in sedentary 

adults with obesity and removed the PA + middle-to-

high-intensity exercise group due to the coronavirus 

disease 2019 pandemic. Nevertheless, our study 

provides a feasible anti-aging strategy involving 

increasing daily steps, which will contribute to healthy 

aging and a reduced burden of aging and age-related 

diseases for individuals and society, respectively. 

Nevertheless, large-scale RCTs on the senolytic effect 

of PA intervention targeting premature senescence in 

different populations at various age stages, such as 

healthy sedentary adults, middle-aged adults, and 

adults with type-2 diabetes, are still needed. These 

studies may contribute to developing exercise 

prescriptions for promoting healthy aging and reducing 

the burden of age-related diseases in the accelerated 

aging populations worldwide. 

 

CONCLUSION 
 

Physical inactivity at a younger age is an independent 

determinant of premature senescence in immune cells, 

potentially leading to accelerated aging of the whole 

body. A 12-week free-living PA intervention targeting 

MVPA is a senolytic for premature immune senescence 

in sedentary adults with obesity. Being physically active 

by increasing daily steps is an effective and cost-

effective strategy to slow the aging process and reduce 

the burden of aging and age-related diseases. 

 

MATERIALS AND METHODS 
 

Participants 
 

Between September 2020 and December 2020, 153 

adults were contacted and screened telephonically. 
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Subsequently, 63 adults were invited and screened 

through laboratory visits. Finally, 45 participants who 

met the inclusion criteria were included in a cross-

sectional baseline assessment (Figure 2). Inclusion 

criteria for adults with a sedentary lifestyle were as 

follows: 1) Chinese adults; 2) aged between 18 and 45 

years; 3) physically inactive (less than 150-minute 

MVPA per week) and with prolonged sedentary 

behavior (sitting time over eight hours per day) as 

screened by the Chinese version of the International 

Physical Activity Questionnaire-Short Version [29] and 

activPAL™ (PAL Technologies, Glasgow, UK); 4) BMI 

≥ 25 kg/m2; 5) blood pressure less than 140/90 mmHg, 

6) non-smoker and non-drinker of alcohol; 7) without 

cardiovascular diseases, such as heart diseases, vascular 

diseases, or diabetes; 8) no medical history of physical 

injuries in the last three months; and 9) not taking any 

medicine in the last three months. In addition, Gpower 

software (GPower Software Inc., University of Kiel, 

Kiel, Germany) was used to calculate the sample size 

based on the data derived from a previous RCT in the 

elderly [17] and a medium effect size (Cohen’s f) of 

p16INK4a = 0.283 was determined. Consequently, 

approximately fourteen participants in each group were 

estimated to achieve the effect size (0.283) by using a 

two-arm pretest-posttest design at a two-sided 

significance level of 5% and at a power of 80% (F tests, 

ANOVA: repeated measures, within-between inter-

action). Therefore, 28 participants in total were required 

for a two-arm RCT, and finally, more than 40 

participants were recruited, as approximately 10 of the 

invited participants were estimated to be lost to follow-

up. Of the 45 participants, 40 participated in the two-

arm RCT (20 in each group) of a 12-week Fitbit watch-

based PA intervention, while five declined to participate 

(Figure 2). All the experimental protocols were reviewed 

and approved by the Joint Chinese University of Hong 

Kong-New Territories East Cluster Clinical Research 

Ethics Committee (CREC Ref. No.:2020.551-T). 

Written informed consent was obtained from each 

 

 
 

Figure 2. CONSORT flow diagram. Abbreviation: PA: physical activity intervention. 
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participant. This RCT was registered at the Chinese 

Clinical Trial Registry (ChiCTR2000039033). 

 

Anthropocentric measurements 

 

The anthropocentric measurements of participants, 

including height, weight, BMI calculation, and body fat, 

were performed as described previously [30]. For the 

VO2max test, a modified Bruce protocol was employed 

for the participants using the treadmill according to a 

previous study [31]. 

 

Physical behaviors measured by activPAL™ 

 

Habitual physical behaviors, including physical 

activities, sedentary behaviors, standing, sleep duration, 

and daily steps, were measured using activPAL™, in 

which the small accelerator was placed in the front mid-

line of the right thigh of participants for 24 h for five 

days consecutively days with at least one day of the 

weekend in pre- and post- 12-week PA intervention 

(Supplementary Figure 2A). The data was analyzed 

using PALanalysis v 8.0 (PAL Technologies, Glasgow, 

UK) as previously described (Supplementary Figure 

2A–2C) [30]. 

 

Fitbit watch-based PA intervention 

 

The participants in the PA intervention group 

underwent a 12-week PA intervention using the Fitbit 

Inspire 2 watch (Fitbit, San Francisco, USA) 

(Supplementary Figure 3A) [32], while participants in 

the control group were asked to maintain their original 

lifestyle. The intervention for physical activities/steps 

was conducted in a free-living setting, which was 

monitored via the Web-based activities tracking 

system provided by Fitbit (Supplementary Figure 3A–

3D). The goal for the PA was set at over 12,000 steps 

per day for at least 5 days per week. The researchers 

messaged participants who had not yet achieved the 

goal daily. 

 

Blood sampling and PBMCs isolation 

 

Venous blood samples were collected from an 

antecubital vein in the right arm at pre- and post-

intervention by a nurse between 8:00 and 10:00 am. 

Participants were asked to fast for eight hours before 

the blood collection and avoid alcohol, caffeine, and 

exercise for more than 24 h. The serum was separated 

from the blood sample by using serum tubes (BD 

Company, New Jersey, USA) through centrifugation. 

Furthermore, PBMCs were isolated from blood 

samples with EDTA using Ficoll-Paque PLUS (GE 

Healthcare, Uppsala, Sweden) through gradient 

centrifugation at 2000 rpm for 30 min at room 

temperature. Serum and isolated PBMCs were then 

stored at −80°C for further analysis. 

 

Quantitative PCR 

 

Total RNA was first extracted from the PBMCs using 

RNAiso Plus (Takara Bio Inc, Shiga, Japan) and reverse 

transcribed to cDNA using cDNA Reverse Transcription 

Kit (Takara Bio Inc, Shiga, Japan) according to the 

manufacturer’s protocol. The qPCR was finally conducted 

in the Applied Biosystems QuantStudio 7 Flex Real-Time 

PCR System using the SYBR green reagents (Takara Bio 

Inc, Shiga, Japan) and primers listed in Supplementary 

Table 1 according to the manufacturer’s protocol. 

 

Multiplex assay and ELISA 

 

The senescence-associated secretory phenotypes (IL-1β, 

IL-6, IL-8, CCL2, ICAM-I, VEGF, and PAI-I) in the 

serum were measured using the Luminex multiplex assay 

(R&D Systems Minneapolis, MN, USA) or ELISA 

(ImmunoDiagnostics Limited, Hong Kong, China), as 

previously described [30]. For the Luminex multiplex 

assay, a Bio-Plex 200 System™ (Bio-Rad Laboratories, 

Hercules, CA, USA) was used to read the flow-based 

magnetic beads after incubation with serum samples. 

 

Statistical analyses 

 

Data in this study are presented as mean ± standard 

deviation (S.D.). Pearson correlation, generalized linear 

model analysis, and generalized estimated equation 

analysis were utilized where appropriate using SPSS 

version 26.0 (IBM Corp., Armonk, N.Y., USA), as 

previously described [30]. The log2-transformed mRNA 

level was used in this study as previously described 

[14]. A two-tailed p-value < 0.05 was considered 

statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Correlation of senescent markers in PBMCs with blood pressure and physical behaviors. (A) Blood 

pressures. (B) Physical behaviors. Abbreviations: DBP: diastolic blood pressure; SBP: systolic blood pressure; LPA: light physical activity. 
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Supplementary Figure 2. Physical behavioral responses measured by activPAL™. (A) Individual 24-hour behaviors recorded by 
activPAL™. (B, C) Individual weekly behaviors recorded by activPAL™ before (B) and after physical activity (PA) intervention (C). Abbreviation: 
SB: sedentary behaviors. 
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Supplementary Figure 3. Physical activity intervention monitored by Fitbit watch. (A) The difference in steps between control 
(CTRL) and physical activity (PA) intervention groups. (B) Individual steps recorded during 12-week PA intervention. (C) Individual daily 
activities recorded by Fitbit watch before PA intervention. (D) Individual daily activities recorded by Fitbit watch after PA intervention. 
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Supplementary Figure 4. The effect of physical activity intervention on the mRNA level of p16INK4A and p21Cip1 in PBMCs. (A) 
mRNA level of p16 in peripheral blood mononuclear cells (PBMCs) of control (CTRL) and physical activity (PA) intervention groups before 
and after 12-week PA intervention. (B) mRNA level of p21 in PBMCs of control (CTRL) and physical activity (PA) intervention groups before 
and after 12-week PA intervention. While bar: pre-intervention; Black bar: post-intervention. 
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Supplementary Table 
 

Supplementary Table 1. Primers used in the present study. 

Primers 5′ to 3′ 

p16INK4a_Fwd GGGGGCACCAGAGGCAGT 

p16INK4a_Rev GGTTGTGGCGGGGGCAGTT 

p21Cip1_Fwd CCGCCCCCTCCTCTAGCTGT 

p21Cip1_Rev CCCCCATCATATACCCCTAACACA 

TNF-α_Fwd CCTGCCCCAATCCCTTTATT 

TNF-α_Rev CCCTAAGCCCCCAATTCTCT 

IL-1β_Fwd TCCAGGGACAGGATATGGAG 

IL-1β_Rev TCTTTCAACACGCAGGACAG 

IL-6_Fwd AATAACCACCCCTGACCCAAC 

IL-6_Rev AATCTGAGGTGCCCATGCTAC 

GAPDH_Fwd TCTTCTTTTGCGTCGCCAG 

GAPDH_Rev AGCCCCAGCCTTCTCCA 

Abbreviations: IL-1β: interleukin-1β; IL-6: interleukin-6; TNF-α: tumor necrosis factor-α; GAPDH: glyceraldehyde 3-phosphate 
dehydrogenase. 

 

 


