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INTRODUCTION 
 

Between 2017–2018, approximately 45% of adults in the 

United States were classified as obese, placing them at 

increased risk of functional decline and morbidity [1]. 

Obesity increases the risk of various comorbidities, 

including Type 2 diabetes, cardiovascular disease, and 

several types of cancer including liver cancer, breast 

cancer and esophageal cancer [2]. Obesity also increases 

the risk for many age-related disorders [3]. With the 

development of the field of epigenetics, epigenetic age 

acceleration has also been linked to obesity [4]. 
 

DNA methylation-based biomarkers satisfy the criteria of 

a molecular biomarker of aging which can be applied to 

different tissues across the spectrum of all ages [5]. The 

methylation states of millions of CpG dinucleotides in the 

human genome were shown to change with age [6–9]. 

Accelerated biological aging, which may be measured 

through a multiple biomarker approach, is likely to result 

from multiple physiological and pathological changes, 

including obesity, during the life-course, and therefore 

may represent an overarching mechanism linking obesity 

and health. For example, obesity has been linked with 

methylation changes in genes involved in lipid 

metabolism (ABCG1, SREBF1, and NOD2), which may 
explain the comorbidities noted in obesity [10]. 

 

Epigenetic age estimators are sets of CpGs that are 

coupled with a mathematical algorithm to estimate the 
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ABSTRACT 
 

Introduction: Obesity increases the risk of Type 2 diabetes, cardiovascular disease, several types of cancer, and 
other age-related disorders. Among older adults, obesity is also related to epigenetic age, typically measured 
with DNA methylation (DNAm). Because less is known about obesity and epigenetic aging earlier in the 
lifespan, this study examined the relationship between obesity and DNAm in young adulthood and whether 
these relationships vary by sex. 
Methods: A cross-sectional community sample of 290 healthy young adults (mean age 27.39 years, 60% female; 
80% African American, 18% White) had their BMI and waist circumference measured. Four epigenetic age 
estimators were derived from salivary DNA: Hannum DNAm, Horvath DNAm, Phenoage DNAm, and GrimAge 
DNAm. Sociodemographic covariates included age, sex, race, parental education, and income-to-needs ratio. 
Results: After adjusting for covariates, higher BMI and waist were associated with higher DNAm PhenoAge in 
both sexes, with a stronger effect on BMI in males (β = 0.35, p < .001) compared to females (β = 0.13, p = .002). 
Higher waist, but not BMI, was associated with higher Horvath DNA methylation age. Both BMI and waist 
circumference were associated with higher Hannum DNAm age in men but not in women. Neither BMI nor 
waist circumference were related to GrimAge. 
Discussion: This study extends prior research by linking obesity with accelerated epigenetic aging in young 
adulthood, replicating the associations across two measures of obesity and four indices of salivary epigenetic 
aging. The results add to evidence that higher BMI accelerates aging early in the lifespan. 
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age in years of a DNA source. For example, Hannum 

et al. derived a highly accurate age estimator based on 

71 CpGs from whole blood DNA, known as the 

Hannum DNAm [11]. Another methylation aging index, 

Horvath’s DNAm, was trained and validated for 

predicting age using 8,000 publicly available 

microarray samples from over 30 different tissue and 

cell types collected from children and adults [5]. 

Horvath epigenetic aging was also positively correlated 

with total cholesterol, HDL, and triglycerides and 

inversely correlated with fasting HDL [12]. 

 

Another approach to studying methylation aging 

involves the replacement of chronological age with a 

surrogate measure of biological age (‘phenotypic age’) 

that differentiates morbidity and mortality risk among 

individuals of the same age, as exemplified by the 

phenotypic age estimators PhenoAge and GrimAge 

built by Levine et al. and Lu et al., respectively [13, 14]. 

Both DNAm PhenoAge and GrimAge outperformed the 

first generation of DNAm age estimators in predicting 

mortality, health span and cardiovascular disease, as 

well as various measures of multimorbidities including 

cognitive impairment, cancers and Alzheimer’s 

syndrome [13, 14]. 

 

Multiple studies have examined associations between 

the aforementioned DNAm age indices and obesity. For 

example, using the Horvath clock, Horvath et al. linked 

BMI with greater epigenetic age acceleration in 1,215 

adults aged 37–77 [15]. Nevalainen et al. showed that 

accelerated epigenetic age (using the Horvath clock) is 

correlated with higher BMI in midlife (ages 40–49) and 

with increased BMI from ages 15–24 to midlife, but not 

with BMI at ages 15–24 and age 90 [16]. However, 

BMI was associated with higher Horvath clock 

epigenetic aging from salivary DNA in 232 African 

American mothers (mean age 31 years) [17]. Moreover, 

Quach et al. found associations between BMI and both 

Hannum and Horvath accelerated epigenetic aging 

indices in 2,725 postmenopausal women (ages 50–82) 

from the Women’s Health Initiative, although these 

results were not replicated among 402 males and 

females from the Italian InCHIANTI cohort (ages 30–

100) [18]. Finally, a recent study of 273 maltreated 

children (ages 8–14) suggests that the association 

between BMI and epigenetic aging may emerge as early 

as in childhood [19]. Despite these few studies with 

younger groups, the majority of research on obesity and 

epigenetic aging has focused on middle-aged and older 

adults. Investigating DNAm aging earlier in the 

lifespan, before the onset of chronic diseases, is critical 

to guide interventions that could potentially improve 

later health outcomes. Moreover, few studies have 

included replication across measures of obesity and 

epigenetic aging to examine the robustness or 

specificity of these effects. Finally, little is known about 

sex differences in the links between obesity and 

epigenetic aging, despite evidence of substantial sex 

dimorphism in both physiological and epigenetic aging 

[20]. 

 

This study addressed gaps in the literature by using a 

racially diverse community sample of healthy young 

adults to examine the relationship between two 

measures of obesity (BMI and waist circumference) and 

four most widely used indices of epigenetic aging – 

Hannum, Horvath, PhenoAge DNAm, and GrimAge 

DNAm in young adulthood, prior to onset of chronic 

disease. In addition, this study tested sex differences in 

the associations between BMI and DNAm aging. It was 

hypothesized that higher BMI and waist circumference 

would be associated with accelerated DNAm aging in 

young adults, with stronger associations in males who 

generally show faster epigenetic aging [21]. 

 

RESULTS 
 

Preliminary analyses 

 

Among the 290 participants included in the analyses, 

268 (92%) had complete data on all variables and less 

than 1% of data points were missing. Individuals with 

missing data did not differ from participants with 

complete data on any variables included in the analyses. 

Descriptive statistics and bivariate correlations among 

the variables included in the analyses are presented in 

Table 1. Bivariate correlations including epigenetic age 

indices were adjusted with chronological age. Higher 

PhenoAge was correlated with higher Hannum and 

higher Horvath DNAm age. Horvath DNAm was 

associated with higher waist circumference and 

PhenoAge was correlated with higher BMI. Horvath 

DNAm age was associated with higher chronological 

age at Wave 4. Females had higher PhenoAge and 

lower GrimAge scores than males, while African 

Americans had lower Hannum DNAm and higher 

GrimAge age scores than Whites. Females had higher 

BMI than males. 

 

Main analyses 

 

BMI and epigenetic aging 

After adjusting for covariates, higher BMI was 

associated with greater DNAm PhenoAge (Table 2). A 

significant interaction of BMI and sex indicated that the 

relationship between BMI and DNAm PhenoAge 

differed between males and females. Follow up simple 

slope analyses demonstrated that the association between 

BMI and DNAm PhenoAge was significant in both 

sexes but was stronger in males (β = 0.35, p < .001) 

compared to females (β = 0.13, p = .002; see Figure 1). 
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Table 1. Descriptive statistics and bivariate correlations among all variables. 

 
M (SD) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1. Age 27.39 (1.19) 
         

 
     

 

2. BMI 31.59 (11.44) −0.06 
        

 
     

 

3. Waist  98.04 (19.88) −0.02 0.82*               

4. Parental education 4.30 (1.70) −0.26* 0.00 −0.07 
      

 
     

 

5. Income-to-needs ratio 6.55 (3.82) −0.21* 0.04 −0.03 0.26* 
     

 
     

 

6. African American 80% 0.21* 0.06 −0.01 −0.20* −0.25* 
    

 
     

 

7. Horvath DNAm age 35.28 (4.36) 0.29* 0.09 0.18* −0.06 −0.06 −0.11 
   

 
     

 

8. Hannum DNAm age 40.35 (3.96) −0.04 −0.01 0.01 0.03 0.04 −0.15* 0.11 
  

 
     

 

9. PhenoAge 29.70 (6.13) 0.07 0.16* 0.12* 0.02 −0.12* −0.01 0.16* 0.27* 
 

 
     

 

10. GrimAge 50.13 (5.75) 0.37* −0.06 −0.09 −0.13* −0.15* 0.16* 0.16* −0.08 0.31        

11. Smoking 1.05 (0.83) 0.06 −0.03 0.00 −0.10 −0.03 −0.16* 0.04 −0.04 −0.03 0.17 
     

 

12. Female 60% −0.02 0.16* 0.09 −0.11 −0.13* 0.15* 0.07 0.04 0.18* −0.13* −0.24* 
    

 

13. CD8T 0.01 (0.03) 0.03 −0.04 −0.07 0.03 −0.10 0.03 0.03 0.00 0.33* 0.68* −0.10 0.03 
   

 

14. CD4T 0.05 (0.05) −0.21* −0.10 −0.15* 0.11 0.06 0.00 −0.20* 0.48* 0.41* 0.27* −0.06 −0.10 0.35* 
  

 

15. Bcell 0.07 (0.04) −0.18* −0.10 −0.14* 0.14* 0.00 0.02 −0.16* 0.48* 0.41* 0.46* −0.13* −0.06 0.68* 0.86* 
 

 

16. Monocyte 0.07 (0.03) −0.18* −0.03 −0.08 0.12* 0.03 0.18* −0.19* 0.45* 0.40* 0.17* −0.14* 0.07 0.21* 0.85* 0.70*  

17. Gran 0.82 (0.12) 0.15* 0.09 0.14* −0.12 0.00 -0.07 0.14* −0.38* −0.10 −0.49* 0.13* 0.01 −0.67* −0.91* −0.96* −0.81* 

All correlations involving epigenetic clock variables (Horvath, Hannum, PhenoAge, and GrimAge) are adjusted for participants’ age. *p < .05 or lower. 

 

Table 2. Hierarchical regression models predicting DNA methylation aging from BMI and covariates. 

Variable 
GrimAge 
β [CI95%] 

PhenoAge 
β [CI95%] 

Horvath DNAm age 
β [CI95%] 

Hannum DNAm age 
β [CI95%] 

Step 1 

BMI 0.02 [−0.06, 0.07] 0.19*** [0.11, 0.27] 0.08 [−0.05, 0.21] 0.02 [−0.06, 0.10] 

Age 0.27*** [0.14, 0.38] 0.15** [0.05, 0.25] 0.24*** [0.13, 0.34] 0.17** [0.07, 0.26] 

Female −0.22*** [−0.313, −0.121] 0.15** [0.05, 0.26] −0.05 [−0.16, 0.07] 0.13* [0.01, 0.25] 

African American 0.13** [0.041, 0.21] −0.13* [−0.23, -0.03] −0.13* [−0.24, −0.02] −0.24*** [−0.34, −0.13] 

Income-to-needs ratio −0.10* [−0.18, -0.02] −0.13* [−0.23, -.02] −0.07 [−0.18, 0.03] 0.00 [−0.09, .10] 

Parental education −0.01 [−0.08, 0.05] 0.02 [−0.09, 0.13] −0.01 [−0.11, 0.10] −0.05 [−0.15, 0.05] 

Smoking 0.20*** [0.10, 0.30] 0.04 [−0.06, 0.14] −0.02 [−0.13, 0.10] −0.02 [−0.12, 0.08] 

CD8T −0.69*** [−1.04, −0.32] 0.05 [−0.43, 0.54] −0.57 [−1.23, 0.10] 0.21 [−0.46, 0.88] 

CD4T −1.53*** [−2.02, −1.00] 0.16 [−0.37, 0.68] −0.87* [−1.57, −0.18] 0.80 [−0.52, 2.11] 

Monocytes −1.17*** [−1.55, −0.76] −0.05 [−0.45, 0.36] −0.70** [−1.20, −0.20] 0.70 [−0.09, 1.49] 

B cells −1.62*** [−2.09, −1.13] −0.40 [−0.93, 0.12]  −1.08*** [−1.73, −0.42] 1.07* [0.19, 1.94] 

Granular cells −4.80*** [−6.07, −3.45] −0.74 [−2.19, 0.70] −2.64** [−4.51, −0.76] 2.04 [−0.79, 4.87] 

Step 2 

BMI X Female 0.06 [−0.15, 0.28] −0.36* [−0.69, −0.03] −0.35 [−.77, .07] −0.36** [−0.64, −0.09] 

Significant coefficients are bolded. Standardized coefficients and confidence intervals are shown. *p < .05, **p <.01, ***p <.001. 

 

In the second model, BMI was not related to Horvath 

DNA methylation age and there was no interaction 

between BMI and biological sex (see Table 2). In the 

third model, BMI was not a unique predictor of 

Hannum DNAm age, but there was a significant 

interaction between BMI and sex (see Table 2). Follow 

up simple slope analyses showed that BMI was 

associated with higher Hannum DNAm age in males 

(β = 0.18, p = .023) but not in females (β = −0.04, p = 

.373; see Figure 2). In the fourth model, BMI was not 
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related to GrimAge and there was no interaction 

between BMI and sex (see Table 2). 

 

Among the covariates, older chronological age was 

associated with higher epigenetic aging across all four 

indices. Women had higher epigenetic aging on 

PhenoAge and Hannum DNAm but lower on GrimAge. 

A higher income-to-needs ratio was related to lower 

PhenoAge and GrimAge. African Americans had lower 

Phenoage, Horvath DNAm age and Hannum DNAma 

higher scores but higher GrimAge scores. Horvath DNA 

methylation age was also uniquely associated with 

 

 
 

Figure 1. The relationship between BMI and PhenoAge varies by sex. Note: Low and high BMI were defined as 1 SD below and 

above the mean. 

 

 
 

Figure 2. The relationship between BMI and Hannum DNAm varies by sex. Note: Low and high BMI were defined as 1 SD below 

and above the mean. 
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Table 3. Hierarchical regression models predicting DNA methylation aging from waist circumference and covariates. 

Variable 
GrimAge 
β [CI95%] 

PhenoAge 
β [CI95%] 

Horvath DNAm age 
β [CI95%]  

Hannum DNAm age 
β [CI95%]  

Step 1 

Waist  0.01 [−0.06, 0.07] 0.17*** [0.08, 0.26] 0.18** [0.08, 0.28] 0.04 [−0.05, 0.14] 

Age 0.26*** [0.14, 0.38] 0.14** [0.04, 0.25] 0.24*** [0.13, 0.34] 0.17** [0.07, 0.26] 

Female −0.22*** [−0.31, −0.12] 0.17** [0.07, 0.27] −0.05 [−0.16, 0.06] 0.13* [0.01, 0.25] 

African American 0.13** [0.04, 0.21] −0.11* [−0.22, −0.01] −0.12* [−0.23, −0.01] −0.24*** [−0.34, −0.13] 

Income-to-needs ratio −0.10* [−0.18, −0.02] −0.11* [−0.22, −0.01] −0.07 [−0.18, 0.04) 0.01 [−0.09, 0.10] 

Parental education −0.01 [−0.08, 0.05] 0.02 [−0.09, 0.14] 0.01 [−0.10, 0.11] −0.05 [−0.15, 0.05] 

Smoking 0.20*** [0.10, 0.30] 0.04 [−0.06, 0.14] −0.02 [−0.13, 0.09] −0.03 [−0.12, 0.07]  

CD8T −0.68*** [−1.04, −0.32] 0.07 [−0.42, 0.57] −0.64 [−1.30, 0.03] 0.20 [−0.48, 0.87] 

CD4T −1.51*** [−2.02, −1.00] 0.20 [−0.34, 0.73] −0.92** [−1.59, −0.25] 0.79 [−0.53, 2.09] 

Monocytes −1.16*** [−1.55, −0.76] −0.05 [−0.47, 0.37] −0.79** [−1.28, −0.30] 0.68 [−0.12, 1.47] 

B cells −1.61*** [−2.09, −1.13] −0.43 [−0.97, 0.11] −1.16*** [−1.81, −0.51] 1.05* [0.17, 1.93] 

Granular cells −4.76*** [−6.07, −3.45] −0.72 [−2.19, 0.75] −2.89** [−4.72, −1.07]  1.98 [−0.86, 4.82] 

Step 2 

Waist X Female 0.02 [−0.04, 0.15] −0.22 [−0.71, 0.27] −0.33 [−0.84, 0.19] −0.76** [−1.22, −0.29] 

Significant coefficients are bolded. Standardized coefficients and confidence intervals are shown. *p < 0.05, **p < 0.01, ***p < .001. 
 

lower proportions of CD4T cells, monocytes, B cells, 

and granular cells, whereas Hannum DNAm age was 

related to the greater proportion of B-cells. 

 

Sensitivity analyses using BMI scores standardized 

within each sex replicated the relationship between BMI 

and higher PhenoAge (β = 0.20, p < .001), but the BMI 

by sex interaction was no longer significant (β = −0.12, 

p = .130). The sensitivity analyses also replicated no 

unique association between BMI and Horvath DNAm 

age (β = −0.14, p = .207), as well as no sex differences 

in this association (β = −0.14, p = .207). In addition, the 

results replicated the BMI by sex interaction for 

Hannum DNAm age (β = −0.15, p = .015), with BMI 

being associated with higher Hannum DNAm age in 

males (β = 0.15, p = .019) but not in females (β = −0.05, 

p = .376). The sensitivity analyses showed no 

interaction of BMI and sex for GrimAge (β = 0.05, p = 

.760). Finally, sensitivity analyses showed no 

interaction effects of BMI with race for any of the four 

epigenetic clocks. 

 

Waist circumference and epigenetic aging 

After adjusting for covariates, higher waist circumference 

was associated with higher DNAm PhenoAge and higher 

Horvath DNAm age (see Table 3). For Hannum DNAm 

age, there was a significant interaction of waist 

circumference with sex. Simple slope analyses revealed 

that larger waist circumference was associated with 

higher Hannum methylation age in males (β = 0.21,  

p < .001) but not in females (β = −0.08, p = .216) (see 

Figure 3). Waist circumference was not associated with 

GrimAge and there was no interaction of waist 

circumference and sex. Sensitivity analyses using waist 

circumference standardized within sex yielded identical 

results. Sensitivity analyses showed no interaction effects 

of waist circumference with race on any of the four 

epigenetic clocks. 

 

DISCUSSION 
 

The present study examined the relationships between 

BMI, waist circumference, sex, and four measures of 

epigenetic age acceleration in a racially diverse sample 

of healthy young adults. Using the PhenoAge biological 

clock, both BMI and waist circumference were 

associated with higher DNAm. Additionally, both BMI 

and waist circumference were related to higher Hannum 

DNAm in males, but not in females. Using the Horvath 

DNAm, waist circumference but not BMI was 

associated with DNAm aging in both sexes. However, 

neither BMI nor waist circumference were related to the 

GrimAge epigenetic clock, and none of the associations 

of BMI and waist circumference with the DNAm 

indicators varied by race. Finally, higher DNAm aging 

on one or more of the four indices was associated with 

older chronological age, lower socioeconomic status, 
female sex, and White race, as well as saliva cell 

composition. Together, these results suggest that higher 

BMI and waist circumference are associated with higher 
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epigenetic age in young adulthood. Because the 

analyses adjusted for chronological age, associations 

with higher epigenetic age indicate faster epigenetic 

aging [22]. Importantly, this study demonstrated 

associations between obesity and epigenetic aging using 

DNA from saliva, which involves a non-invasive 

sample collection compared to other tissues (e.g., blood) 

and thus can be more readily translated into clinical 

practice, highlighting the usefulness in young adults. 

 

The present results extend findings of prior studies 

which demonstrated associations between higher BMI 

and accelerated epigenetic age in middle-aged and older 

adults utilizing the Hannum and Horvath clocks [4, 15]. 

Importantly, the relationship between obesity and 

epigenetic aging has been demonstrated across multiple 

tissues, from saliva cells in this study to liver tissue 

[15], brain and heart tissues [5], and visceral adipose 

tissue [4]. The convergence of these findings suggests 

that obesity contributes to accelerated aging across 

multiple body systems. 

 

These findings may help explain how higher BMI or 

adiposity contribute to aging-related conditions such as 

diabetes and the shortening of telomeres [23, 24]. The 

role of BMI in overall lifespan has been extensively 

investigated. For example, both the length of time spent 

in a high BMI state and lifetime peak BMI have a 

positive relationship with all-cause mortality [25]. One 

mechanism through which obesity-related accelerated 

epigenetic aging may contribute to morbidity is through 

inflammation [12]. Age-related changes in inflammation 

are believed to contribute to increased risk of a myriad 

of comorbidities later in life, including diabetes, 

cardiovascular disease, and some cancers [26, 27]. 

 

Studies have found evidence that obesity is more 

robustly associated with accelerated epigenetic aging in 

males compared to females, at least for the Hannum 

clock. However, females in this study had more 

accelerated aging on the PhenoAge and Hannum 

DNAm clocks than males, in contrast to prior studies 

reporting that women have lower DNA-methylation age 

than men across the lifespan across the Horvath, 

Hannum, and PhenoAge clocks [21, 28]. Nevertheless, 

GrimAge showed lower DNA-methylation age in 

females, which is consistent with other findings [14, 

29]. Among other covariates, higher chronological age, 

lower income-to-need ratio, and White race were 

associated with older epigenetic age, in line with prior 

studies [30, 31], with the exception of GrimAge linking 

White race with younger epigenetic age. The present 

findings further add to existing evidence that 

associations of risk factors with epigenetic aging differ 

by type of epigenetic aging index [32], consistent with 

the fact that these epigenetic clocks reflect different 

 

 
 

Figure 3. The relationship between waist circumference and Hannum DNAm varies by sex. Note: Low and high waist 

circumference were defined as 1 SD below and above the mean. 
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aspects of the aging process and aggregate different 

methylation sites [21]. Together, these findings 

underscore the importance of including multiple 

epigenetic clocks in the same study for a more 

comprehensive understanding of biological aging and 

related risk and protective factors. 

 

Given that epigenetic aging predicts mortality and 

morbidity, the estimated epigenetic clocks can be used 

to identify at risk patients who might benefit from 

lifestyle changes or other therapeutic interventions. 

Interestingly, studies have begun to examine the effects 

of lifestyle interventions on epigenetic aging. For 

example, a weight-loss intervention in a small sample of 

obese older adults led to decreased DNAm age that was 

associated with improved gait speed and grip strength 

[33]. Additionally, following a Mediterranean-like diet 

for one year showed a trend toward slowing epigenetic 

age in some subgroups of participants [34]. 

 

The present study has several limitations. First, the 

sample size was smaller relative to some other studies of 

BMI and epigenetic aging [5, 15, 18], which may have 

limited statistical power to detect small effects. The 

limited sample size also precluded the examination of 

less widely used epigenetic clocks which would inflate 

Type I error. Likewise, the sample size did not allow a 

rigorous analysis of individual CpG sites with correction 

for multiple comparisons. Future, larger studies should 

replicate the present results and extend them by 

examining other epigenetic clocks and individual CpG 

sites with appropriate corrections for multiple testing. 

Second, the original sample was locally representative 

but experienced some differential attrition over time, 

with females, African Americans, and individuals from 

higher educational backgrounds being more likely to be 

retained over time. Thus, the findings may be less 

generalizable to males, non-African Americans, and 

individuals from lower socio-economic backgrounds. 

Additionally, the epigenetic clocks have been tested 

primarily in White populations, so they may be less 

relevant to African American individuals who comprised 

the majority of this sample. Although this issue was 

partly addressed in the sensitivity analyses testing race 

as a moderator, some racial bias in the results may 

remain. Future studies should develop and validate 

epigenetic clocks using more diverse samples. Next, this 

study used salivary DNA, so replication using DNA 

extracted from other tissues will be important in future 

work. For instance, GrimAge was trained in blood 

samples [14], which may explain why it yielded 

different results than the other epigenetic clocks in this 

study. Finally, the cross-sectional design did not allow 
testing of directional effects between BMI and 

epigenetic aging over time. Looking into the literature, 

multiple studies have looked at the directionality of 

effects between CpGs from EWAS and obesity with 

Mendelian randomization. There were 3 categories: BMI 

genes, methylation score-based studies, and studies 

where BMI was noting the primary outcome. The 

Mendelian randomization supports that maternal 

glycemia is part of a causal pathway influences offspring 

leptin epigenetic regulation. Ideally to understand the 

methylation aging, the model should be extended to 

include the outcomes in tissues impacted with obesity. 

There was no concordance of SOCS3, JAK2, ATP4A, 

and ABCG1 CpGs and methylation aging. Future studies 

should use longitudinal designs to help elucidate 

directional relationships between obesity and epigenetic 

aging across the lifespan. None of the CpGs used in 

calculating methylation age were part of CpG known to 

have a causal effect on BMI used in Mendelian 

Randomization studies of BMI. Potential further 

modeling to include outcomes with other tissues may be 

helpful to further understand the outcomes. 

 

In conclusion, this study extends prior research by 

demonstrating the association between obesity and 

salivary epigenetic aging in young adult males and 

females. These findings are of interest to those who are 

interested in epigenetic age acceleration as a potential 

biomarker. They also support future research examining 

obesity as a causal risk factor for epigenetic age 

acceleration. The findings underscore the importance of 

testing sex differences and including multiple epigenetic 

clocks in future research. Overall, the present results 

add to mounting evidence that obesity affects cellular 

aging across multiple tissues early in the lifespan. 

 

METHODS 
 

Participants and procedures 

 

This study includes 290 young adults (Mean age 27.39, 

SD = 1.20; 60% female; 80% African American, 18% 

White, 2% Other) who participated in Wave 4 of the 

Birmingham Youth Violence Study [35]. The larger 

study recruited 704 children from 5th grade classrooms 

in 17 public schools in Birmingham, Alabama, from 

2004–2005 and followed them over time. This report 

only uses data from Wave 4 collected in 2018–2021. 

Compared to those lost to follow up since Wave 1, the 

290 participants retained in Wave 4 were more likely to 

be female (60% vs. 39%; χ2
(1) = 30.47, p < .001), 

African American (82% vs. 75%; χ2
(1) = 4.87, p = .027), 

and with higher parental education (M = 4.30 vs. 4.01, 

t(691) = 2.21, p = .027). 

 

After providing written informed consent, participants 

completed individual interviews in a private interview 

room at a university lab with trained interviewers 

utilizing computer-assisted interview procedures. They 
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also provided a saliva sample for epigenetic analyses 

and had their height, weight, and waist circumference 

measured. All procedures were approved by the 

Institutional Review Board and participants were 

financially compensated for their time. 

 

DNA extraction and methylation 

 

Saliva samples were collected with Oragene DNA  

OG-500 kits. DNA was extracted using the PureGene 

extraction method (Qiagen) following the 

manufacturer’s specifications. All samples yielded over 

2.1 μg of high-quality DNA. Methylation analysis of 

DNA was performed with the Illumina Infinium 

MethylationEPIC BeadChip. Normalization and quality 

control (QC) were conducted in the R package minfi 
[36] and included probe level QC, sample level QC, 

background correction, within array-normalization, 

Type I and II chemistry correction, and batch/plate/chip 

adjustment. Methylation measurements were quantified 

as Beta-values, defined as the ratio of methylated 

fluorescent intensity and overall intensity [37]. The 

reference-based deconvolution method [38] was utilized 

to correct for differences in cell composition across 

samples. 

 

Measures 

 

Body mass index (BMI) 

Height was measured using a portable stadiometer and 

recorded to the nearest 0.1 cm. Weight was measured 

using a portable electronic scale and recorded to the 

nearest 0.01 kg. Two measurements were taken and if 

they differed by > 0.5 cm for height or > 0.2 kg for 

weight, a third measurement was taken. The average of 

the two closest values was used and BMI was computed 

from these average height and weight values. 

 

Waist circumference 

Participants’ waist circumference was measured using a 

plastic measurement tape. The measurement tape was 

placed above the participants’ hipbone with any loose 

fitting clothes being lifted before taking a measurement. 

For each participant, two measurements were taken and 

all measurements were reported in centimeters and one 

decimal place. If the first two measurements were more 

than 0.5 cm apart, a third measurement was taken. The 

closest two measurements were averaged with higher 

values indicating a larger waist circumference. 

 

DNA methylation (DNAm) age 

Four epigenetic aging biomarkers were used in this 

study – DNAm Hannum, Horvath, PhenoAge, and 
GrimAge [5, 11, 13]. These DNAm age biomarkers 

have been associated with chronological age and all-

cause mortality [13]. The Hannum and Horvath 

methods are sensitive to chronological changes in DNA 

methylation, whereas PhenoAge assays CpG sites 

associated with all-cause mortality [13]. Hannum and 

Horvath DNAm scores have been validated in a multi-

ethnic meta-analysis of 13 populations-based cohorts, 

which found that higher methylation aging was 

significantly associated with mortality [39]. PhenoAge 

was validated in five independent multi-ethnic large-

scale samples [13]. 

 

Hannum, Horvath, and PhenoAge DNAm age scores 

were calculated through a linear function using the 

ENmix function in the minfi package, utilizing 

published intercepts and regression coefficients for 

DNAm Age Horvath [5], Hannum [11], and PhenoAge 

[13], respectively. Horvath’s epigenetic clock is 

comprised of 353 CpG probes and has been validated 

across multiple tissues [5]. Hannum’s method is 

computed from methylation values of 71 CpG sites and 

has been validated with adult whole blood samples [11]. 

However, the Horvath method was developed with  

the 450 K microarray and 17 sites are missing from  

the 850 k microarray [40]. Similarly, the Hannum 

epigenetic clock is missing 6 requisite loci [40]. 

PhenoAge was developed with the 850 k microarray 

and includes 513 epigenetic loci [13]. Finally, GrimAge 

was calculated via the DNAm Age calculator 

(https://dnamage.genetics.ucla.edu/), which is compiled 

from 1030 CpG probes in blood tissues. All mAge 

biomarkers were coded with higher values indicating 

older epigenetic age. 

 

Covariates 

Sociodemographic covariates included age, sex, race 

(African American vs. White or other), parental 

education (reported by a parent at a previous wave), and 

income-to-needs ratio, calculated by dividing reported 

annual household income by the poverty threshold for 

the participant’s household size in the year of data 

collection [41]. Because tobacco smoking is associated 

with DNA methylation [42] a sum of current and 

previous (age 18) smoking indicators (coded 0/1) was 

included. Finally, proportions of cell types found in the 

saliva samples were estimated for each sample, 

including CD8T, CD4T, B cells, Monocytes, and 

Granular cells. 

 

Data analyses 

 

The amount of missing data, descriptive statistics, and 

bivariate correlations among all variables were 

examined in SPSS. The main analyses involved seven 

hierarchical regression models predicting PhenoAge, 
GrimAge, Horvath DNAm age, and Hannum DNAm 

age from BMI or waist circumference and covariates 

(age, sex, race, income-to-needs ratio, parental 

https://dnamage.genetics.ucla.edu/
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education, smoking, and cell types) in Step 1. Sex 

differences in the associations of BMI or waist 

circumference with the DNA methylation age indices 

were tested with interaction terms in Step 2. Significant 

interactions were followed-up with simple slope 

analyses. The regression models were conducted in 

Mplus 8.1 using Full Information Maximum Likelihood 

(FIML), which preserves the full sample size (N = 290) 

and minimizes bias when data are missing at random 

(Cham et al., 2017). Sensitivity analyses were 

conducted with BMI and waist circumference 

standardized within each sex to account for sex 

differences in obesity. 
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