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Prostate cancer 

 

Prostate cancer is an age-related disease. Every man 

would be diagnosed with prostate cancer, except that 

most men do not live long enough, dying from other 

age-related diseases. The frequency of prostate cancer 

detected by autopsy is 30-fold higher than mortality 

from prostate cancer so that “more men die with 

prostate cancer than because of it” [1]. Among men 

aged 70–79, a tumor is found by autopsy in 36% of 

Caucasians and 51% of African-Americans [1, 2]. The 

older the man, the higher frequency of autopsy-detected 

prostate cancer. The frequency of high-grade prostate 

cancer doubles every ten years [1]. 

 

Puberty is critical for susceptibility to prostate cancer 

later in life [3]. Older age at sexual maturation is linked 

to a decreased risk of prostate cancer later [4, 5]. Thus, 

prostate cancer is partially quasi-programmed (it will be 

discussed later) in puberty and would develop almost in 

everyone, if other causes of death did not exist. 

 

Prostate enlargement or BPH 

 

Benign prostatic hyperplasia (BPH) is the most 

common age-related disease in men. An enlarged 

prostate can block the urethra, leading to an inability  

to urinate and kidney damage and, if left untreated, 

to death. Benign prostatic hyperplasia can be 

detectable by the age of 30. Between 30 and 50 the 

prostate grows in size, with a doubling time of 4.5 

years. Between 51 and 70 years old, the doubling 

time is around 10 years [6]. Thus, the prostate is 

enlarged in every aging man, and therefore it is a 

“normal” disease, occurring in everyone, often 

asymptomatic. 

 

Early in puberty, the prostate doubles in size, and its 

secretory function is increased to produce prostate 

fluid. During puberty, the prostate reaches the required 

size and function, but it continues to grow without 

purpose, becoming eventually hypertrophic, hyper-

plasic and hyper functional. The disease is quasi-

programmed, a continuation of the developmental 

growth and reproductive program that was not 

switched off upon its completion. Quasi-programs are 

purely harmful and unintended by nature, but they are 

a continuation (or a byproduct) of essential programs, 

so natural selection is powerless to eliminate them. 

(Note: The force of natural selection is negligible late 

in life, so selection is very weak against quasi-

programs. Natural selection is maximally strong for 

growth and reproductive programs, and quasi-

programs are by-products). 
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ABSTRACT 
 

There is no doubt that prostate cancer is a disease. Then, according to hyperfunction theory, menopause is also a 
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hypertension, diabetes, presbyopia and thousands of others) are partially quasi-programmed, they can be 
delayed by slowing aging. Is aging a disease? Aging is a quasi-programmed disease that is partially treatable by 
rapamycin. On the other hand, aging is an abstraction, a sum of all quasi-programmed diseases and processes. In 
analogy, the zoo consists of animals and does not exist without animals, but the zoo is not an animal. 
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Cellular hyperfunctions drive prostate growth and, 

ultimately, benign prostate hyperplasia (BPH). 

Hyperproliferation of epithelial and stromal cells, 

leukocyte infiltration, inflammation and other hyper-

functions lead to BPH. Hypersecretory phenotype 

(hyperfunction) also known as senescence-associated 

secretory phenotype (SASP) contributes to the 

development of BPH [7, 8]. Prostatic inflammation 

(hyperfunction) stimulates prostatic growth and 

progression of symptoms [9]. 

 

mTOR drives cellular size growth, hyper-inflammation, 

senescent and hyper-secretory phenotypes [10–17]. 

Therefore, rapamycin (Rapatar) prevents prostate 

hypertrophy and hyperplasia and reduces inflammation 

in rat models of BPH [18]. 

 

Atherosclerosis 

 

Atherosclerosis is driven by hyperfunction of numerous 

cell types, acting locally and distantly. Thus, activation 

of endothelial cells, smooth muscle cells (SMC) and 

macrophages contributes to the formation of 

atherosclerotic plaque. Hypertrophy and hyperplasia of 

SMC and hypertrophic transformation of macrophages 

(foam cells) are hallmarks of atherosclerosis. 

Hyperfunctional blood platelets interact with the arterial 

wall, accelerating atherosclerosis and thrombosis. 

Adipocytes and hepatocytes hyperproduce atherogenic 

lipoproteins and cytokines. Hyperlipidemia, hyper-

glycemia, hyperinsulinemia, and hypertension 

contribute to atherosclerosis. Atherosclerosis is 

associated with all other diseases of aging, especially 

hypertension, type II diabetes and obesity. 

 

Atherosclerosis originates in childhood and progresses 

throughout life [19]. It occurs in everyone. It is a 

hallmark of aging and a “normal disease”. 

 

Clinical manifestations of atherosclerosis, cardio-

vascular diseases, are the main causes of death in 

humans. The path from cellular hyperfunction that 

causes atherosclerosis, hypertension and thrombosis to 

myocardial infarction is shown in Figure 2 in ref. [20]. 

 

Rapamycin (sirolimus) and its analog (everolimus) 

attenuate atherosclerosis in mice [21] and rabbits [22]. 

According to a prospective randomized controlled trial, 

rapamycin (sirolimus) decreased carotid atherosclerosis 

in humans [23]. 

 

Menopause 

 

Some age-related diseases are so program-like that they 

are considered to be the norm. Menopause happens in 

every woman (the average age at menopause is 51, 

according to the North American Menopause Society), 

and therefore it is not commonly viewed as a disease. But 

atherosclerosis and prostate enlargement (and all age-

related diseases) also happen in everyone. One may argue 

that menopause is not as deadly as cancer. However, it is 

deadlier than osteoarthritis and Alzheimer’s disease. 

Menopause promotes cardiovascular diseases (CVD) 

osteoporosis, obesity, type II diabetes and other diseases 

[24, 25]. Needless to say, loss of reproductive function is 

highly disadvantageous from an evolutionary point of 

view (we will discuss the grandmother hypothesis in the 

next section). 

 

One may argue that menopause occurs too early in life 

compared with prostate cancer and Alzheimer’s disease, 

for instance, to be called disease. However, premature 

menopause is considered a disease. By arbitrary 

definition, it occurs before the age of 40 years, or two 

standard deviations in years before the mean 

menopausal age of the study population [26]. 

 

Regulation of the menstrual cycle is very intricate and 

vulnerable, and hormonal hyperstimulation can disrupt 

the cycle. Even low doses of estradiol and progesterone 

are contraceptive. The famous contraceptive “Plan B”, 

a progestin, disrupts the menstrual cycle and prevents 

pregnancy by a single dose. (Note: in comparison, the 

regulation of a male reproduction function is much 

simpler, explaining why men do not lose it as much as 

women do with age). 

 

Not surprisingly, hyperfunction of the hypothalamic-

pituitary-ovarian axis eventually dysregulates the 

system and causes ovarian failure (see Figure 3 in ref. 

[27]). The menstrual cycle is tightly-regulated by 

numerous hormones, cell types and organs. Luteinizing 

hormone (LH) and follicle-stimulating hormone (FSH), 

produced by the pituitary gland, stimulate ovulation and 

the production of estrogens and progesterone by the 

ovary. For example, FSH stimulates follicles, 

production of ova and estrogens. Before puberty, the 

levels of both FSH and estrogens are low. To start the 

menstrual cycle, production of FSH is increased, 

stimulating the ovaries and estrogen production. 

Activation of follicles from the dormant pool serves as 

the source of fertilizable ova. With age, levels of FSH 

continuously increase, hyper-stimulating the ovaries 

[28], causing more follicles to be recruited 

simultaneously (see Figures 3–4 in ref. [27]). 

 

Hyper-stimulation of follicle recruitment leads to 

follicular depletion and ovarian failure. 
 

Thus, stimulation of FSH is initiates puberty, and its 

continuous hyperfunction accelerates menopause. Since 
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the quasi-program of menopause is a continuation of 

puberty, mTOR, a central regulator of the onset of 

puberty, accelerates the onset of both puberty [29] and 

menopause in animals [30–32]. 

 

By activating mTOR, obesity accelerates ovarian 

follicle development and follicle loss in rats [33]. By 

inhibiting mTOR, calorie restriction delays puberty and 

extends reproductive lifespan in rodents [34, 35]. 

Overactivated mTOR activates the entire primordial 

follicle pool, and, subsequently, all primordial follicles 

become depleted in early adulthood, causing premature 

ovarian failure (POF) in mice [30–32]. 

 

Rapamycin preserves the follicle pool reserve and 

prolongs the ovarian lifespan in female rats [36] and 

mice [34, 37, 38]. mTOR is overactivated in the 

peripheral blood cells of women with premature ovarian 

insufficiency [39]. 

 

Critique of the grandmother (great-great-grand-

mother hypothesis) hypothesis 

 

As we discussed in the previous section, menopause is a 

byproduct of the reproductive program that initiates 

puberty. The same process that turns the menstrual 

cycle on in puberty becomes hyperfunctional, damaging 

the reproductive system and (unintentionally) switching 

it off. As are all age-related diseases, menopause is 

purely harmful and provides no benefits. 

 

Some prominent gerontologists, however, hypothesize 

that menopause is adaptive and intended by natural 

selection to prevent older women from reproduction and 

thus redirect their efforts to help daughters to raise 

grandchildren [40]. Unless a daughter is a modern 

working mom, rather than a prehistorical female, this 

hypothesis makes no sense. 

 

First, the natural age of grandmothers is 28, whereas 

menopause occurs at 51. Then the hypothesis should be 

renamed as great-great-grandmother hypothesis. The 

genetic similarities of a woman with great-grand-

children are less than with nephews and nieces. 

 

Second, the best possible help would be breast feeding. 

However, post-menopausal women cannot get pregnant 

and therefore cannot lactate. If nature selects for caring 

for grandchildren, elderly women should produce milk 

or become pregnant to produce it. 

 

Third, only maternal grandmothers increase grand-

children’s survival, whereas paternal mothers decrease 

it. The presence of paternal grandmothers (mothers-in-

law) is detrimental to grandchild survival or well-being 

[41–44]. In most societies, a wife would likely live with 

a parental grandmother. 

 

Fourth, only a minority of pre-historical females lived 

long enough to become great-great-grandmothers. Even 

300 years ago in England, only 25% of people survived 

to the age of 26. How many would survive until 

menopause? It is commonly argued that hunter-gatherers 

lived as long as modern people. Although the maximal 

lifespan can be the same, due to accidental causes of 

death, the median lifespan of any species in the wild is 

much shorter than in a protected environment 

(laboratory animals and modern humans). It does not 

matter how long some survivors live after menopause, 

what is important is that most died before it. 

 

If only one of these arguments is correct, the 

grandmother hypothesis has little value. The list can go 

on [45]. Some observations cannot be reconciled with 

the grandmother hypothesis. Older women have an 

increased chance of giving birth to twins and triples 

[46]. Furthermore, the outcome of such pregnancies in 

older mothers are better than in younger mothers [47, 

48]. Why is declining fertility is associated with the 

increasing twinning rate? It is in agreement with 

hyperfunction theory. Hyperstimulation with FSH leads 

to multiple ovulation and a higher incidence of twins 

and triplets with age [46]. 

 

If menopause were adaptive, it would be conditional in 

the presence of grandchildren, but not in their absence. 

Conditional control is easy to achieve, even a single 

spike of sex steroids is sufficient to do the trick (this is 

exactly what a single pill of birth control pill like  

“plan B”, a progestin, does). 

 

If nature equipped women with menopause to take care 

of grandchildren, why then does it impair their vision? 

Presbyopia, or age-related farsightedness, develops in 

humans by the age of female menopause. Is presbyopia 

an adaptive program as well? Like menopause, 

presbyopia is quasi-programmed; the ability to focus on 

near objects declines from childhood to adulthood, and 

its continuation culminates in presbyopia. By the time 

of menopause, presbyopia occurs in everyone. It is 

purely harmful and is treated by glasses (as a disease 

should be treated). 
 

Male fertility gradually decreases with aging. Men do 

not have menopause, because men do not have a 

vulnerable menstrual cycle to start with (similarly, 

women do not have BPH). 
 

Finally, consider a parody “grandfather hypothesis” that 

prostate hyperplasia develops in order to make men 

urinate in the middle of the night and thus protect 
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grandchildren from lions. I hope it is not taken 

seriously, just as the bizarre grandmother hypothesis 

should not be either. 

 

Age-related diseases happen, potentially, in everyone 

 

It is difficult to define a disease, especially an age-

related disease [49, 50]. For example, osteoporosis and 

obesity were not officially recognized as diseases until 

1994 and 2013, retrospectively. Whether we define age-

related alterations as a disease depends on political, 

cultural, financial, medical and social reasons. 

 

The main objection to considering age-related diseases 

such as menopause and presbyopia as diseases is that 

they happen to everyone. However, disease does not 

need to be rare to be a disease. For example, everyone 

may be sick with influenza during their lifetime, but it 

does not make it any less a disease. Furthermore, no 

definition of disease includes the requirement that it 

should not affect everyone. 

 

All age-related diseases happen either in everyone (for 

example, prostate enlargement in men and athero-

sclerosis) or would happen in everyone (Alzheimer’s 

disease and cancer), if one does not die from a competing 

disease. For example, a human may suddenly die from 

myocardial fibrillation due to coronary atherosclerosis 

at the age of 60, but if one were saved and properly 

treated, they may be diagnosed with Alzheimer’s 

disease, and die from cancer at the age of 80. 

 

Age-related diseases are quasi-programmed 

 

Age-related diseases occur to everyone, and, therefore, 

no one is immortal. 

 

They happen in everyone because they are quasi-

programmed in development, a continuation of growth 

and reproductive programs. External (environmental) 

factors and genetic predispositions also play a role, 

making certain age-related diseases manifest at different 

times or even not manifest at all in a lifetime. 

 

For example, hypertension is a continuation of 

developmentally increased blood pressure from the 

newborn (blood pressure 64/41 mmHg) to the adult. 

Hypertension can also be viewed as a quasi-program of 

growth upon its completion. In fact, accelerated 

postnatal growth leads to higher blood pressure later in 

life [51]. Yet, external factors such as alcohol and 

smoking may accelerate the development of 

hypertension [52]. 
 

Cancers are the least quasi-programmed among all 

aging-related diseases because of the critical role of (a) 

external factors (e.g., smoking) that cause mutations and 

(b) inherited genetic susceptibility. In prostate 

enlargement, in comparison, environmental and genetic 

factors play a lesser role, and the prostate becomes 

hyperplastic and hypertrophic in everyone.  

 

External factors and genetic variations may accelerate 

and aggravate quasi-programmed diseases. In humans, 

the role of external factors and genetic variability may 

obscure quasi-programmed nature of diseases. In 

genetically identical C. elegans at identical conditions, 

age-related diseases are clearly quasi-programmed 

[53–57]. 

 

Age-related diseases are hyper-functional 

 

Age-related diseases are driven by hyperfunctions on 

different levels: from signal-transduction pathways, to 

cells and tissues, to systems and organs. These 

hyperfunctions eventually damage tissues and organs, 

causing secondary loss of function. Hyperfunction is a 

function that was not turned off upon its completion 

[58]. (Note: Hyperfunction is not necessarily an absolute 

increase in function but may even be a decrease if it is 

still higher than optimal for longevity [59]). For 

example, mTOR drives cellular growth, but when the 

cell cycle is blocked, and mTOR is not turned down, 

then it drives the senescence phenotype associated with 

hyperfunctions such as SASP and proinflammation [60]. 

Cellular hyperfunctions are tissue-specific: osteoclasts 

resorb the bone, thus leading to osteoporosis; fibroblasts 

and immune cells cause proinflammation, associated 

with most age-related diseases; constriction of arterial 

SMC causes coronary artery spasm; blood platelets form 

clots. On systemic levels, hyperfunctions include 

hyperinsulinemia, hypertension, hyperglycemia, hyperl-

ipidemia and others. 

 

Cellular hyperfunction inevitably leads to age-related 

diseases and then to organ failure and secondary 

functional decline [61]. For example, hyperfunctional 

cells promote atherosclerosis, hypertension, arterial 

spasm, thrombosis, culminating in myocardial infarction, 

which, in turn, causes loss of function [20, 62]. 

 

mTORC1-dependent beta-cell hyperfunction culminates 

in beta-cell exhaustion (diabetes) [63–65]. Ovarian 

overactivation leads to follicular exhaustion and 

menopause [27, 30–32, 34, 36–38]. 
 

Hyperfunctional phases of pre-diseases are often 

asymptomatic, while their consequences – loss of 

function – are always symptomatic. Even classic 
diseases, such as hypertension, may have mild 

symptoms until damage occurs (stroke, myocardial 

infraction, heart or renal failure). 
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Functional decline in athletic performance [66] can 

precede official age-related diseases. Such an early-life 

decline is not caused by recognized age-related 

diseases. Early-life hyperfunctions are unrecognized. 

They are asymptomatic, until causing mild functional 

decline in athletic performance in everyone. Secondary 

loss of function can be observed early in life due to 

unnamed hyperfunctions. 

 

Is aging a disease? 
 

According to conventional views, aging is a risk factor 

for developing disease. It is believed that aging can be 

healthy (without diseases) and that humans can die 

either from aging or from diseases. It was claimed, 

“aging should be strongly considered not to be a disease 

and as such should not be treated” [67]. 
 

According to hyperfunction theory, aging is not a risk 

factor, aging is the sum of all age-related diseases. There 

is no aging without these diseases. So-called “healthy” 

aging is slow aging observed in centenarians, who 

develop diseases later in life. But no centenarian dies 

from old age, all die from age-related diseases [68–70]. 
 

Like quasi-programmed diseases, aging is a natural 

continuation of developmental programs that were not 

switched off upon their completion. Aging is the sum of 

all quasi-programmed diseases. As David Gems put it, 

aging versus disease is a false dichotomy [71]. 
 

Aging is natural. Natural process is a disease, if it leads 

to death or functional decline [50, 71, 72]. A natural 

process, such as atherosclerosis, is a disease, whereas an 

unnatural process, such as a car accident, is not a 

disease. All age-related diseases are natural, and 

therefore we are mortal. 
 

Aging is driven, in part, by hyperfunctional signaling 

pathways, such as the nutrient-sensing and growth-

promoting mTOR pathway. Inhibition of the mTOR 

pathway by genetic, pharmacological and other means 

extends lifespan in numerous species and decelerates 

development of age-related diseases [73–75]. 
 

As suggested in 2006, “Once development is 

completed, a program for development is not switched 

off, thus becoming a quasi-program for aging. This 

hyper-functional quasi-program is manifested as 

diseases of aging, leading to organ damage and 

secondary decline.” [58]. (Note: Secondary decline is 

the most visible manifestations of advanced aging). 
 

So, is aging a disease? 

On one hand, aging is a progressing disease with 100% 

mortality rate. It can be treated (as a disease) with 

rapamycin, for instance. Diseases can be prevented by 

slowing down aging [58]. Potential anti-aging drugs 

could be tested by slowing diseases. Disease or not, 

aging is as treatable as a disease [76]. 

 

However, aging is not a specific disease, but the sum of all 

age-related diseases, including both life-limiting (e.g., 

diabetes, cancer and CVD) and non-life-limiting (e.g., 

osteoarthrosis and gray hair). It is a form of complex 

disease syndrome [71]. Using an analogy, is the American 

people a human? Is it a man or a woman? The people 

consist of all men and women; each of them is a human. 

But the people are not a human, neither a man nor a 

woman. Similarly, aging consists of all quasi-programmed 

alterations, age-related pre-diseases and diseases, early 

unrecognizable diseases that manifested as early functional 

decline, cosmetic conditions, and others. The aging 

process is the common mechanism of all diseases. 

 

Given that aging is a sum of all age-related diseases, it 

can be called aging syndrome, or aging. 

 

Aging seems mysterious, if one is studying so-called 

“healthy” or “successful” aging. One can subtract 

disease after disease until nothing is left. No aging. It is 

like subtracting every man and woman from the 

American people until nothing is left. Aging looks 

quasi-programmed, because it consists of quasi-

programmed diseases that are driven by hyperfunctions 

that culminate into organ/system failure (and secondary 

loss of function). Aging behaves as the sum of all 

diseases. And this sum can be prevented by inhibiting 

the common mechanism that we call aging. Aging is 

driven by the same processes as diseases: from over 

stimulated signal-transduction pathways to cellular 

hyperfunction, systemic hyperfunction leading to organ 

failure (secondary functional decline). To understand 

aging, we should depict the pathogenesis of overlapping 

age-related diseases driven by hyperfunctional signals 

and cells towards organ damage. Aging is a collection 

of processes that drive quasi-programmed diseases. 

Preventive medicine that targets early hyperfunctional 

stages of a group of overlapping diseases is an anti-

aging medicine. Aging can be understood through the 

development of all quasi-programmed diseases. 

Treatments that prevent age-related diseases partially 

prevent aging and vice versa [71, 77]. 
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