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INTRODUCTION 
 

Lung cancer remains the leading cause of cancer deaths 

in the US and worldwide [1]. Substantial effort has been 

devoted to identifying heritable genomic markers that 

could aid in classification of high-risk individuals for 

screening purposes [2, 3]. While results from these 

studies are promising, predictive modeling using 
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ABSTRACT 
 

Background: Epigenetic age, a robust marker of biological aging, has been associated with obesity, low-grade 
inflammation and metabolic diseases. However, few studies have examined associations between different 
epigenetic age measures and risk of lung cancer, despite great interest in finding biomarkers to assist in risk 
stratification for lung cancer screening. 
Methods: A nested case-control study of lung cancer from the CLUE II cohort study was conducted using incidence 
density sampling with 1:1 matching of controls to lung cancer cases (n = 208 matched pairs). Prediagnostic blood 
samples were collected in 1989 (CLUE II study baseline) and stored at −70°C. DNA was extracted from buffy coat 
and DNA methylation levels were measured using Illumina MethylationEPIC BeadChip Arrays. Three epigenetic 
age acceleration (i.e., biological age is greater than chronological age) measurements (Horvath, Hannum and 
PhenoAge) were examined in relation to lung cancer risk using conditional logistic regression. 
Results: We did not observe associations between the three epigenetic age acceleration measurements and 
risk of lung cancer overall; however, inverse associations for the two Hannum age acceleration measures 
(intrinsic and extrinsic) were observed in men and among younger participants, but not in women or older 
participants. We did not observe effect modification by time from blood draw to diagnosis. 
Conclusion: Findings from this study do not support a positive association between three different biological 
age acceleration measures and risk of lung cancer. Additional studies are needed to address whether epigenetic 
age is associated with lung cancer in never smokers. 
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genomic markers (in addition to age and smoking) are 

currently not sufficiently discriminatory or calibrated to 

be useful in clinical settings for risk prediction. 

Identifying high risk groups could improve efficiency in 

lung cancer screening (with low-dose computed 

tomography) and reduce racial inequalities associated 

with the current recommendations for screening based 

on smoking history [4]. Thus, there is an urgent need to 

identify biomarkers that can reflect biological processes 

in lung cancer development and that could, eventually, 

be incorporated into models for risk stratification. 

 

Variation in DNA methylation levels in peripheral 

blood leukocytes reflect genetic imprinting, environ-

mental exposures, and the lineage differentiation that 

gives rise to immune cell subtypes [5]. Recent studies 

using epigenetic markers in blood have identified 

differentially methylated regions in smokers [6, 7]; 

DNA methylation levels in these regions remained 

strongly associated with lung cancer mortality after 

adjusting for smoking history [6]. Epigenetic aging 

measures or “clocks” have also been developed to 

reflect biological age in tissue and blood [8]. These 

epigenetic clocks are highly correlated with 

chronological age, but can deviate from chronological 

age, reflecting changes in immunity and cellular 

senescence, which are closely aligned with health and 

disease. Epigenetic age acceleration is the difference 

between the predicted biological age (based on the 

epigenetic measurements) and the given chronological 

age. Recent studies have linked epigenetic age 

acceleration to a range of disease outcomes, including 

all-cause mortality [9, 10], cardiovascular disease 

(CVD) incidence [11], coronary heart disease (CHD) 

mortality [12], cancer incidence [13] and cancer 

mortality [12]. Epigenetic age acceleration estimated 

using the Horvath and Hannum clocks, known as “first 

generation clocks”, is highly heritable (~0.4 [9]) and has 

been associated with CVD and cancer risk factors, 

including obesity, low-grade inflammation [14], and 

metabolic syndrome [15]. The newer generation of 

clocks, such as PhenoAge clock, have been developed 

based on associations with age, all-cause mortality, and 

several clinical biomarkers [16]. 

 

To date, studies evaluating epigenetic age acceleration 

and lung cancer risk have been inconsistent. The first 

nested case-control study conducted in the Women’s 

Health Initiative (WHI) observed a strong positive 

association [17], while a larger nested case-control study 

(Melbourne Collaborative Consortium Study; MCCS) 

reported no associations for the Horvath and Hannum 

clocks [18] but positive association with PhenoAge clock 
[13]. Additionally, stratified analyses by time since blood 

drawn were performed in the MCCS, and the results 

showed no significant differences in the positive associa-

tions between PhenoAge acceleration and lung cancer risk 

by time since blood drawn (≤5 years, 5–10 years, or >10 

years) [13]. In the WHI study, the positive associations 

were stronger among women developing lung cancer at 

70 or more years and among current smokers. In the 

MCCS [18], men and women were combined, and no 

stratified analyses were conducted by sex, to inform 

whether the association was restricted to women.  

 

It is important to examine whether epigenetic age is 

associated with lung cancer risk across multiple 

prospective studies to determine its utility as a potential 

biomarker to be considered for risk stratification in the 

selection of high-risk individuals for lung cancer 

screening. Thus, for this analysis, we conducted a nested 

case-control analysis of 208 lung cancer cases and 208 

matched controls with archived pre-diagnostic blood 

samples (from 1989). The case-control study is nested in 

the CLUE II cohort study, a predominantly White cohort 

of men and women, based in Maryland, USA. 

 

METHODS 
 

Study population 

 

Individuals included in this analysis were selected from 

participants in the CLUE II study, a prospective cohort 

study initiated in Washington County, Maryland, in 1989 

[19, 20]. The CLUE II study was an outgrowth of a 

previous study (CLUE I) that had been conducted in the 

same region in 1974. Some of the participants in CLUE 

II had been participants in CLUE I (about a third), but 

this was not a requirement for recruitment into the overall 

CLUE II cohort. At the baseline visit (1989 for CLUE II), 

brief medical histories, blood pressure readings, and 

blood samples were collected on 32,894 participants 

(25,076 of which were residents of Washington County). 

Mobile office trailers were used to recruit participants 

and to collect blood samples. Blood was drawn into 20 

ml heparinized Vacutainers (Becton- Dickinson, 

Rutherford, NJ), kept at 4°C until the plasma was 

separated, usually within 2–6 h, and divided into aliquots 

of plasma, buffy coat, and red blood cells. All samples 

are stored at −70°C. Comparisons with published figures 

from the 1990 Census indicated that approximately 30 

percent of adult residents had participated: 98.3% were 

White, reflecting the population of this county, and 59% 

were female, with the better-educated and the age group 

45 to 70 years having higher participation rates. Self-

reported attained education, weight and height, cigarette 

smoking status, number of cigarettes smoked per day, 

and cigar/pipe smoking status were recorded for each 

participant at baseline. 
 

The Institutional Review Board at the Johns Hopkins 

Bloomberg School of Public Health and the Tufts 
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University Health Sciences Campus Institutional 

Review Board approved this study. 

 

Lung cancer cases and matched controls 

 

Incident lung cancer cases were ascertained from 

linkage to the Washington Co. Cancer Registry (1989-

January 2018) and the Maryland Cancer Registry 

(1992-January 2018). The Maryland Cancer Registry is 

certified by the North American Association of Central 

Cancer Registries as being more than 95% complete. 

Compared with the Maryland Cancer Registry, the 

Washington County Cancer Registry captured 98% of 

the lung cancer cases diagnosed in Washington County 

residents in 1998. Cancer deaths were identified from 

state vital statistics, next of kin, and obituaries and 

confirmed on death certificates; underlying cause of 

death was obtained from the death certificates. Between 

1989 and January 2018, a total of 241 eligible incident 

first primary lung cancer cases were ascertained from 

CLUE II participants with blood samples, and who had 

also previously participated in CLUE I (a requirement 

based on a shared study population). All 241 lung 

cancer cases (ICD 9 162 and ICD10 C34) were 

confirmed by pathology report. 

 

Controls were selected from among CLUE II 

participants who had also participated in CLUE I. 

Matching was conducted using incidence density 

sampling such that a control had to be alive and free of 

cancer at the time the matched case was diagnosed with 

lung cancer. One control was matched to each case on 

the following factors: age (±3 year), sex, race, cigarette 

smoking status and intensity, cigar/pipe smoking status, 

and date of blood draw (±4 months). Controls who later 

became cases were also included as cases with their 

new matched controls.  

 

DNA methylation measurements  

 

Extracted DNA was bisulfite-treated using the EZ DNA 

Methylation Kit (Zymo), and DNA methylation  

was measured with the 850K Illumina Infinium 

MethylationEPIC BeadChip Arrays (Illumina, Inc, CA, 

USA). All samples and all array measurements were 

performed blinded to case-control status. Details on 

DNA methylation measurements, data preprocessing 

processing and quality control assessment/screening 

have been published [21]. Due to lack of remaining 

DNA, 8 of the 241 incident cases were removed from 

the dataset before matching.  

 

Estimation of peripheral blood leukocyte composition 

 

Peripheral blood leukocyte subtypes proportions were 

estimated using a newly expanded reference-based 

deconvolution library EPIC IDOL-Ext [22]. This library 

used the IDOL methodology [23] to optimize the 

currently available six-cell reference library [24] to 

deconvolute the proportions of 12 leukocyte subtypes in 

peripheral blood (neutrophils, eosinophils, basophils, 

monocytes, naïve and memory B cells, naïve and 

memory CD4+ and CD8+ cells, natural killer, and T 

regulatory cells).  

 

Data processing 

 

All methylation data preprocessing and normalization 

steps were performed using the Bioconductor 

packages. The raw IDAT files from methylation array 

were processed using the minfi Bioconductor package 

[25, 26]. Within-array correction for background 

fluorescence and dye-biases were performed using the 

Noob methodology via the function “preprocessNoob” 

in the minfi Bioconductor package [27]. The QCinfo 

function in ENmix Bioconductor [28] package was 

then used to identify and remove poor quality samples 

and probes. Samples were excluded if: 1) more than 

5% of probes had quality issues as addressed using the 

detection p-value, 2) the bisulfite conversion intensity 

was lower than 3 standard deviations from the mean, 

or 3) the mean average intensity and/or the mean 

average beta values were more than 3 times IQR from 

the upper quartile or less than 3 time IQR from the 

lower quartile of the average intensity values or beta 

value across the samples. In addition, we excluded 

probes that had detection p-values exceeding 1 × 10−6 

(compared to the negative background probes) in more 

than 5% of the samples. After sample- and probe- level 

quality control, we corrected the type II probe bias to 

make the methylation distribution of type II feature 

comparable to the distribution of type I feature using 

the beta mixture quantile dilation intra-sample 

normalization method [29], implemented using 

“BMIQ” function in the wateRmelon Bioconductor 

package [30]. Principal components analysis (PCA) 

was performed on the BMIQ-adjusted values and the 

top K principal components (K determined using a 

previously described random matrix theory approach 

[31]) to detect whether the microarray dataset had the 

batch effect. Then ctrlsva function in ENmix 

Bioconductor packages [32] was used to estimate the 

surrogate variables of batch effects [33]. The estimated 

surrogate variables were used in downstream analyses 

to adjust for batch effects and other unwanted 

technical sources of variation. 

 

Smoking methylation score 

 
A smoking methylation score was calculated to estimate 

individual pack-years of smoking based on known 

smoking-related DNA methylation alterations [34]. The 
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smoking methylation score was first developed to 

predict smoking pack-years using smoking ‘signatures’ 

reported by large-scale epigenome-wide association 

meta-analyses [34]. The score correlates with gene 

expression changes affected by smoking and can be 

utilized in lieu of self-reported smoking data.  

 

Estimation of epigenetic age 

 

Three DNAm clocks (Hannum [35], Horvath [36], and 

PhenoAge [16]) were used to estimate subjects’ DNAm 

age (using ENMix Biocondontor package: 

https://rdrr.io/bioc/ENmix/man/methyAge.html). For 

each of the three DNAm clocks, DNAm age 

acceleration (AA) was defined by regressing DNAm 

age on chronologic age and calculating the difference 

between the observed chronological age and the fitted 

DNAm age (i.e., the residual). Additionally, intrinsic 

epigenetic age acceleration (IEAA) metrics were 

calculated using the residuals from the linear regression 

fit to DNAm age on chronologic age, adjusted for 

estimated blood cell composition [37, 24] (for 

comparability with prior studies, we did not update the 

reference library for the IEAA measurements). Three 

subjects with an absolute value of the age acceleration 

estimate greater than 3 standard deviations (SDs) from 

the mean were excluded from the regression analyses; 

sensitivity analyses conducted retaining these 3 subjects 

did not materially modify the results. 

 

Statistical analyses 

 

Given the 1:1 case-control matching present in our 

study, conditional logistic regression models were used 

to examine the association between epigenetic age 

acceleration and lung cancer risk. As age, sex, and 

smoking status (never, former, current), smoking 

intensity (cigarettes/day) and cigar/pipe smoking were 

matching factors, these were implicitly adjusted for 

when using conditional regression. In the conditional 

regression model, we additionally adjusted for BMI as a 

continuous variable, batch effect (for methylation 

arrays), and a previously described methylation-

predicted variable to capture pack-years smoked [34]. 

We conducted stratified analyses by sex, median age, 

lung cancer histology (non-small cell lung cancer 

[NSCLC], small cell lung cancer [SCLC]), and length 

of time between blood draw and diagnosis (≤10, >10 

years) to evaluate potential effect modification. We did 

not adjust for methylation-derived cell proportions 

given that the intrinsic epigenetic age (IEAA) measures 

already account for immune cells. Pearson’s correlation 

was used to examine correlation between epigenetic age 
acceleration and methylation predicted immune cell 

proportions. All statistical analyses were performed in R 

(version 3.5.1). 

Availability of data materials 

 

The data cannot be deposited into a controlled access 

database due to a State of Maryland law that established 

the Maryland Cancer Registry (where the lung cancer 

data was obtained). 

 

RESULTS 
 

The final analysis consisted of 208 cases and matched 

208 controls. As a result of matching, lung cancer cases 

and controls had similar age (mean age: 55.9 years 

among controls, 58.3 years among cases), sex distribution 

(54.3% females in cases and controls), smoking status 

(51% current smokers in cases and controls; 39% former 

smokers in cases and controls), smoking intensity (25 

cigarettes per day in current smokers among cases; 24 

cigarettes/day in current smokers among controls) and 

cigar or pipe smoking (15% ever in cases and controls). 

Only 3 cases, and no controls, were non-White 

individuals. Cases and controls were also similar with 

respect to BMI (mean, in kg/m2, BMI 26.0 cases, 26.2 

controls). Most lung cancer cases were NSCLC (74%). 

Cases were diagnosed a mean of 14 years post-blood 

donation (median 14 years; range >0–29 years; all cases 

were incident cases). 

 

In this population, men, and cases with a shorter time 

between blood draw and cancer diagnosis, were more 

likely to have age acceleration (vs. deceleration) in all 3 

epigenetic clock measures (Table 1). Other 

characteristics, including smoking and BMI were very 

similar for acceleration and deceleration of epigenetic 

age in all 3 measures. 

 

Overall, we did not observe any associations between 

the 3 epigenetic age acceleration measures and lung 

cancer risk using both continuous and categorical 

variables for age acceleration (Table 2). Associations 

were similar when stratified by time between blood 

drawn and cancer diagnosis (Table 3). 

 

Given that in a prior study positive associations were 

modified by age and smoking status and were only 

reported for women [17], we conducted stratified 

analyses by age (<65 years, ≥65 years), smoking status 

(current vs. former smokers) and sex. There was an 

inverse trend for the Hannum measurements in men but 

not in women (Table 4). Associations for all three age 

acceleration measures were statistically significantly 

inversely associated with lung cancer in the younger 

(<65 years) but not older age group (Supplementary 

Table 1). Associations were similar among current and 

former smokers after adjusting for methylation 

predicted pack-years; associations were not estimated 

among never smokers due to small numbers 

https://rdrr.io/bioc/ENmix/man/methyAge.html
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Table 1. Baseline characteristics for the CLUE II population, by age acceleration vs. deceleration. 

 Overall 
AA_Hannum AA_Horvath AA_Pheno 

Acceleration Deceleration Acceleration Deceleration Acceleration Deceleration 

N 416 210 203 208 205 220 193 

 Case 208 (50.0%) 104 (49.5%) 101 (49.8%) 99 (47.6%) 107 (52.2%) 114 (51.8%) 91 (47.2%) 

 Control 208 (50.0%) 106 (50.5%) 102 (50.2%) 109 (52.4%) 98 (47.8%) 106 (48.2%) 102 (52.8%) 

Age (yrs), mean (SD) 57.1 (10.0) 57.3 (9.3) 56.6 (10.5) 57.1 (8.9) 56.9 (11.0) 56.8 (9.4) 57.2 (10.7) 

Female, n (%) 226 (54.3%) 90 (42.9%) 133 (65.5%) 97 (46.6%) 127 (62.0%) 108 (49.1%) 115 (59.6%) 

Time Difference (yrs), 
mean (SD) 

14.9 (7.9) 13.9 (7.3) 16.2 (8.2) 14.5 (7.6) 15.4 (8.1) 14.7 (7.7) 15.3 (8.2) 

Smoking status        

 Never 44 (10.6%) 23 (11.0%) 21 (10.3%) 28 (13.5%) 16 (7.8%) 22 (10.0%) 21 (10.9%) 

 Former 160 (38.5%) 86 (41.0%) 73 (36.0%) 80 (38.5%) 79 (38.5%) 86 (38.6%) 74 (38.3%) 

 Current 212 (50.9%) 101 (48.0%) 109 (53.7%) 100 (48.0%) 110 (53.7%) 112 (51.4%) 98 (50.8%) 

BMI (kg/m2), mean (SD) 26.1 (4.4) 26.2 (4.3) 26.1 (4.5) 26.7 (4.5) 25.6 (4.2) 26.0 (4.4) 26.2 (4.4) 

Normal and underweight 179 (43.0%) 87 (41.4%) 90 (44.3%) 76 (36.5%) 100 (48.8%) 94 (42.3%) 82 (42.5%) 

Overweight 171 (41.1%) 89 (42.4%) 81 (39.9%) 91 (43.8%) 80 (39.0%) 95 (43.2%) 76 (39.4%) 

Obese 66 (15.9%) 34 (16.2%) 32 (15.8%) 41 (19.7%) 25 (12.2%) 31 (14.4%) 35 (18.1%) 

Abbreviations: SD: standard deviation; AA: age acceleration; BMI: body mass index. 

 

Table 2. Odds ratios and 95% confidence intervals for the association between epigenetic age acceleration 
(using 3 different measures) and the risk of lung cancer in the CLUE II study. 

Age acceleration measure OR (95% CI)* p-value* 

AA_Hannum   

 Q1 1 (ref.)  

 Q2 0.96 (0.55, 1.66) 0.88 

 Q3 0.74 (0.42, 1.30) 0.29 

 Q4 0.74 (0.42, 1.31) 0.31 

 Continuous (per 1 SD) 0.82 (0.64, 1.05) 0.12 

AA_Horvath   

 Q1 1 (ref.)  

 Q2 0.80 (0.46, 1.41) 0.45 

 Q3 0.65 (0.37, 1.16) 0.15 

 Q4 0.76 (0.43, 1.33) 0.33 

 Continuous (per 1 SD) 0.85 (0.68, 1.07) 0.17 

AA_Pheno   

 Q1 1 (ref.)  

 Q2 0.61 (0.33, 1.11) 0.10 

 Q3 0.79 (0.44, 1.40) 0.42 

 Q4 0.89 (0.51, 1.56) 0.69 

 Continuous (per 1 SD) 0.92 (0.76, 1.10) 0.36 

IEAA_Hannum   

 Q1 1 (ref.)  

 Q2 0.74 (0.42, 1.31) 0.30 

 Q3 0.62 (0.35, 1.10) 0.10 

 Q4 0.70 (0.40, 1.24) 0.22 

 Continuous (per 1 SD) 0.87 (0.67, 1.14) 0.33 
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IEAA_Horvath   

 Q1 1 (ref.)  

 Q2 0.52 (0.28, 0.94) 0.031 

 Q3 0.84 (0.48, 1.47) 0.54 

 Q4 0.82 (0.47, 1.42) 0.47 

 Continuous (per 1 SD) 0.93 (0.73, 1.19) 0.58 

IEAA_Pheno   

 Q1 1 (ref.)  

 Q2 0.75 (0.42, 1.35) 0.33 

 Q3 0.92 (0.52, 1.65) 0.79 

 Q4 0.87 (0.49, 1.55) 0.64 

 Continuous (per 1 SD) 0.90 (0.74, 1.10) 0.30 

Abbreviations: IEAA: Intrinsic epigenetic age acceleration; ref.: referent. *Conditional logistic regression models, adjusting for 
batch effects, BMI, and smoking predicted pack years (using DNA methylation).  

 

Table 3. Odds ratios and 95% confidence intervals for the association between epigenetic age acceleration 
(using 3 different measures) and the risk of lung cancer in the CLUE II study, stratified by time between blood 
draw and cancer diagnosis (in cases; matched date in controls). 

 Time difference ≤10 yrs Time difference >10 yrs 

OR (95% CI)* p-value* OR (95% CI)* p-value* 

AA_Hannum    

 Q1 1 (ref.)  1 (ref.)  

 Q2 1.38 (0.62, 3.07) 0.43 0.79 (0.42, 1.48) 0.46 

 Q3 1.09 (0.49, 2.43) 0.84 0.61 (0.31, 1.17) 0.14 

 Q4 0.70 (0.29, 1.66) 0.41 0.77 (0.41, 1.45) 0.41 
  p for trend = 0.34  p for trend = 0.33 

AA_Horvath     

 Q1 1 (ref.)  1 (ref.)  

 Q2 0.75 (0.33, 1.69) 0.48 0.77 (0.41, 1.46) 0.43 

 Q3 0.66 (0.28, 1.51) 0.32 0.62 (0.32, 1.20) 0.15 

 Q4 0.74 (0.33, 1.64) 0.46 0.75 (0.39, 1.41) 0.37 
  p for trend = 0.44  p for trend = 0.30 

AA_Pheno     

 Q1 1 (ref.)  1 (ref.)  

 Q2 0.84 (0.36, 1.99) 0.69 0.53 (0.26, 1.06) 0.07 

 Q3 1.35 (0.59, 3.07) 0.48 0.59 (0.30, 1.16) 0.13 

 Q4 0.67 (0.28, 1.58) 0.36 1.06 (0.56, 1.98) 0.86 
  p for trend = 0.54  p for trend = 0.69 

IEAA_Hannum    

 Q1 1 (ref.)  1 (ref.)  

 Q2 0.61 (0.26, 1.42) 0.25 0.75 (0.40, 1.41) 0.37 

 Q3 0.91 (0.42, 1.94) 0.80 0.50 (0.25, 1.00) 0.05 

 Q4 0.58 (0.26, 1.34) 0.20 0.74 (0.39, 1.42) 0.37 
  p for trend = 0.35  p for trend = 0.28 

IEAA_Horvath    

 Q1 1 (ref.)  1 (ref.)  

 Q2 0.39 (0.15, 0.97) 0.044 0.58 (0.30, 1.14) 0.11 
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 Q3 0.90 (0.40, 2.01) 0.79 0.81 (0.43, 1.53) 0.52 

 Q4 0.82 (0.37, 1.80) 0.62 0.77 (0.41, 1.44) 0.41 
  p for trend = 0.93  p for trend = 0.59 

IEAA_Pheno     

 Q1 1 (ref.)  1 (ref.)  

 Q2 0.84 (0.36, 1.98) 0.70 0.66 (0.34, 1.31) 0.24 

 Q3 1.27 (0.56, 2.89) 0.57 0.81 (0.41, 1.60) 0.54 

 Q4 0.59 (0.25, 1.41) 0.24 1.06 (0.55, 2.03) 0.86 
  p for trend = 0.33  p for trend = 0.67 

Abbreviations: IEAA: Intrinsic epigenetic age acceleration; ref.: referent. *Conditional logistic regression models, adjusting for 
batch effects, BMI, and smoking predicted pack years (using DNA methylation). 
 

Table 4. Odds ratios and 95% confidence intervals for the association between epigenetic age acceleration 
(using 3 different measures) and the risk of lung cancer in the CLUE II study, stratified by sex. 

 Female Male 

OR (95% CI) p-value OR (95% CI) p-value 

AA_Hannum    

 Q1 1 (ref.)  1 (ref.)  

 Q2 0.74 (0.28, 2.00) 0.56 0.78 (0.30, 2.00) 0.60 

 Q3 1.18 (0.49, 2.84) 0.71 0.50 (0.21, 1.19) 0.12 

 Q4 0.79 (0.33, 1.88) 0.60 0.29 (0.10, 0.80) 0.017 
  P trend = 0.78  P trend =0.015 

AA_Horvath     

 Q1 1 (ref.)  1 (ref.)  

 Q2 0.92 (0.40, 2.13) 0.84 0.72 (0.30, 1.73) 0.47 

 Q3 0.82 (0.34, 1.99) 0.66 0.51 (0.21, 1.24) 0.14 

 Q4 0.92 (0.40, 2.15) 0.85 0.50 (0.19, 1.35) 0.17 
  P trend = 0.80  P trend = 0.13 

AA_Pheno     

 Q1 1 (ref.)  1 (ref.)  

 Q2 0.70 (0.28, 1.76) 0.44 1.11 (0.43, 2.86) 0.83 

 Q3 0.89 (0.38, 2.05) 0.78 0.90 (0.36, 2.26) 0.83 

 Q4 0.93 (0.40, 2.16) 0.86 0.60 (0.21, 1.74) 0.35 
  P trend = 0.97  P trend = 0.30 

IEAA_Hannum    

 Q1 1 (ref.)  1 (ref.)  

 Q2 1.27 (0.52, 3.08) 0.60 0.31 (0.11, 0.82) 0.018 

 Q3 1.17 (0.47, 2.93) 0.74 0.37 (0.14, 0.96) 0.041 

 Q4 0.92 (0.40, 0.10) 0.84 0.35 (0.13, 0.92) 0.034 
  P trend = 0.68  P trend = 0.03 

IEAA_Horvath    

 Q1 1 (ref.)  1 (ref.)  

 Q2 0.85 (0.36, 2.00) 0.70 0.85 (0.34, 2.15) 0.73 

 Q3 0.73 (0.31, 1.75) 0.48 0.83 (0.33, 2.11) 0.70 

 Q4 0.21 (0.54, 2.74) 0.64 0.53 (0.17, 1.58) 0.25 
  P trend = 0.65  P trend = 0.28 
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IEAA_Pheno     

 Q1 1 (ref.)  1 (ref.)  

 Q2 1.01 (0.43, 2.36) 0.98 1.34 (0.51,3.52) 0.55 

 Q3 1.10 (0.46, 2.63) 0.83 1.18 (0.46, 3.05) 0.73 

 Q4 1.04 (0.46, 2.35) 0.92 0.63 (0.21, 1.82) 0.39 
  P trend = 0.88  P trend = 0.38 

Abbreviations: IEAA: Intrinsic epigenetic age acceleration; ref.: referent. *Conditional logistic regression models, adjusting for 
batch effects, BMI, and smoking predicted pack years (using DNA methylation). 
 

(n = 22 matched pairs; Supplementary Table 1). Finally, 

to examine whether associations might vary by histology, 

we separated NSCLC and SCLC; no associations were 

observed in either subgroup (data not shown). 

 

Prior studies suggest that epigenetic age acceleration may 

be strongly linked to the immune response, and 

specifically CD8 and CD4 naïve cells [38]. In this study, 

all three epigenetic clock measures were strongly 

associated with CD8 and CD4 naïve immune subsets in 

control subjects (Pearson correlations ranging from −0.22 

to −0.41; Supplementary Table 2). The only statistically 

significant correlation between the clock measures and 

NK cells was for PhenoAge (r = −0.16); however, the 

NK cells in the reference library do not differentiate 

naïve and memory NK cells, so it is possible the 

associations would be different for NK naïve cells. The 

CD8 memory cells were positively associated with 

Hannum and Horvath clocks but not with PhenoAge. The 

IEAA measures (for each clock) were not associated with 

CD8 memory cells but were still strongly associated with 

CD8 naïve cells, which can be explain by the lack of 

adjustment for naïve and memory T cells as these 

fractions were not available in earlier deconvolution 

libraries (and memory cell represent a larger proportion 

of total T cells in older adults). 

 

DISCUSSION 
 

In this nested case-control study on incident lung 

cancer, we observed no positive associations between 

lung cancer risk and epigenetic age acceleration using 

three different measures (Horvath, Hannum and 

PhenoAge) with two adjustment approaches for each, 

i.e., intrinsic and extrinsic measures. We observed 

inverse associations for men and subjects below the 

median age, but not in women or older subjects. 

 

Our null findings for epigenetic age acceleration 

associations with lung cancer risk using the Horvath  

and Hannum clocks are consistent with those reported 

in a nested case-control study in the Melbourne 
Collaborative Cohort Study (MCCS; 332 cases) [18]. 

Our null findings differ from those reported in the 

Women’s Health Initiative (WHI), where a 50% 

increase in risk of lung cancer was observed for every 

unit increase in intrinsic epigenetic age acceleration 

using the Horvath epigenetic age measure (p = 3.4 × 

10−3) [17]; it is worth noting that the number of lung 

cancer cases included in the WHI analysis was small 

(n = 43). Our results for age acceleration based on the 

PhenoAge measure were also null, whereas a positive 

association was observed for PhenoAge and lung cancer 

risk in the MCCS (OR = 1.25, 95% CI = 1.05–1.49, for 

a 1 SD increase) [13] and in the WHI (HR = 1.05, 

p = 0.031) [16]. The PhenoAge measure was derived 

using immune and inflammatory phenotypes, in contrast 

to the other two epigenetic measures. Differences in the 

two populations may explain the different findings, such 

as smoking prevalence, although we could not confirm 

that as the MCCS analysis did not provide 

characteristics for the lung cancer case-control study 

(only for the pooled population). We observed that 

adjusting for methylation predicted pack-years 

attenuated the associations for PhenoAge in our analysis 

(among current smokers: before adjustment OR = 2.15, 

95% CI = 0.92–5.04 for Q4 vs. Q1; after adjustment OR 

= 1.40, 95% CI = 0.52–3.76; overall: before adjustment 

OR 1.22, 95% CI = 0.70–2.13; after adjustment OR = 

0.86, 95% CI = 0.46–1.62). Thus, it is possible that 

elevated risk associated with the PhenoAge age 

acceleration in some studies is a measure of the residual 

effect of smoking, which is captured with the 

methylation markers for pack-years smoked. 

 

The inverse associations between age acceleration for 

several epigenetic clock measurements and lung cancer 

risk we observed in men and subjects less than 65 years 

of age were unexpected. However, our findings are 

consistent with results from a large study using 

Mendelian randomization (MR) methods conducted to 

examine the causal link between several epigenetic 

clocks and cancer, including lung cancer. In the MR 

analysis, the genetically predicted intrinsic Horvath Age 

acceleration was associated with a decrease in lung 

cancer risk (the association was statistically significant, 

p = 0.03, prior to multiple comparisons correction). 
Alternatively, these results may be due to a selection 

bias that occurred as a results of survivor bias in 

enrollment into our cohort (this could have occurrent if 
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individuals with poor health and epigenetic age 

acceleration were less likely to participate). 

 

Recent studies have begun to elucidate the biological 

processes that explain age acceleration associations 

detected using epigenetic clocks [38]. In a functional 

genomics study, changes in proportions of naive and 

activated immune blood cells were strongly associated 

with the Hannum and Horvath age acceleration measures 

[38]. We confirmed these relationships in our dataset 

using new immune cell reference libraries allowing the 

deconvolution of naive immune T cells [22]. The strong 

inverse correlations observed between naive T and B 

cells and the three age acceleration measurements 

suggest that they are strongly linked to changes in the 

immune response, which is not surprising, given that 

reduction of naïve T cells is a component of immuno-

senescence [39]. Of interest, the intrinsic epigenetic age 

acceleration (IEAA) measurements remained strongly 

associated with the CD8 naïve cells; future analyses 

using intrinsic measures of age acceleration should 

adjust for these cells. 

 

The strengths of our study include the prospective 

nature of the analysis with a long follow-up period, thus 

removing the potential for spurious associations that 

may be driven by the cancer progression (i.e., reverse 

causation), a relatively large sample size for 

methylation analyses, and tight adjustment for smoking. 

In addition, the cancer ascertainment for the CLUE II 

cohort is very high, given the quality of cancer registry 

data. The limitations of our analysis include one-time 

point for epigenetic measurements and lack of data on 

non-Whites, thus limiting generalizability. 

 

To our knowledge, this is the third prospective study 

examining the association between epigenetic aging, 

measured in peripheral blood, and risk of lung cancer. 

Findings from this study suggest that there are no strong 

positive associations between biological aging, 

measured an average of 15 years prior to cancer, and 

lung cancer risk. The majority of cases in this study 

were ever smokers (90%), and smoking history was 

well controlled for, suggesting that biological aging, 

independent of smoking, is not associated with an 

increased risk of lung cancer, at least among smokers. 

Our data also suggest that prior associations with 

PhenoAge and lung cancer might have been due to 

residual effects of smoking. Future studies should 

include more racially diverse populations and examine 

associations among never smokers. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Supplementary Table 1. Odds ratios and 95% confidence intervals for the association between epigenetic age 
acceleration (using 3 different measures) and the risk of lung cancer in the CLUE II study, stratified by age and 
smoking status. 

 OR (95% CI)* p-value OR (95% CI)* p-value 

 Age < 65 years Age ≥ 65 years 

AA_Hannum 0.63 (0.44, 0.90) 0.011 0.90 (0.53, 1.52) 0.69 

AA_Horvath 0.62 (0.44, 0.88) 0.007 1.10 (0.69, 1.75) 0.70 

AA_Pheno 0.76 (0.58, 1.00) 0.046 1.07 (0.75, 1.52) 0.72 

IEAA_Hannum 0.69 (0.48, 1.00) 0.05 0.91 (0.52, 1.59) 0.74 

IEAA_Horvath 0.73 (0.52, 1.04) 0.08 1.08 (0.67, 1.74) 0.74 

IEAA_Pheno 0.74 (0.55, 0.98) 0.035 1.13 (0.77, 1.67) 0.52 

 Current smoker** Former smoker** 

AA_Hannum 0.76 (0.49, 1.20) 0.24 0.69 (0.44, 1.07) 0.09 

AA_Horvath 0.68 (0.45, 1.02) 0.06 0.82 (0.54, 1.27) 0.38 

AA_Pheno 0.93 (0.68, 1.28) 0.66 0.84 (0.61, 1.16) 0.30 

IEAA_Hannum 0.93 (0.58, 1.48) 0.76 0.71 (0.45, 1.12) 0.14 

IEAA_Horvath 0.81 (0.53, 1.22) 0.31 0.91 (0.58, 1.43) 0.69 

IEAA_Pheno 1.02 (0.73, 1.44) 0.90 0.85 (0.60, 1.20) 0.36 

Abbreviation: IEAA: Intrinsic epigenetic age acceleration. *Conditional logistic regression models, adjusting for batch effects, 
BMI, and smoking predicted packyears (using DNA methylation). **Never smokers were not included in this analysis are there 
were too few.  

 

Supplementary Table 2. Correlations between epigenetic clocks and selected immune cell proportions 
(estimated from methylation data). 

 AA  
Hannum 

IEAA  
Hannum 

AA  
Horvath 

IEAA  
Horvath 

AA  
PhenoAge 

IEAA  
PhenoAge 

CD4 naïve −0.3677 −0.1935 −0.1884 −0.0011 −0.2249 −0.1104 

p values <0.0001 0.0051 0.0066 0.9877 0.0011 0.1124 

CD8 naïve −0.4245 −0.4076 −0.2305 −0.1706 −0.32 −0.3196 

p values <0.0001 <0.0001 0.0008 0.014 <0.0001 <0.0001 

CD8 memory 0.3316 0.1264 0.3202 −0.0026 −0.0203 0.098 

p values <0.0001 0.0689 <0.0001 0.9706 0.7713 0.1591 

B cell naïve −0.2507 −0.1485 −0.1786 −0.0609 −0.3272 −0.1856 

p values 0.0003 0.0323 0.01 0.3831 <0.0001 0.0073 

Correlations for CD4 memory and B cell memory are not shown as the correlations were statistically significant. Abbreviation: 
IEAA: Intrinsic epigenetic age acceleration. 


