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INTRODUCTION 
 

Atrial fibr1illation (AF) is one of the most common 

permanent arrhythmia types in the general population, 

and its pathological changes are characterized by 

electrical and structural remodeling of the left atrium 

[1, 2]. According to relevant reports, AF affects 

approximately 1%-2% of the population worldwide, its 

prevalence is proportional to age, and the incidence 

rate of AF in people over 80 years old reaches 8% [3, 

4]. AF can significantly increase the risk of stroke, 

myocardial infarction and heart failure, which brings a 

www.aging-us.com AGING 2023, Vol. 15, No. 5 

Research Paper 

Identification of m6A regulator-mediated RNA methylation 
modification patterns and key immune-related genes involved  
in atrial fibrillation 
 

Peng-Fei Zheng1,2,3,*, Sen-Yu Zhou3,4,*, Chang-Qing Zhong1,2,3, Zhao-Fen Zheng1,2,3,  
Zheng-Yu Liu1,2,3, Hong-Wei Pan1,2,3, Jian-Qiang Peng1,2,3,& 
 
1Cardiology Department, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China 
2Clinical Research Center for Heart Failure in Hunan Province, Furong, Changsha 410000, Hunan, China 
3Institute of Cardiovascular Epidemiology, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, 
China 
4The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Furong, Changsha 
410000, Hunan, China 
*Equal contribution 
 
Correspondence to: Hong-Wei Pan, Jian-Qiang Peng; email: panhongwei@hunnu.edu.cn, 2925772400@qq.com 
Keywords: atrial fibrillation, HCST, m6A, immune microenvironment, NCF2 
Received: November 28, 2022    Accepted: February 11, 2023  Published: February 20, 2023 
 
Copyright: © 2023 Zheng et al. This is an open access article distributed under the terms of the Creative Commons 
Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited. 

 

ABSTRACT 
 

The role of m6A in the regulation of the immune microenvironment in atrial fibrillation (AF) remains unclear. This 
study systematically evaluated the RNA modification patterns mediated by differential m6A regulators in 62 AF 
samples, identified the pattern of immune cell infiltration in AF and identified several immune-related genes 
associated with AF. A total of six key differential m6A regulators between healthy subjects and AF patients were 
identified by the random forest classifier. Three distinct RNA modification patterns (m6A cluster-A, -B and -C) 
among AF samples were identified based on the expression of 6 key m6A regulators. Differential infiltrating 
immune cells and HALLMARKS signaling pathways between normal and AF samples as well as among samples 
with three distinct m6A modification patterns were identified. A total of 16 overlapping key genes were identified 
by weighted gene coexpression network analysis (WGCNA) combined with two machine learning methods. The 
expression levels of the NCF2 and HCST genes were different between controls and AF patient samples as well as 
among samples with the distinct m6A modification patterns. RT‒qPCR also proved that the expression of NCF2 
and HCST was significantly increased in AF patients compared with control participants. These results suggested 
that m6A modification plays a key role in the complexity and diversity of the immune microenvironment of AF. 
Immunotyping of patients with AF will help to develop more accurate immunotherapy strategies for those with a 
significant immune response. The NCF2 and HCST genes may be novel biomarkers for the accurate diagnosis and 
immunotherapy of AF. 
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heavy economic burden to the patient’s family and the 

whole society [5]. Therefore, it is urgent to further 

clarify its pathogenesis and find more effective 

treatments. AF is considered to be a multifactorial and 

complex disease that is usually associated with factors 

such as age, obesity, hypertension, smoking, sex, 

diabetes and valvular heart disease [6]. However, the 

pathophysiology of AF has not been fully elucidated. 

In a recently published study, we found that the 

infiltration levels of activated mast cells and 

regulatory T cells (Tregs) were decreased and the 

infiltration levels of gamma delta T cells, resting mast 

cells and M2 macrophages were increased in AF 

patients compared to those in sinus rhythm (SR) 

individuals [7]. These results partially elucidate the 

infiltration of immune cells in AF and suggest that the 

immune mechanism plays a key role in AF. However, 

more studies are needed to further fully explore the 

mechanism of immune infiltration in AF and may help 

to reveal several new immunotherapies for AF. 

 

Traditional epigenetic modification refers to the 

reversible modification of proteins (histones) and DNA, 

which can regulate gene expression without changing the 

genetic sequence [8]. RNA modification has gradually 

attracted attention; it is considered the third layer of 

epigenetics and involves regulation of RNA metabolism 

and processing [9]. Several RNA modification forms, 

including N1-methyladenosine (m1A), 5-methylcytosine 

(m5C), and N6-methyladenosine (m6A), have been 

found, among which the most common modification is 

m6A [10]. m6A modification is a homeostatic and 

reversible process in eukaryotic cells that is mainly 

regulated by a variety of m6A regulatory factors, 

including demethylases (erasers), binding proteins 

(readers), and methyltransferases (writers) [11]. Recent 

studies have shown that m6A modification may play a 

crucial role in the regulation of the immune response. 

Wang et al. noticed that the HNRNPA2B1 regulator acts 

as a reader, can promote m6A modification and can 

trigger the innate immune response by recognizing viral 

DNA in the context of viral infection [12]. Han et al. 

found that the YTHDF1 regulator acts as a reader and is 

involved in antigen presentation from dendritic cells to 

CD8+ T cells by enhancing lysosomal cathepsin 

translation and promoting tumor neoantigen cross-

presentation and CD8+ T-cell cross-priming, thereby 

promoting the immune escape of tumor cells [13]. 

Moreover, Li et al. found that the homeostatic 

differentiation of T cells may be severely impaired due to 

the deletion of a writer, such as METTL3, in T cells [14]. 

However, no research has focused on the role of m6A in 

the immune microenvironment of AF. Therefore, we 
investigated the effect of m6A modification on the 

characteristics of the immune microenvironment in AF in 

depth and identified key immune-related genes associated 

with AF. The implementation of these works will help us 

to deeply understand the pathogenesis of AF from a 

completely new perspective. 

 

RESULTS 
 

Data preprocessing 

 

The analysis process of the whole study is shown in 

Figure 1. The normalized gene expression matrix of the 

GSE31821, GSE41177, GSE79768 and GSE115574 

datasets was obtained by standardizing the data format 

(Supplementary Figure 1A) and adding missing values 

by filling in the average value of the variable in all other 

columns. As shown in Supplementary Figure 1B, 

principal component analysis (PCA) of the transcriptome 

profile showed a significant difference between AF 

samples and normal samples. The integrated expression 

profile, including 21652 different gene symbols, was 

obtained from 110 atrial tissue samples after data  

 

 
 

Figure 1. A flow chart of the analysis. ssGSEA, single-sample 
gene set enrichment analysis; GO, gene ontology annotation; 
KEGG, kyoto encyclopedia of genes and genomes pathway 
enrichment analyses; GSVA, gene set variation analysis;  
WGCNA, weighted gene co-expression network analysis; LASSO, 
Least Absolute Shrinkage and Selector Operation; SVM-RFE, 
Support Vector Machine-Recursive Feature Elimination; NCF2, 
neutrophil cytosolic factor 2; HCST: hematopoietic cell signal 
transducer. 
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merging and eliminating the interbatch differences 

between the GSE31821, GSE41177, GSE79768 and 

GSE115574 datasets (Supplementary Table 1). 

 

Identification of differential m6A regulators 

 

A total of 23 different m6A regulators, including 7 

writers (METTL3, METTL14, ZC3H13, RBM15, 

RBM15B, WTAP and CBLL1), 14 readers (YTHDC1, 

LRPPRC, HNRNPC, IGFBP1, YTHDC2, HNRNPA2B1, 

IGF2BP1, YTHDF1, FMR1, YTHDF3, IGFBP2, 

YTHDF2, IGFBP3 and ELAVL1) and 2 erasers (ALKBH5 

and FTO), were analyzed in the current research. As 

shown in the box plot (Figure 2A) and heatmap plot 

(Figure 2B), we noticed that the expression levels of 

RBM15B, IGFBP2, IGFBP3 and ALKBH5 were 

significantly increased, while the expression levels of 

HNRNPC and HNRNPA2B1 were significantly decreased 

in AF samples compared with SR samples. 

Random forest screening for key m6A regulators 

 

Cyclic random forest classification was performed for all 

possible numbers in 1-20 variables, and the average error 

rate of the pattern mode was calculated. Referring to the 

relationship plot between the number of decision trees 

and the model error (Figure 2C), 300 trees were selected 

as the parameter of the final model, which indicates a 

stable error in the model. Subsequently, as shown in 

Figure 2D, six key m6A regulators (RBM15B, IGFBP2, 

IGFBP3, ALKBH5, HNRNPC and HNRNPA2B1) with 

importance greater than 2 were identified for subsequent 

analysis. 

 

Construction and assessment of a nomogram model 

 

As shown in Figure 3A, a predictive nomogram was 

constructed based on the expression of six key m6A 

regulators (RBM15B, IGFBP2, IGFBP3, ALKBH5, 

 

 
 

Figure 2. Expression landscape of m6A RNA methylation regulators in AF and random forest model construction to identify 
key m6A regulators. (A) Box plot of differentially expressed m6A regulators. (B) Heatmap of differentially expressed m6A regulators.  

(C) Plot of performance in log scale against epoch number. The x-axis represents the number of decision trees, and the y-axis indicates the 
error rate. When the number of decision trees is approximately 300, the error rate is relatively stable. (D) Results of the Gini coefficient 
method in the random forest classifier. The x-axis indicates the genetic variable, and the y-axis represents the importance index. *P < 0.05; 
**P < 0.01; ***P < 0.001. 
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HNRNPC and HNRNPA2B1). The calibration curve 

suggested that the error between the predicted and 

actual AF risk was very small, suggesting that the 

nomogram model obtained high accuracy in predicting 

AF (Figure 3B). Decision curve analysis (DCA) showed 

that the “nomogram” curve was higher than the gray 

line, indicating that the nomogram maintains great 

clinical utility in predicting the morbidity of AF patients 

(Figure 3C). ROC analysis reconfirmed that the model 

was effective in distinguishing AF patients from healthy 

subjects (Figure 3D). 

 

Identification of m6A RNA methylation modification 

patterns in AF 

 

Unsupervised consistent clustering analysis based on the 

expression values of six key m6A regulators in AF 

samples was utilized to study m6A modification patterns 

in AF (Figure 4A–4C). Three different subtypes of  

AF were identified based on qualitatively different 

expression of six key m6A regulators, including 10 

samples in the m6A cluster-A group, 22 samples in the 

m6A cluster-B group and 30 samples in the m6A cluster-

C group (Figure 4D and Supplementary Table 2). 

 

Comparison of immune microenvironment 

characteristics 

 

The infiltration of many immunocytes was different 

between the controls and AF patients (Figure 5A), and 

among the AF samples with three distinct m6A 

modification patterns (Figure 5B). We found relatively 

higher infiltration of myeloid-derived suppressor cells 

(MDSCs), natural killer T cells, plasmacytoid dendritic 

cells and regulatory T cells in AF subjects than in SR 

patients. We also found that there was relatively higher 

infiltration of activated CD4 T cells, activated CD8 T 

cells, activated dendritic cells, CD56dim natural killer 

 

 
 

Figure 3. Construction and validation of a predictive nomogram of atrial fibrillation established based on six m6A regulators. 
(A) The nomogram of the model. (B) The calibration plot of the nomogram, and the diagonal dotted line represents a perfect prediction by an 
ideal model. (C) Decision curve analysis (DCA) of the nomogram. The solid line represents the performance of the nomogram, of which a 
closer fit to the diagonal dotted line represents a better prediction. (D) Receiver operating characteristic (ROC) analysis of the nomogram 
confirming that the model was effective in distinguishing atrial fibrillation patients from healthy subjects. 
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cells, immature dendritic cells, MDSCs, neutrophils, 

plasmacytoid dendritic cells and type-2 T helper cells in 

the m6A cluster-C group than in the m6A cluster-A 

group (Supplementary Table 3). 

 

Comparison of 50 HALLMARKS pathways 

 

Gene set variation analysis (GSVA) was used to 

compare the HALLMARKS pathways between the 

healthy subject and AF patient samples (Figure 6A) and 

among the AF patient samples with three distinct m6A 

modification patterns (Figure 6B). Compared with the 

SR subjects, the AF patients had more enriched 

pathways, such as KRAS signaling up, IL-2/STAT5 

signaling, angiogenesis, UV response down, glycolysis, 

epithelial mesenchymal transition, mTORC1 signaling, 

PI3K/Akt/mTOR signaling and DNA repair. Meanwhile, 

compared with the m6A cluster-A group, the m6A 

cluster-C group had more enriched pathways, such as 

allograft rejection, peroxisome, coagulation, UV response 

up, P53 signaling, fatty acid metabolism, xenobiotic 

metabolism, epithelial mesenchymal transition, mTORC1 

signaling, PI3K/Akt/mTOR signaling, apical junction, 

myogenesis, adipogenesis, cholesterol homeostasis, and 

hypoxia (Supplementary Table 4). 

 

Identification of meaningful immune-related modules 

 

Weighted gene coexpression network analysis (WGCNA) 

was used to identify the meaningful modules that were 

 

 
 

Figure 4. Identification of three distinct m6A modification pattern subtypes in atrial fibrillation. (A) Consensus clustering 
cumulative distribution function (CDF) for k = 2-9. (B) Relative change in the area under the CDF curve for k = 2-9. (C) Heatmap of the matrix 
of cooccurrence proportions for atrial fibrillation samples. (D) Principal component analysis for the transcriptome profiles of three m6A 
clusters, showing a remarkable difference in the transcriptome between different modification patterns. 
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significantly associated with infiltrating immune cells. In 

the WGCNA, when the correlation coefficient was 

greater than 0.9, the corresponding soft threshold was 

14. Therefore, a soft threshold of 14 was selected to 

construct several gene modules (Figure 7A). Then,  

the topological overlap matrix combined with the 

hierarchical mean linkage clustering method was used to 

identify gene modules in each gene network. As shown 

 

 
 

Figure 5. Analysis of immune cell infiltration between different groups. (A) Comparison of immunocyte abundance between 
controls and atrial fibrillation patients. (B) Comparison of immunocyte abundance in the 3 clusters. 
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in Figure 7B, a total of 15 gene modules were identified 

in the coexpression network. Figure 7C depicts the 

correlation heatmap between 15 modules. As shown in 

Figure 7D, the lightcyan module was highly associated 

with regulatory T cells (r2 = 0.90, p = 6e-40), and the 

lightgreen module was highly associated with activated 

CD8 T cells (r2 = 0.85, p = 4e-31). 

 

Enrichment analysis of the genes in meaningful 

modules 

 

As shown in Supplementary Table 5, a total of 104 

genes in the lightcyan and lightgreen modules were 

included in the KEGG and GO functional enrichment 

analyses. The top 10 biological processes, cellular 

components, and molecular functions are shown in 

Supplementary Figure 2A. The top 10 KEGG 

pathways are shown in Supplementary Figure 2B. A 

total of 104 genes were mainly enriched in the 

following immune-related biological processes: 

leukocyte-mediated immunity, positive regulation of 

leukocyte activation, positive regulation of cell 

activation, adaptive immune response based on 

somatic recombination of immune receptors built from 

immunoglobulin superfamily domains, leukocyte cell‒

cell adhesion, activation of immune response, 

leukocyte activation involved in the immune response 

and cell activation involved in the immune response. 

In addition, the details of GO and KEGG analyses are 

presented in Supplementary Tables 6, 7. 

 

Identification of key genes by machine learning 

 

The correlation coefficient between the color module 

and the gene significance was calculated to determine 

the significance of the module. As shown in Figure 8, we 

noticed that the correlation coefficients of gene 

significance with the lightgreen module (Figure 8A) and 

the lightcyan module (Figure 8B) were 0.70 (p = 7.1e-

07) and 0.76 (p = 2.1e-13), respectively. Then, LASSO 

regression and the SVM-RFE algorithm were performed 

to identify several characteristic genes that were 

significantly associated with AF based on the expression 

profile of genes in the lightcyan and lightgreen modules. 

 

 
 

Figure 6. Analysis of HALLMARKS pathway enrichment scores between different groups. (A) Comparison of HALLMARKS pathway 

enrichment scores between controls and atrial fibrillation patients. (B) Comparison of HALLMARKS pathway enrichment scores in the 3 m6A 
clusters. 
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A total of 29 and 28 key genes were identified by 

LASSO regression (Figure 8C) and the SVM-RFE 

algorithm (Figure 8D), respectively. Moreover, a total 

of 16 overlapping genes were identified by both 

machine learning methods. The detailed gene symbols 

of several key genes identified by these two machine 

learning methods are also shown in Supplementary 

Table 8. 

 

Expression of key genes 

 

As shown in Figure 9A, compared with the SR  

subjects, the expression levels of neutrophil cytosolic 

factor 2 (NCF2), lysosomal protein transmembrane  

5 (LAPTM5), hematopoietic cell signal transducer 

(HCST), hematopoietic cell-specific lyn substrate 1 

(HCLS1), C-X-C motif chemokine ligand 12 (CXCL12), 

coronin 1A (CORO1A), complement C1q C chain 

(C1QC) and junction adhesion molecule like (AMICA1) 
were significantly increased in AF patients. Meanwhile, 

compared with the m6A cluster-A group, the expression 

of NCF2 and HCST was significantly increased in the 

m6A cluster-B and -C groups (Figure 9B). Since the 

NCF2 and HCST genes differ between SR subjects and 

AF patients and among different m6A-modified 

molecular subtypes, NCF2 and HCST were further 

verified by RT‒qPCR. As shown in Figure 10A, we 

noticed that the expression levels of NCF2 and HCST 

were significantly increased in AF patients compared 

with controls. In addition, the AUC values for NCF2 

(Figure 10B) and HCST (Figure 10C) were 0.841 (95% 

CI 0.782–0.900; p < 0.001) and 0.862 (95% CI 0.809–

0.914; p < 0.001), respectively. 

 

Correlation between hub genes and infiltrating 

immune cells and 50 HALLMARKS pathways 

 

As shown in Supplementary Figure 3A, the NCF2 and 

HCST genes were significantly positively correlated 

with activated CD4 T cells, activated CD8 T cells, 

 

 
 

Figure 7. Weighted gene coexpression network analysis. (A) Analysis of network topology for various soft-thresholding powers.  

(B) Clustering dendrogram of genes. (C) Relationship among all the modules. (D) Associations between modules and infiltrating immune cells. 
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activated dendritic cells, CD56 bright natural killer 

cells, gamma delta T cells, immature B cells, immature 

dendritic cells, MDSCs, macrophages, mast cells, 

monocytes, natural killer T cells, natural killer cells, 

neutrophils, plasmacytoid dendritic cells, regulatory T 

cells, T follicular helper cells, type 1 T helper cells, and 

type 2 T helper cells. As shown in Supplementary 

Figure 3B, the NCF2 and HCST genes were also 

significantly positively correlated with several 

HALLMARKS pathways, such as TNF-α signaling via 

NF-kB, xenobiotic metabolism, beta-catenin signaling, 

PI3K/Akt/mTOR signaling, the P53 pathway, mTORC1 

signaling, KRAS signaling up, the interferon gamma 

response, the interferon alpha response, the 

inflammatory response, IL-2/STAT5 signaling, IL-

6/JAK/STAT3 signaling, the late estrogen response, the 

early estrogen response, epithelial mesenchymal 

transition, complement, coagulation, apoptosis, apical 

surface, apical junction, angiogenesis, the androgen 

response, allograft rejection and adipogenesis. 

 

DISCUSSION 
 

At present, AF is the most common persistent arrhythmia 

that significantly threatens the health of Chinese 

residents. Accumulating evidence suggests that immune 

and inflammatory mechanisms play a key role in the 

pathogenesis of AF, and these mechanisms appear to be 

significantly associated with the onset and persistence of 

AF as well as the prethrombotic state associated with AF 

[15, 16]. For example, Yamashita et al. demonstrated that 

macrophage adhesion and recruitment in the cardiac 

endocardium promoted inflammatory responses in 

human AF [17]. Hohmann et al. demonstrated that the 

number of inflammatory CD3+ T cells in the left atrial 

appendage was significantly increased in patients with 

 

 
 

Figure 8. Associations between gene significance and module membership and identification of key genes of AF by machine 
learning. (A) Association between gene significance and module membership in the lightgreen module. (B) Association between gene 

significance and module membership in the lightcyan module. (C) The key genes identified by LASSO regression. (D) The key genes identified 
by the SVM-RFE algorithm. 
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Figure 9. Analysis of the differences in expression of 16 key genes in different groups. (A) Comparison of the expression of 16 key 
genes between controls and atrial fibrillation patients. (B) Comparison of the expression of 16 key genes in the 3 m6A clusters. *P < 0.05;  
**P < 0.01; ***P < 0.001. 
 

 
 

Figure 10. Validation of the NCF2 and HCST genes in clinical samples. (A) The relative expression levels of NCF2 and HCST in clinical 

samples. (B) ROC curve analysis of NCF2. (C) ROC curve analysis of HCST. *P < 0.05; **P < 0.01; ***P < 0.001. 
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SR compared to those with persistent AF [18]. On the 

other hand, some scholars have found that m6A 

modification plays an integral role in innate and adaptive 

immune responses [19]. Several studies have aimed to 

explore the role of m6A modification in immunity, 

especially in the infiltration of immune cells in the tumor 

microenvironment, and the results confirmed that m6A 

modification plays a fundamental role in tumor immunity 

[20, 21]. We also believe that the m6A modification 

pattern plays a similar role in the formation of the 

immune microenvironment in AF. However, its 

mechanism has not been clarified. To better clarify these 

issues, we systematically explored the effects of m6A 

modification on the infiltration of immune cells and the 

expression of immune-related genes in AF. 

 

In this study, the effects of m6A modification on immune 

cell infiltration, inflammation, immune-related pathways, 

and key immune-related genes in AF were explored,  

and several meaningful new findings were obtained. 

First, we found that the expression levels of RBM15B, 

IGFBP2, IGFBP3 and ALKBH5 were significantly 

increased, while the expression levels of HNRNPC  

and HNRNPA2B1 were significantly decreased in AF 

samples compared with SR samples, suggesting that 

these six key m6A regulators are involved in the 

development of AF. Meanwhile, a nomogram model 

based on the above 6 key m6A regulators suggested a 

diagnostic value of up to 82.5% to distinguish AF from 

healthy participants. This meaningful model will help us 

to screen high-risk individuals susceptible to atrial 

fibrillation at an early stage in clinical practice, and these 

m6A regulators may be potential novel molecular targets 

to help diagnose or treat AF. Second, we identified three 

distinct m6A modification patterns (m6A cluster-A, -B 

and -C) using unsupervised clustering of AF samples 

based on the expression values of six key m6A 

regulators. We found that there was relatively higher 

infiltration of activated CD4 T cells, activated CD8 T 

cells, activated dendritic cells, CD56dim natural killer 

cells, immature dendritic cells, MDSCs, neutrophils, 

plasmacytoid dendritic cells and type-2 T helper cells in 

the m6A cluster-C group than in the m6A cluster-A 

group, suggesting the essential role of m6A modification 

in the regulation of the immune microenvironment in AF. 

Presently, the classification strategy of immune subtypes 

is widely used in the cancer field, and identifying new 

immune subtypes can help to formulate better treatment 

plans for hepatocellular carcinoma [22]. Thus, this 

classification strategy of immune subtypes can also help 

us subtype AF samples at the immune level or molecular 

level and help us to implement individualized 

immunotherapy for patients with active immune activity. 
 

In recent years, some key molecules related to immune 

cells have been discovered and are considered new 

biomarkers to help diagnose disease or predict 

prognosis [23, 24]. Li et al. found that PPBP, CXCL12 

and CCL4, as novel molecular markers for the diagnosis 

of valvular atrial fibrillation, were positively correlated 

with the infiltration of various immune cells, such as 

neutrophils, plasma cells and resting dendritic cells 

[25]. Liu et al. also noticed that BECN1, ATG7, 

BCL2L1 and MYC, as novel molecular markers for the 

diagnosis of valvular atrial fibrillation, were positively 

correlated with the infiltration of neutrophils and 

negatively correlated with the infiltration of memory 

resting CD4 T cells and T follicular helper cells. 

Meanwhile, they found that the fractions of memory 

resting CD4 T cells and T follicular helper cells were 

decreased, and the fractions of resting dendritic cells, 

plasma cells, neutrophils, and monocytes were 

significantly increased in AF patients compared with 

SR subjects [26]. These results partially elucidated the 

pattern of immune cell infiltration in AF and identified 

several new molecular markers associated with the 

pathogenesis of AF. However, the identification of 

these key genes is based on differential expression 

analysis of genes. Currently, WGCNA, as a more 

effective bioinformatics analysis method, is expected to 

identify key genes ignored by differential gene analysis 

by constructing a scale-free gene coexpression network 

and identifying gene modules that are significantly 

related to phenotypes [27]. Meanwhile, machine 

learning is often used to improve the accuracy and 

prediction of several key genes identified based on 

traditional microarray or next-generation sequencing 

data [28]. Recently, the SVM-RFE algorithm and 

LASSO regression analysis have been the most widely 

used machine learning methods to identify key genes 

[29]. Thus, in the current research, WGCNA combined 

with machine learning methods was used to identify key 

immune-related genes involved in the pathogenesis of 

AF. We noticed that the lightcyan and lightgreen 

modules were significantly associated with infiltrating 

immune cells, such as regulatory T cells, follicular 

helper T cells, MDSCs and activated CD8 T cells. Then, 

a total of 16 overlapping genes were identified by both 

the SVM-RFE algorithm and LASSO regression 

analysis. Moreover, we also noticed that the expression 

levels of NCF2 and HCST were significantly different 

between control and AF patient samples and among AF 

patient samples with three distinct m6A modification 

patterns. Meanwhile, RT‒qPCR analysis also proved 

that the expression of NCF2 and HCST was 

significantly increased in AF patients compared with 

SR subjects. These results consistently indicate that 

NCF2 and HCST are significantly related to the 

pathogenesis of AF, and elucidating the molecular 
mechanism of their involvement in AF is expected to 

provide new molecular targets for the prevention and 

treatment of AF. 
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Currently, the NCF2 gene and its genetic variants have 

been reported to be associated with susceptibility to a 

variety of inflammation- or immune-related diseases. 

Cunninghame et al. found that rs10911363, an intronic 

variant in the NCF2 gene, was associated with systemic 

lupus erythematosus (SLE) susceptibility in a European 

population [30]. Jiao et al. proved that the rs10911362 

variant in the NCF2 gene was correlated with decreased 

tuberculosis and pulmonary tuberculosis susceptibility in 

a Chinese population [31]. In addition, Li et al. suggested 

that the NCF2 gene is expected to become a molecular 

marker for the diagnosis of pulmonary tuberculosis, and 

its expression was significantly increased in patients with 

pulmonary tuberculosis [32]. Su et al. found that the 
NCF2 gene was significantly overexpressed in advanced 

atherosclerotic plaques and may play a key role in  

the development of psoriasis complicated with 

atherosclerosis [33]. Moreover, some scholars have found 

that NCF2 may be a key molecule in patients with 

nonalcoholic fatty liver disease complicated with AF 

[34], and the expression of NCF2 is significantly 

upregulated in patients with AF [35]. On the other hand, 

Zhou et al. found that overexpression of immune-related 

genes, such as HCST, was significantly correlated with 

high infiltration of immune cells, especially dendritic 

cells, in clear cell renal cell carcinoma (ccRCC), and high 

expression of HCST was significantly correlated with 

poorer prognosis in ccRCC patients [36]. Wang et al. 

revealed that HCST is significantly associated with some 

immune cells, such as CD8 T cells, B cells, macrophages, 

CD4 T cells, dendritic cells and neutrophils, and is 

involved in several inflammatory or immune-related 

signaling pathways, including the T-cell receptor 

signaling pathway, cytokine‒cytokine receptor signaling 

pathway, chemokine signaling pathway, pathways 

involving cell adhesion molecules, FC gamma-mediated 

phagocytosis and B-cell receptor signaling pathway, and 

that overexpression of HCST can significantly affect the 

clinical stage, tumor grade and prognosis of kidney renal 

clear cell carcinoma (KIRC) [37]. However, the 

correlation between NCF2, HCST and immune cells and 

whether the expression levels of NCF2 and HCST are 

affected by the m6A modification pattern in AF remain 

unclear. In the current research, we found that NCF2 

and/or HCST were positively correlated with multiple 

immune cells, excluding CD56dim natural killer cells, 

and their expression levels were significantly upregulated 

in the m6A cluster-B and -C groups compared with the 

m6A cluster-A group. Meanwhile, a positive correlation 

between NCF2, HCST and several inflammation- or 

immune-related HALLMARKS pathways was also 

observed. These results indicate that NCF2 and HCST are 

key immune regulatory molecules involved in AF. 
 

The current research had several limitations. First, the 

validation sample size in this study was small, and the 

subjects were recruited from a single center, so these 

findings still need to be validated in other multicenter 

studies or studies with larger sample sizes. Second, the 

immune cell analysis in this study adopts the most 

widely used analysis method to quantify the number of 

immune cells, but single-cell sequencing is still required 

to obtain the most accurate number of immune cells. 

Third, we were unable to obtain more clinical features 

or serological results of AF samples in the GSE31821, 

GSE41177, GSE79768 and GSE115574 datasets. 

Therefore, it is difficult to reveal the key role of m6A 

modification in immune regulation from multiple 

perspectives, and the analysis results are relatively 

singular. Fourth, most of the findings in this study are 

based on bioinformatics analysis. Although RT‒qPCR 

was used to verify the expression of NCF2 and HCST in 

clinical samples, the relationship between NCF2, HCST 

and immune cells and immune-related pathways still 

needs to be verified by more in vitro and in vivo 

experiments. 

 

In conclusion, m6A modification plays a key role  

in the complexity and diversity of the immune 

microenvironment of AF. Immunotyping of patients 

with AF will help to develop more accurate 

immunotherapy strategies for patients with a significant 

immune response. The m6A modification can affect the 

expression of the immune-related genes NCF2 and 

HCST, and NCF2 and HCST are expected to become 

new targets for immunotherapy of AF. 

 

MATERIALS AND METHODS 
 

AF microarray datasets 

 

GSE31821, including 6 atrial tissue samples (2 SR and 4 

AF samples), GSE41177, including 19 atrial tissue 

samples (3 SR and 16 AF samples), GSE79768, 

including 26 atrial tissue samples (12 SR and 14 AF 

samples), and GSE115574, including 59 atrial tissue 

samples (31 SR and 28 AF samples), were downloaded 

from the Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo). These datasets were 

based on the GPL570 Affymetrix Human Genome U133 

Plus 2.0 array. An integrated gene expression matrix was 

obtained after normalization and elimination of 

interbatch differences between GSE31821, GSE41177, 

GSE79768 and GSE115574. The gene expression 

profiles of GSE31821, GSE41177, GSE79768 and 

GSE115574 were normalized by the “limma” package 

[38]. When a probe corresponded to multiple genes at 

the same time, it was excluded from the analysis. When 

multiple different probes corresponded to the same gene, 

we took the average gene expression value detected by 

those probes as the true expression value of the gene. 

The interbatch differences between the GSE31821, 

http://www.ncbi.nlm.nih.gov/geo


www.aging-us.com 1383 AGING 

GSE41177, GSE79768 and GSE115574 datasets were 

eliminated by the ComBat function in the “sva” package 

in R software. 

 

Identification of key m6A regulators 

 

The Wilcoxon test was used to evaluate the expression 

status differences of 23 m6A regulators between healthy 

individuals and AF patients. Then, a random forest 

model was constructed by the “randomForest” package 

in R and used to identify key m6A regulatory factors. 

Specifically, the average model error rate of all m6A 

regulatory factors was calculated, the optimal number of 

variables of the binary tree in the node was set as 6, and 

300 was selected as the optimal number of trees 

contained in the random forest. Then, the random forest 

model was constructed, and the decreasing precision 

method (Gini coefficient method) was used to obtain the 

dimension importance value from the random forest 

model. Factors with importance values greater than 2 

[39, 40] were selected as key m6A regulators for 

subsequent model construction. 

 

Construction and verification of the nomogram 

 

The predictive nomogram was constructed by the “rms” 

package in R software based on the expression values of 

six key m6A regulators. Then, the calibration curve was 

used to assess the predictive power of the nomogram 

model. Decision curve analysis was used to evaluate the 

clinical value of the nomogram model. Finally, receiver 

operating characteristic (ROC) analysis was used to 

evaluate the diagnostic performance of the nomogram 

model in distinguishing AF patients from healthy 

subjects. 

 

Identification of the m6A modification pattern 

 

Based on the expression of six key m6A regulators, 

unsupervised clustering analysis was used to identify 

different m6A modification patterns in AF. The 

robustness and cluster numbers were calculated by the 

consensus clustering algorithm [41, 42]. The R package 

“ConsensuClusterPlus” was utilized to perform the 

above steps for 1000 iterations to guarantee the 

robustness of the classification [43]. Principal 

component analysis (PCA) was used to further verify 

the different m6A modification patterns distinguished 

by six key m6A regulators. 

 

Single-sample gene set enrichment analysis (ssGSEA) 

and GSVA enrichment analysis 

 
Single-sample gene-set enrichment analysis (ssGSEA) 

was used to estimate the number of specific infiltrating 

immune cells between controls and AF patients as well 

as among distinct m6A modification patterns, which 

defines an enrichment score to represent the degree of 

absolute enrichment of a gene set in each sample within 

a given dataset [44]. The list of infiltrating immunocyte 

gene sets was obtained from a previous study [41]. The 

Wilcoxon test was utilized to compare enrichment 

scores representing immunocyte abundance between 

different m6A modification patterns. 

 

GSVA enrichment analysis was used to evaluate the 50 

HALLMARK pathways between control and AF patient 

samples as well as among AF patient samples with three 

distinct m6A modification patterns via the ‘GSVA’ 

package in R software. The gene sets of ‘h.all.v7.0. 

symbols’ were extracted from the MSigDB database [45] 

(http://software.broadinstitute.org/gsea/msigdb/index.jsp) 

to run GSVA. Then, the correlations between hub genes 

and infiltrating immune cells and 50 HALLMARK 

pathways were determined by Spearman correlation 

analysis. 

 

WGCNA analysis 

 

A scale-free network based on a gene expression matrix 

was constructed using WGCNA, which is one of the 

most commonly used tools in systems biology [46]. 

Genes with the top 25% of variance were selected for 

the WGCNA. In the current research, the appropriate 

soft threshold was defined as 14, and detailed WGCNA 

steps refer to the method described in our recently 

published article [47]. 

 

Enrichment analysis of genes in meaningful modules 

 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

and gene ontology (GO) functional enrichment analyses 

based on the expression profile of genes in the 

meaningful modules were performed by clusterProfer 

and the DOSE package [48]. The threshold was defined 

as FDR < 0.05. 

 

Identification of key genes using machine learning 

 

At present, the least absolute shrinkage and selector 

operation (LASSO) and support vector machine-

recursive feature elimination (SVM-RFE) algorithms 

are the two most commonly used machine learning 

methods for identifying key genes with the best 

prognostic value for disease. Based on the expression 

profile of genes in the meaningful modules, the 

“glmnet” package in R was used to perform LASSO 

logistic regression analysis [49]. In addition, SVM-RFE 

acts as an effective feature selection technique that finds 
the best variables by deleting the feature vector 

generated by SVM [50]. The selected biomarkers in the 

diagnosis of AF were analyzed and classified by the 

http://software.broadinstitute.org/gsea/msigdb/index.jsp
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SVM classifier based on the SVM function in the e1071 

package. The overlapping key genes identified by the 

above machine learning methods were defined as hub 

genes. The differential expression of hub genes between 

controls and AF patients as well as among AF samples 

with several distinct m6A modification patterns was 

analyzed by t test and analysis of variance (ANOVA), 

respectively. 

 

Study population 

 

A total of 91 SR subjects and 86 persistent AF patients 

were recruited from the Cardiology Department of 

Hunan Provincial People’s Hospital. AF lasting more 

than 7 days was defined as persistent AF [51]. Patients 

with a history of type 1 diabetes, hematologic disease, 

hypertension, coronary heart disease, neoplasia, 

autoimmune disease, and renal or liver diseases were 

excluded. 

 

RT‒qPCR 

 

According to the manufacturer’s instructions, total RNA 

was extracted from peripheral blood using the UNlQ-10 

Column TRIzol Total RNA Isolation Kit (Sangon 

Biotech, Shanghai, China). The purity and concentration 

of the extracted RNA was checked by a NanoDrop 2000 

Spectrophotometer (Thermo Fisher Scientific, Waltham, 

MA, USA), with an A260/A280 between 1.8 and 2.0. The 

cDNA was reverse-transcribed using the PrimeScriptTM 

RT Reagent Kit (Takara, Otsu, Japan). Using GAPDH as 

a reference, we performed quantitative RT‒PCR on an 

ABI 7500 instrument (Applied Biosystems, Waltham, 

MA, USA) using a Taq PCR Master Mix Kit (Takara, 

Otsu, Japan). Primer sequences for hub genes and 

references were designed and validated by Songon 

Biotech (Songon Biotech, Shanghai, China). The 2−ΔΔCt 

method was used to calculate the relative expression level 

of hub genes. The t test was used to compare the 

expression of hub genes between controls and AF 

patients. The ROC curves were constructed based on the 

expression levels of the hub genes. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Standardization and principal component analysis of all samples. (A) Normalized for all samples. (B) 

Principal component analysis for all samples. 
 

 
 

Supplementary Figure 2. Enrichment analysis of the genes in the meaningful modules. (A) GO functional enrichment analysis. (B) 
KEGG pathways analysis. The gene number was represented at x-axis, the KEGG pathway and GO terms were presented at y-axis. 
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Supplementary Figure 3. Heatmap of correlations between NCF2 as well as HCST genes and infiltrating immune cells and 50 
HALLMARKS pathways. (A) The relationship between infiltrating immune cells and the NCF2 and HCST genes. (B) The relationship 

between 50 HALLMARKS pathways and the NCF2 and HCST genes. *P < 0.05; **P < 0.01; ***P < 0.001. 
 

 

 

 

 
  



www.aging-us.com 1391 AGING 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 3, 4, 5, 6, 7. 

 
Supplementary Table 1. The expression profile of the 21652 genes in the datasets of GSE31821, GSE41177, GSE76796 
and GSE115574. 

 
Supplementary Table 2. The m6A RNA methylation modification patterns mediated by 6 key m6A regulators in AF. 

ID RBM15B HNRNPC HNRNPA2B1 IGFBP2 IGFBP3 ALKBH5 m6Acluster 

GSM789271_treat 5.90138 7.129 8.058032 9.083843 10.027447 7.460989 A 

GSM789272_treat 6.585327 7.377221 7.066014 10.813303 10.0168 7.8383 B 

GSM789274_treat 6.258503 7.531016 8.161363 9.405052 10.37481 7.624308 C 

GSM789275_treat 6.474373 7.389506 7.228629 9.302356 9.066857 7.742908 C 

GSM1005424_treat 6.262892 7.408608 7.810999 10.117958 9.868154 7.598898 C 

GSM1005426_treat 6.412639 7.339644 7.8383 10.299514 9.623874 7.605746 C 

GSM1005428_treat 6.435906 7.372142 7.328194 10.48625 9.491856 7.665631 B 

GSM1005430_treat 6.430108 7.380779 7.778062 9.810857 9.88699 7.572645 C 

GSM1005432_treat 6.261587 7.384813 7.804135 9.435905 9.538878 7.474808 C 

GSM1005434_treat 6.343933 7.352928 7.663704 9.979509 9.990233 7.55616 C 

GSM1005436_treat 6.409742 7.402653 7.443494 9.88699 10.092063 7.580118 C 

GSM1005438_treat 6.291567 7.39058 7.567494 9.86198 10.066885 7.515343 C 

GSM1005440_treat 6.359973 7.374409 7.30202 9.881155 9.963446 7.605746 C 

GSM1005442_treat 6.270799 7.399298 7.722304 9.841396 9.57037 7.532237 C 

GSM1005444_treat 6.490407 7.477738 7.340784 10.257411 9.510538 7.75741 C 

GSM1006245_treat 6.354654 7.442932 7.726283 9.706861 10.114567 7.634785 C 

GSM1006247_treat 6.632033 7.283248 7.904238 10.287115 9.906506 7.543983 C 

GSM1006249_treat 6.542227 7.186585 7.930539 10.037417 9.349632 7.230754 C 

GSM1006251_treat 6.185407 7.41665 7.782726 9.792959 9.588153 7.390041 C 

GSM1006253_treat 6.26602 7.377221 7.648592 9.792959 9.445125 7.49398 C 

GSM2102184_treat 6.153389 7.511045 7.989245 10.918397 10.166073 7.630532 B 

GSM2102185_treat 6.206053 7.49464 7.663039 10.519623 10.941273 8.067351 B 

GSM2102186_treat 6.285993 7.525887 7.67074 9.477383 8.425224 7.621636 C 

GSM2102187_treat 6.091918 7.607638 8.185945 8.479291 9.242633 7.563582 A 

GSM2102188_treat 6.127192 7.277583 7.887248 9.38702 9.69243 6.942886 C 

GSM2102189_treat 6.225165 7.273687 7.982342 9.661232 10.536379 7.736113 C 

GSM2102190_treat 6.605199 7.331015 7.529836 10.429378 8.932519 7.53881 B 

GSM2102191_treat 6.558832 6.843365 7.640226 9.289926 9.755126 7.711509 C 

GSM2102192_treat 6.473328 7.131818 7.560531 9.760976 9.11236 7.349055 C 

GSM2102193_treat 6.206053 7.380779 7.962586 8.014668 10.450505 7.786423 A 

GSM2102194_treat 6.541586 7.331607 7.565579 9.912989 8.996157 7.69189 C 

GSM2102195_treat 6.577509 7.306838 6.94679 9.859129 9.332328 8.33254 C 

GSM2102196_treat 6.266912 7.335861 7.658575 6.649301 9.947684 7.859217 A 

GSM2102197_treat 6.928074 6.971467 7.782726 9.183712 8.754232 7.649273 C 

GSM3182680_treat 6.451409 7.344628 7.666274 10.502601 8.380627 7.747689 B 

GSM3182681_treat 6.29024 7.246575 7.339644 9.629004 9.993466 7.839076 C 

GSM3182682_treat 6.116225 7.191712 7.366893 10.723776 8.908684 7.810999 B 

GSM3182683_treat 6.331233 7.402653 7.520917 10.051576 9.925384 7.595759 C 

GSM3182684_treat 6.565227 7.342487 7.717524 10.799913 9.144803 7.608857 B 

GSM3182685_treat 6.123798 7.309552 7.675719 8.650796 10.084928 7.829262 A 
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GSM3182686_treat 6.441962 7.041962 7.582069 10.910656 9.046697 7.399848 B 

GSM3182687_treat 6.473962 7.263157 7.521482 9.51298 9.906506 7.780009 C 

GSM3182688_treat 6.34714 7.189202 7.48677 11.323854 10.102326 7.601435 B 

GSM3182689_treat 6.515523 7.527979 8.163929 10.949486 9.631794 7.125972 B 

GSM3182690_treat 6.126871 7.380779 7.749103 10.799913 9.943886 7.272573 B 

GSM3182691_treat 6.384972 7.450711 7.957127 9.732656 10.491708 7.6409 C 

GSM3182692_treat 6.624983 7.20753 8.019662 8.689859 9.43333 7.210897 A 

GSM3182693_treat 6.408093 7.499333 7.663039 9.051927 10.261423 7.252255 A 

GSM3182694_treat 5.759048 7.147268 7.850979 11.034949 8.870444 6.644807 B 

GSM3182695_treat 6.218431 6.932924 7.709471 10.577904 9.996985 7.522144 B 

GSM3182696_treat 6.896041 6.749387 6.905003 11.061198 9.426002 7.398668 B 

GSM3182697_treat 6.243748 6.926863 7.101934 11.968874 11.093496 7.864051 B 

GSM3182698_treat 6.203795 7.425675 7.812532 11.755773 9.300529 8.211354 B 

GSM3182699_treat 5.949588 7.403739 7.410937 11.981442 11.248291 8.009548 B 

GSM3182700_treat 5.91652 7.239622 8.155872 9.897344 8.386245 7.374409 C 

GSM3182701_treat 6.04131 7.221645 7.688407 8.574566 10.730452 7.976127 A 

GSM3182702_treat 6.290576 7.355592 7.309552 10.641517 9.20503 7.940356 B 

GSM3182703_treat 6.837514 7.388342 7.407493 10.903509 10.460398 8.209532 B 

GSM3182704_treat 6.74385 7.222691 7.660359 11.350736 9.260431 7.323158 B 

GSM3182705_treat 6.525857 7.165862 8.441135 6.14668 10.778199 5.754425 A 

GSM3182706_treat 6.083648 6.797624 7.952319 8.57177 10.218241 7.377736 A 

GSM3182707_treat 6.333223 6.878329 7.695903 9.684138 7.761619 7.504573 B 

 

Supplementary Table 3. The immune microenvironment characteristics in control and AF samples. 

 

Supplementary Table 4. The results of gene set variation analysis enrichment analysis. 

 

Supplementary Table 5. The genes in the lightgreen and lightcyan modules. 

 

Supplementary Table 6. Detailed results of the GO enrichment analysis. 

 

Supplementary Table 7. Detailed results of the KEGG enrichment analysis. 
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Supplementary Table 8. The details genes symbols 
of several key genes identified by two distinct 
machine learning methods. 

Common elements in LASSO and SVM-RFE : 

AMICA1 

BCAT1 

C16orf54 

C1QC 

CD14 

CD48 

CD8A 

CORO1A 

CXCL12 

HCLS1 

HCST 

HMHA1 

IGLV1-44 

LAPTM5 

NCF2 

TNFSF13 

Elements only in LASSO : 

C1S 

CASP1 

CD2 

CTSS 

GZMH 

HLA-DMB 

HPGDS 

ITGAM 

LCK 

LYZ 

MS4A7 

SLC7A7 

VAMP8 

Elements only in SVM-RFE : 

HLA-DRA 

LYN 

HLA-DMA 

LYVE1 

IGLC1 

CCL5 

CD163 

GIMAP2 

RNASE6 

MARCKS 

CCL19 

MRC1 

 


