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ABSTRACT 
 
Background: The high heterogeneity of triple negative breast cancer (TNBC) is the main clinical challenge for 
individualized therapy. Considering that fatty acid metabolism (FAM) plays an indispensable role in 
tumorigenesis and development of TNBC, we proposed a novel FAM-based classification to characterize the 
tumor microenvironment immune profiles and heterogeneous for TNBC. 
Methods: Weighted gene correlation network analysis (WGCNA) was performed to identify FAM-related genes 
from 221 TNBC samples in Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset. 
Then, non-negative matrix factorization (NMF) clustering analysis was applied to determine FAM clusters based 
on the prognostic FAM-related genes, which chosen from the univariate/multivariate Cox regression model and 
the least absolute shrinkage and selection operator (LASSO) regression algorithm. Then, a FAM scoring scheme 
was constructed to further quantify FAM features of individual TNBC patient based on the prognostic 
differentially expressed genes (DEGs) between different FAM clusters. Systematically analyses were performed 
to evaluate the correlation between the FAM scoring system (FS) with survival outcomes, genomic 
characteristics, tumor microenvironment (TME) features and immunotherapeutic response for TNBC, which were 
further validated in the Cancer Genome Atlas (TCGA) and GSE58812 datasets. Moreover, the expression level and 
clinical significancy of the selected FS gene signatures were further validated in our cohort. 
Results: 1860 FAM-genes were screened out using WGCNA. Three distinct FAM clusters were determined by NMF 
clustering analysis, which allowed to distinguish different groups of patients with distinct clinical outcomes and 
tumor microenvironment (TME) features. Then, prognostic gene signatures based on the DEGs between different 
FAM clusters were identified using univariate Cox regression analysis and Lasso regression algorithm. A FAM 
scoring scheme was constructed, which could divide TNBC patients into high and low-FS subgroups. Low FS 
subgroup, characterized by better prognosis and abundance with effective immune infiltration. While patients 
with higher FS were featured with poorer survival and lack of effective immune infiltration. In addition, two 
independent immunotherapy cohorts (Imvigor210 and GSE78220) confirmed that patients with lower FS 
demonstrated significant therapeutic advantages from anti-PD-1/PD-L1 immunotherapy and durable clinical 
benefits. Further analyses in our cohort found that the differential expression of CXCL13, FBP1 and PLCL2 were 
significantly associated with clinical outcomes of TNBC samples. 
Conclusions: This study revealed FAM plays an indispensable role in formation of TNBC heterogeneity and TME 
diversity. The novel FAM-based classification could provide a promising prognostic predictor and guide more 
effective immunotherapy strategies for TNBC. 
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INTRODUCTION 
 
Triple-negative breast cancer (TNBC), as defined by the 
absence of estrogen receptor (ER) and progesterone 
receptor (PR), and human epidermal growth factor 
receptor 2 (HER2), is a heterogeneous breast cancer 
subtype that carries the worst prognosis due to its 
aggressive characteristics and limited therapeutic options 
[1, 2]. Much effort has been devoted over the past decade 
in classifying TNBCs into several molecular subtypes 
with distinct mutational profiles, genomic alterations, 
and biological processes that could guide treatment 
decisions [3–7]. 
 
Lipid metabolism, especially the synthesis of fatty acids 
(FAs), is an important cellular process that converts 
nutrients into metabolic intermediates for membrane 
biosynthesis, energy storage, and signal molecule 
production [8]. Abnormal lipid metabolism is one of the 
hallmarks of cancer. Increasing evidence confirmed the 
significance role of FAM in carcinogenesis, affecting 
cell–matrix interaction, cell signaling and com-
munication, as well as tumor angiogenesis and 
metastasis, and immune modulation [9, 10]. Targeting 
FAM process has become a promising therapeutic 
strategy for tumors [11, 12]. However, researches of 
FAM-relevant molecular stratification in TNBC have not 
yet been established. 
 
Recently, immune checkpoint inhibitors (ICIs) has 
achieved an impressive clinical response in various types 
of cancer, whereas the overall response rate and clinical 
benefit rate is still unsatisfied in TNBC [13–15]. The 
biological and functional heterogeneity of T cells is a 
pivotal determinant for effective antitumor immunity and 
immunotherapy. Therefore, it is critical to further 
elucidate the molecular mechanism of T cell dysfunction 
in tumor microenvironment. 
 
The mechanism of Immunometabolism in regulating 
the function and fate of immune cells has been widely 
concerned. Previous studies found that tumor cells and 
Treg cells drove elevated expression of group IVA 
phospholipase A2, then altered lipid metabolism and 
senescence of T cells. Inhibition of group IVA 
phospholipase A2 reprogrammed effector T cell lipid 
metabolism, effectively prevented T cell senescence, 
and enhanced anti-tumor immunity and immuno-
therapy efficacy [16]. Meanwhile, S-palmitoylation, a 
lipid process that covalently binds palmitic acid to 
protein residues, has been found to play an 
indispensable role in maintaining PD-L1 stability and 
inhibiting T cell cytotoxicity [17]. However, the 
specific effects of FAM on the tumor micro-
environment immune profiles in TNBC are not fully 
studied. 

In this study, we comprehensively evaluated the 
association between FAM and TME cell-infiltrating 
characteristics and heterogeneous by integrating the 
transcriptomic and genomic data of 470 TNBC samples 
from METABRIC, TCGA and GEO databases. Firstly, 
FAM-related genes were identified by applying WGCNA 
in TNBC patients. Then, 3 distinct FAM clusters with 
nonnegative matrix factorization (NMF) clustering were 
identified. Moreover, we constructed a scoring scheme to 
quantify the FAM features in individual TNBC patient. 
The prognosis traits, genomic variations, transcriptome 
features, as well as immune infiltration among the 
different FAM subtypes were further analyzed and 
verified. These findings indicated that FAM plays a crucial 
role in reshaping the heterogeneous and tumor immune 
microenvironment in TNBC. 
 
METHODS 
 
Data acquisition and preparation 
 
The workflow was shown in Supplementary Figure 1. 
TNBC patients with full clinical annotations and  
RNA-seq data were searched from Molecular Taxonomy 
of Breast Cancer International Consortium 
(METABRIC, http://www.cbioportal.org/datasets), the 
Cancer Genome Atlas (TCGA, https://portal.gdc. 
cancer.gov/repository), and Gene-Expression Omnibus 
(GEO, http://www.ncbi.nlm.nih.gov/geo/) datasets. In 
total, 470 TNBC samples were included in our study for 
further analysis. The microarray data of the 
METABRIC (N = 221) was served as training dataset. 
The normalized RNA-seq data which acquired  
from TCGA database (N = 142) and the gene expression 
profiles from GSE58812 (N = 107) were used as 
independent validation datasets. R package ‘limma’ 
was applied for gene expression normalization [18]. 
 
Identification of FAM-related genes 
 
The hallmark gene sets of fatty acid metabolism (FAM), 
which including 158 FAM relevant genes, were extracted 
from the Molecular Signatures Database (MSigDB) 
(https://www.gseamsigdb.org/gsea/msigdb/). First, we 
calculated the FAM ssGSEA score in METABRIC-
TNBC samples by the ssGSEA algorithm (R package 
“gsva”) [19]. Then, we screened out the FAM module 
and FAM genes by the R package “wgcna” [20]. 
Pearson’s correlation matrices, co-expression similarity 
matrix, and average linkage method were performed to 
estimate the correlation coefficient between any two 
genes. A weighted adjacency matrix with a scale free co-
expression network and topological overlap matrix 
(TOM) were constructed to investigate the connectivity 
and dissimilarity of the co-expression network. A 
hierarchical clustering tree was established based on the 
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TOM dissimilarity, which could identify the key modules 
and genes. Then, we set the module membership (MM) 
>0.8 and gene significance (GS) > 0.5 to identify the 
correlation between genes and FAM ssGSEA score. 
Totally, 1860 candidate FAM-related genes were 
identified from the FAM module. 
 
Prognostic value analysis  
 
The prognostic significance of the FAM-related genes 
which obtained from the WGCNA was analyzed by 
univariate Cox regression model using the R package 
“survival”. Then, LASSO Cox regression algorithm was 
applied to further select prognostic FAM genes using the 
R package “glmet” [21]. Subsequently, the most robust 
prognostic gene signatures for OS were chosen by 
performing multivariate Cox regression model in 
METABRIC-TNBC patients. 
 
Non-negative matrix factorization (NMF) clustering 
analysis  
 
Based on the expression of 8 prognostic FAM-related 
genes, we then applied NMF clustering analyses to 
identify distinct FAM clusters. The optimal number of 
clusters and their stability were determined by the 
consensus clustering algorithm. The R package “NMF” 
was used to perform the consensus clustering [22]. 
 
Identification of differentially expressed genes 
(DEGs) between distinct FAM clusters 
 
DEGs between distinctFAM clusters were identify using 
the R package “limma” [18]. The significance criteria for 
determining DEGs was set as adjusted P value < 0.01. 
 
Gene set variation analysis (GSVA) and functional 
annotation 
 
GSVA enrichment analysis using “GSVA” R packages 
were performed to investigate the variation in biological 
process between different FAM clusters [19]. The gene 
sets of “c2.cp.kegg.v7.1.symbols” were downloaded 
from MSigDB database for running GSVA analysis. 
Adjusted P value < 0.05 was considered as statistically 
significance. The “clusterProfiler” R package was used 
to perform functional annotation for DEGs between 
different FAM clusters, with the cutoff value of FDR < 
0.05 and P < 0.05 [23]. 
 
Estimation of TME cell infiltration 
 
ssGSEA algorithm was used to quantify the relative 
abundance of 28 immune cell types in the TME [24, 25]. 
CIBERSORT algorithm was applied to analyze the  
 

components of 22 immune cell types among different FAM 
subgroups [26]. MCP-counter was performed to show the 
immune-related activity among different FAM subgroups 
using the ‘MCPcounter’ package [27]. The immune and 
stromal compositions in TME were further estimated using 
the ‘estimate’ package [28]. Moreover, the expression of 
key immune profiles was compared between different FAM 
clusters. 
 
Generation of a novel FAM-based classification  
 
To quantify the FAM features of individual TNBC 
patient, we explored a novel FAM-based classification—
the FAM scoring system (FS) to investigate the FAM 
features of individual TNBC patient. Specifically, 782 
overlap DEGs were identified from different FAM 
clusters, we then extracted the prognostic gene signatures 
using univariate Cox regression model and Lasso 
regression algorithm. Finally, 8 genes were chosen to 
construct the FAM scoring system. The FAM Score (FS) 
was calculated by the corresponding coefficients of 
selected gene signatures: 
 
FAM Score =Σ i Coefficient (mRNA) × Expression 
(mRNA) 
 
Where i represent the selected gene signatures. 
 
Gene set variation analysis (GSVA)  
 
We then performed GSVA to further reveal the most 
significantly enriched molecular pathways between 
different FS subgroups using the R package “GSVA” 
[19]. The gene sets of “c2.cp.kegg.v7.1.symbols” were 
downloaded from MSigDB database. Adjusted P value < 
0.05 was considered as statistically significance. 
 
Significantly mutated genes and tumor mutation 
burden in different FS groups 
 
Principal component analysis (PCA) for the expression 
profiles of 8 FS gene signatures were analyzed and 
presented between tumor and normal samples in TCGA 
cohort. Moreover, the CNV variation frequency of 8 FS 
gene signatures were further evaluated in TCGA-TNBC 
cohort. The R package of RCircos was applied to depict 
the copy number variation landscape of these selected 
gene signatures in 23 pairs of chromosomes [29]. Using 
the R package maftools [30], the overall mutation 
landscape was summarized and present in patients with 
high and low FS subgroups in TCGA cohort. Based on 
the TGCA somatic mutation data, we then calculated 
TMB scores to assess the mutation status between high 
and low FS subgroups. 
 



www.aging-us.com 1180 AGING 

Genomic and clinical data sets with immune-
checkpoint blockade 
 
The immunotherapeutic cohorts: IMvigor210 cohort 
(advanced urothelial cancer treated with atezolizumab, 
anti PD-L1 antibody) [31] and GSE78220 cohort 
(metastatic melanoma with intervention of pem-
brolizumab, an anti PD-1 antibody) [32] were chosen to 
analyze the predictive efficiency of FS scheme for 
immunotherapy. 
 
Exploration of potential compounds targeting the 
selected FAM-related gene signatures 
 
To explore potential compounds targeting the selected FS-
related gene signatures for treatment of TNBC, we 
calculated the therapeutic response of various molecular 
based on their half-maximal inhibitory concentration 
(IC50) which extracted from the CellMiner database [33]. 
 
Validation of the bioinformatics results in clinical 
samples 
 
We first collected 63 paired TNBC tissues and adjacent 
normal tissues (ANT) from Sir Run Run Shaw hospital 
of Zhejiang University School of Medicine. Total RNAs 
was extracted with TRIzol reagent (Invitrogen, USA) 
according to the manufacturer’s instruction, which then 
reverse transcribed into complementary DNA using 
PrimeScript RT MasterMix (Takara, China). Using 
SYBR Green PCR MasterMix (Takara, China), RT 
qPCR was performed according to the manufacturer’s 
instruction. The primers were listed in (Supplementary 
Table 1). The average Ct value were used for each gene 
which repeated three times, β-actin was applied to 
normalize the target genes mRNA expression. 
 
Statistical analysis 
 
Student’s t-tests were applied to analyze normally 
distributed variables, Wilcoxon rank-sum tests were used 
to estimate non-normally distributed variables. One-way 
ANOVA and Kruskal-Wallis tests were performed to 
examine difference comparisons of more than two 
groups. Kaplan-Meier curve and Cox proportional 
hazards model were chosen to investigate the prognostic 
significance of FAM-related genes and FAM subtypes. 
All statistical analyses were done in R 4.0.1 software. 
Statistical significance was determined with a two-sided 
p < 0.05. 
 
Availability of data and materials 
 
All data used in this work can be acquired from the Gene-
Expression Omnibus (GEO; https://www.ncbi. 
nlm.nih.gov/geo/) under the accession number 

GSE78220 and GSE58812, METABRIC and the TCGA 
portal (https://portal.gdc.cancer.gov/). 
 
RESULTS 
 
Identification of FAM-related module and genes 
 
Based on the FAM ssGSEA score we calculated by the 
ssGSEA algorithm, a gene co-expression network was 
constructed with the WGCNA algorithm to identify 
FAM-related module. The most critical parameter of the 
soft threshold power was set at 4 (Figure 1A). Then, a 
hierarchical clustering tree was established to identify the 
key modules and genes (Figure 1B). Figure 1C showed 
that the blue module was positively correlated with 
FAM, which termed as FAM-related module, and the 
genes in the blue module were regarded as FAM-related 
genes (n = 1860). 
 
Different FAM clusters mediated by FAM-related 
genes 
 
Prognostic analysis (including univariate/multivariate 
Cox regression model and Lasso regression algorithm) 
were performed to identify the prognostic values of these 
FAM-related genes (Figure 2A–2C and Supplementary 
Table 2). Then, Consensus Clustering analysis of the 
NMF algorithm were applied to classify patients with 
qualitatively different FAM clusters based on the 
expression of prognostic FAM-related genes (Figure 
2D). Three distinct FAM clusters were eventually 
identified, including 90 cases in FAM cluster C1, 76 
cases in FAM cluster C2 and 55 cases in FAM cluster C3 
(Supplementary Table 3). Prognostic analysis revealed 
that particularly prominent survival advantage in FAM 
cluster-C2, whereas the worst prognosis found in FAM 
cluster-C3 (Figure 2E, 2F). GSVA algorithm showed 
significant differences in KEGG pathways among these 
distinct FAM clusters (Figure 2G, 2H). 
 
TME cell infiltration characteristics in distinct FAM 
clusters  
 
Firstly, we analyzed the enrichment levels of 28 immune 
signatures in the TME of TNBC by performing ssGSEA, 
METABRIC-TNBC samples were further classified into 
three distinct immune subtypes (Figure 3A). 67 patients 
were set at the high-immunity group, which characterized 
by abundance of immune cell infiltration; The low-
immunity group contained 57 patients, which 
characterized by the suppression of immunity, and 97 
patients were present in the modulate-immunity group, 
which represented with inadequate immune cell 
infiltration and ineffective antitumor immunity. Then, we 
analyzed the distribution of immune signatures among 
these distinct FAM clusters. As shown in Figure 3B, FAM 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
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cluster-C2 was markedly associated with high-immunity 
group, whereas FAM cluster-C1 presented high 
proportion of low-immunity group. Then, CIBERSORT 
algorithm and MCPcounter method were used to show the 
differences on the component of TME immune cell 
profiles between distinct FAM clusters. As shown in 
Figure 3C, 3D, FAM cluster-C2 was remarkably enriched 
in innate immune cell infiltration including natural killer 
cell, plasma cells, Myeloid dendritic cell, and cytotoxic 
lymphocytes compared to other FAM clusters. Moreover, 
ESTIMATE analysis found that the diversity distribution 
of the immune and stromal scores between different FAM 
clusters, which suggested that FAM plays an inevitable 
role in tumor microenvironment immune profiles (Figure 
3E, 3F). 
 
Prognostic DEGs between different FAM clusters 
 
Considering the prominently prognostic difference 
among the FAM-clusters, we further examined the 
potential FAM-related transcriptional expression change 
across three FAM clusters in METABRIC-TNBC 
samples. A total of 782 DEGs were identified, which 
depicted in Figure 4A and Supplementary Table 3. 
Univariate Cox regression model based on the 782 DEGs 
was performed to find prognostic FAM-related DEGs 
(Supplementary Table 3). Functional enrichment 
analysis of these prognostic FAM-related DEGs revealed 
that 49 biological processes (BP) related to immune 

response and T cell activation, 23 cellular components 
(CC), including T cell complex and plasma membrane, 
and 14 molecular functions (MF) refer to SH3/SH2 
adaptor activity and transmembrane signaling receptor 
activity were significant enriched; 13 KEGG pathways 
related to primary immunodeficiency and T cell receptor 
signaling pathway were significant over-represented 
(Figure 4B–4E). 
 
Construction of FAM gene signature and FAM 
scoring system 
 
Based on the obtained 140 prognostic FAM-related 
DEGs, Lasso regression analysis was performed to 
stratify TNBCs into different genomic subtypes (Figure 
5A, 5B and Supplementary Table 3). Totally, 8 selected 
FAM-related prognostic genes were identified, which 
were defined as FAM-related gene signatures 
(Supplementary Table 3). Then, a set of FAM scoring 
system, which termed as FAM score (FS), was 
established to quantify the FAM features of individual 
TNBC patient. Consistent with the clustering grouping of 
FAM clusters, two distinct FAM score subgroups were 
found and we named these 2 subgroups as FS-low and -
high. Kaplan-Meier survival analysis shown that 
significant prognostic differences between the low- and 
high- FS subgroups (Figure 5C, 5D), patients with lower 
FS was shown with better survival outcomes. 
Furthermore, multivariate Cox regression model 

 

 
 
Figure 1. Identification of FAM-related module and genes. (A) The optimal soft threshold power was chosen as β = 4. (B) A hierarchical 
clustering tree was established to identify the FAM-related module. (C) The blue module was identified positively correlated with FAM, which 
we termed as FAM module. 
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analysis confirmed that the FS scheme could serve as an 
independent prognostic biomarker for METABRIC-
TNBC patients (Figure 5E and Supplementary Table 4). 
To better illustrate the association between FAM features 
with prognosis, we visualized the attribute variety of 
individual TNBCs by applying alluvial diagram (Figure 
5F). Moreover, significant differences were observed 
between the low and high FS groups refer to KEGG 
pathways (Figure 5G). 
 
TME immune cell profiles between distinct FS 
subgroups  
 
Regarding the immune classification, low-FS subtype 
consisted of more proportions of high- and medium-
immunity tumors, whereas high-FS subtype contained 
mainly low-immunity tumors. (Figure 6A). The results of 
Cibersort and MCPcounter methods revealed the 
different infiltrating abundances of TME immune 
infiltrating cell types between the low- and high-FS  

groups. As shown in Figure 6B, 6C, low-FS subtype was 
remarkably abundant with activate immune cell 
infiltration including cytotoxic lymphocytes, plasma 
cells, CD8+ T cells, NK cells, Myeloid dendritic cell, and 
mast cells compared to the high FS subtype. ESTIMATE 
analysis exhibited the diversity of the immune and 
stromal scores between distinct FS subgroups (Figure 
6D, 6E). Moreover, significant reverse correlation 
between the abundance of immune profiles and FS were 
found in METABRIC-TNBC cohort (Figure 6F). The 
above findings demonstrated that low-FS subtype tumors 
had relatively higher immune infiltration levels 
compared with that in high-FS subtype. 
 
Clinical application of the FAM scoring system in two 
independent cohorts 
 
To further explore the clinical application value of the 
novel FAM-based classification, we drew attention to

 

 
 
Figure 2. Different FAM clusters mediated by FAM-related genes. (A) 78 prognostic FAM genes were further selected by Lasso 
regression algorithm. (B) 8 prognostic FAM-related genes were finally identified applying multivariate Cox regression model. (C) Forest 
plot visualize the prognostic value of 8 prognostic FAM-related genes. (D) Three distinct FAM clusters were established based on the 
expression of prognostic FAM genes using Consensus Clustering analysis of the NMF algorithm. Survival analyses for RFS (E) and OS (F) 
among different FAM clusters in METABRIC-TNBC cohort. (G) Differences in KEGG pathways between the FAM cluster-C1 and FAM cluster-
C3. (H) Differences in KEGG pathways between the FAM cluster-C2 and FAM cluster-C3. 
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Figure 3. TME cell infiltration characteristics in distinct FAM clusters. (A) ssGSEA showed three distinct immunity phenotypes were 
identified in METABRIC-TNBC cohort. (B) The rate of different immunity phenotypes among different FAM clusters. (C) Cibersort revealed the 
abundance of each TME infiltrating cells among different FAM clusters. (D) MCPcounter revealed the abundance of each immune infiltrating 
cell types among different FAM clusters. (E, F) ESTIMATE analysis exhibited the diversity of the immune (E) and stromal score (F) among 
different FAM clusters. 
 

 
 
Figure 4. Prognostic DEGs between different FAM clusters. (A) 782 DEGs were identified across three FAM clusters using the R package 
“limma”. (B–E) Functional annotation for these DEGs using GO enrichment analysis, with the enrichment of GO-BP (B), GO-CC (C), GO-MF (D) 
and KEGG pathways of the 140 prognostic DEGs using univariate Cox regression analysis.  



www.aging-us.com 1184 AGING 

the TCGA and GSE58812 cohorts, which comprised 142 
and 107 TNBC samples, respectively. First, we 
calculated the FAM score for each patient and then 
categorized patients into high- and low-FS subgroups 
based on the cutoff value of their individual FS. Familiar 
to the results of METABRIC-TNBC dataset, prognostic 
analysis also revealed FS-low group was remarkable 
related to prolonged survival, while FS-high group was 

characterized by poorer survival (Supplementary Figure 
2A, 2B and Supplementary Figure 3A, 3B). In addition, 
multivariate Cox regression model for TCGA-TNBC 
cohort supported that FS could serve as an independent 
prognostic biomarker in TNBC (Supplementary Figure 
2C). As for TME immune features, ssGSEA algorithm 
also identified three distinct immunity phenotypes for 
TCGA and GSE58812 cohorts (Supplementary Figure  

 

 
 
Figure 5. Construction of FAM gene signature and FAM scoring system. (A, B) Lasso Cox regression algorithm found the prognostic 
genes from the 140 prognostic DEGs. (C, D) Survival analyses for RFS (C) and OS (D) between low- and high- FS groups in METABRIC-TNBC 
cohort. (E) Multivariate Cox regression analysis confirmed that FS could serve as an independent prognostic biomarker for METABRIC-TNBC 
samples. (F) Alluvial diagram showing the changes of FAM clusters, FS subtypes and overall survival. (G) Differences in KEGG pathways 
between the low- and high FS groups. 
 

 
 
Figure 6. TME cell infiltration characteristics in distinct FS subgroups in METABRIC-TNBC cohort. (A) The rate of different 
immunity phenotypes between the low- and high FS groups. (B) Cibersort revealed the abundance of each TME infiltrating cells between the 
low- and high-FS groups. (C) MCPcounter revealed the abundance of each immune infiltrating cell types between the low- and high-FS groups. 
(D, E) ESTIMATE analysis exhibited the diversity of the immune (D) and stromal score (E) between the low- and high-FS groups. (F) The 
expression of immune profiles between the low- and high-FS groups in METABRIC-TNBC cohort. 
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2D and Supplementary Figure 3C). Regarding the immune 
classification, low-FS subtype also showed greater 
proportion of high- and medium-immunity 
(Supplementary Figure 2E and Supplementary Figure 3D). 
Cibersort and MCPcounter algorithm also revealed that 
effective immune cells were markedly abundant in low-FS 
groups (Supplementary Figure 2F, 2G and Supplementary 
Figure 3E, 3F). ESTIMATE analysis also exhibited higher 
immune and stromal score in the low-FS group 
(Supplementary Figure 2H, 2I and Supplementary Figure 
3G, 3H). The abundance of immune profiles between 
different FS subgroups were found a significant difference 
in TCGA and GSE58812 cohorts (Supplementary Figure 
2J and Supplementary Figure 3I). All the above findings 
demonstrated that the FAM-based classification could be a 
reliable clinically application for predicting 
immunotherapy response and prognosis in TNBC. 
 
Landscape of genomic variation and expression of 
different FS subgroups in TNBC  
 
First, we recapitulated the frequency of copy number 
variations (CNV) of 8 selected FS gene signatures in 
TCGA-TNBC samples (Figure 7A). The locations of 
CNV alterations of these mutated FAM genes on 
chromosomes are shown in Figure 7B. Then, we 
evaluated whether the differential expression of 8 
selected FS gene signatures could distinguish TNBC 

samples from normal samples in TCGA cohort by 
performing principal component analysis (PCA) (Figure 
7C). Furthermore, the mRNA expression levels of these 
selected FAM gene signature were depicted in Figure 
7D, which shown wide diversity between normal and 
TNBC samples. Next, we further investigated the 
allocation diversity of somatic mutation and TMB 
between different FS subgroups in TCGA-TNBC cohort 
using the R package “maftools”. As shown in Figure 7E, 
7F, the top 20 genes of mutation frequency were 
significant different between the low- and high-FS 
subtypes. The TMB score between the low- and high-FS 
subgroups in TCGA-TNBC cohort were further 
summarized in Figure 7G. The above results indicated 
that the potentially complex interaction between genomic 
variation and FS classification in TNBC. 
 
The role of FS scheme in anti-PD-1/L1 
immunotherapy 
  
Immunotherapies represented by PD-L1 and PD-1 
inhibitors were strongly recommended in antitumor 
therapy of advanced TNBC patients. Based on two 
immunotherapy cohorts (IMvigor210 and GSE78220), 
we next investigated the predictive ability of the 
established FS system for patients’ response to immune 
checkpoint blockade. Patients with lower FS exhibited 
higher clinical benefit rates (Figure 8B, 8C and 8F) and 

 

 
 
 
Figure 7. Landscape of genetic and expression variation of FS in TNBC. (A) The CNV variation frequency of FS gene signatures in 
TNBC-TNBC cohort. (B) The location of CNV alteration of FS gene signatures on 23 chromosomes in TCGA-TNBC cohort. (C) Principal 
component analysis for the expression profiles of 8 FS gene signatures to distinguish tumors from normal samples in TCGA-TNBC cohort. (D) 
The expression of 8 FS gene signatures between normal and tumor tissues. (E, F) The waterfall plot of tumor somatic mutation of the low- (E) 
and high-FS subgroups (F) in TCGA-TNBC cohort. (G) The TMB status between the low- and high-FS subgroups in TCGA-TNBC cohort. 
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better survival outcomes (Figure 8A, 8E). In addition, 
patients with higher FS were observed abundant with 
desert immune phenotype, whereas patients with lower 
FS were enriched in inflamed immune phenotype 
(Figure 8D). In summary, the above findings implied 
that the established FAM based classification could be 
a practical and promising biomarker for predicting 
immunotherapy efficiency and survival outcomes in 
TNBC. 
 
Identification of novel candidate compounds 
targeting the selected FAM-related gene signatures  
 
As shown in Supplementary Figure 4, robust positive 
correlation was found between the expression level of 
SH2D1A with IC50 of Nelarabine, Dexamethasone 
Decadron, Fluphenazine and Asparaginase. The IC50 of 
Fulvestrant and Raloxifene appeared to be positively  

associated with the expression level of FBP1, similar 
results were found in the IC50 of Nelarabine and 
Hydroxyurea with the expression level of PLCL2. A 
significantly positive correlation was noted between the 
expression level of IL18RAP and IC50 of Imatinib (all p 
< 0.001). These findings may help to exploring novel 
treatment strategies for targeting the FAM-related gene 
signatures in TNBC patients.  
 
The mRNA levels and prognostic value of selected 
FAM-related genes in our cohort 
 
The RT qPCR assay exhibited the relative mRNA 
expression level of selected FAM-related genes 
(PLCL2, DLL3, DCAF4, CXCL13, RASGEF1A, 
FBP1, SH2D1A and IL18RAP) in TNBCs and adjuvant 
normal tissues (Figure 9A). Generally, CXCL13, 
IL18RAP  and  PLCL2  mRNA  were   downregulated, 

 

 
 
Figure 8. The role of FS scheme in anti-PD-1/L1 immunotherapy. (A) Survival analyses for low- and high-FS subgroups in the anti-PD-
L1 immunotherapy cohort (IMvigor 210). (B) The proportion of patients with response/nonresponse to PD-L1 blockade immunotherapy in 
low and high FS groups (IMvigor 210). (C) The proportion of patients with different therapeutic responses to PD-L1 blockade in low and high 
FS groups (IMvigor 210). (D) The proportion of patients with different immunity phenotypes in low and high FS groups (IMvigor 210). (E) The 
proportion of patients with different survival status in low and high FS groups (GSE78220). (F) The proportion of patients with different 
therapeutic response to PD-1 blockade immunotherapy in low and high FS groups (GSE78220). Abbreviations: SD: stable disease; PD: 
progressive disease; CR: complete response; PR: partial response. 
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while DLL3, DCAF4 and FBP1 were upregulated in 
TNBC samples compared with that in the paired ANTs. 
Furthermore, Kaplan-Meier curve implied that high 

expression of FBP1 was correlated with worse DFS, 
whereas low expression of CXCL13 and PLCL2 were 
associated with worse DFS (Figure 9B–9I). 

 

 
 
Figure 9. The mRNA levels and prognostic value of selected FS gene signatures in our cohort. (A) Comparison of mRNA expression 
levels of selected FS gene signatures in adjacent normal tissues and Tumor tissues by RT-qPCR assay. Kaplan–Meier curve shows the survival 
diversity between differential expression of DLL3 (B), DCAF4 (C), CXCL13 (D), IL18RAP (E), FBP1 (F), SH2D1A (G), PLCL2 (H) and RASGEF1A (I) 
in our cohort. Non-significant (ns) P > 0.05, *P < 0.05, **P < 0.01. 
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DISCUSSION 
 
Studies on classification of tumors based on their FAM 
relevant profiles are beginning to emerge [34, 35]. Increasing 
evidence demonstrated that FAM play an indispensable role 
in the tumorigenesis, immunity regulation as well as 
chemoresistance in TNBC [36–38]. Thus, elucidating the 
FAM profiles in shaping immune contexture and 
heterogeneous of TNBC will providing insights into the 
interaction of FAM and TME, and steering more efficient 
immunotherapy strategies for TNBC. To date, the 
association between FAM and the overall TME infiltration 
characterizations and heterogeneity of TNBC has not been 
comprehensively recognized. 
 
In this study, we successfully classified TNBCs into two 
heterogeneous subtypes defined by their intact FAM 
features, with distinct survival outcomes, genomic 
alternations, immune profiles. Further analyses highlighted 
the FS scheme could serve as an independent prognostic 
biomarker for predicting survival in TNBC. In accordance 
with previous studies, we demonstrated that TNBC 
displayed distinct immune phenotypes among different 
FAM features [38]. More importantly, the FAM-based 
classification we constructed could predict the response to 
anti-PD-1/PD-L1 immunotherapy in two cohorts. 
 
With the aim of identifying the molecular drivers of 
distinct FS subtypes in TNBC, we observed that 
significantly mutated genes in different FS groups. The top 
20 genes of mutation frequency were significant different 
between the low- and high-FS subtypes. Moreover, the 8 
FS gene signatures could markedly identify tumor tissues 
from normal breast tissues. We next confirmed the mRNA 
levels of these FS gene signatures by RT-qPCR assay in 
our cohort. In accord with the bioinformatics results, the 
selected FS genes were found differentially expression in 
TNBC samples. Kaplan–Meier survival analysis showed 
that differential expression of CXCL13, FBP1 and PLCL2 
were remarkably correlated with survival outcomes in 
TNBCs. 
 
Among the selected gene signatures, DLL3 has been 
found high expression in breast cancer and was an 
independent prognostic factor for OS [39]. The 
expression level of CXCL13 has been found linked to the 
proinflammatory features of macrophages, could predict 
the response to the combination of chemo-therapy with 
checkpoint inhibitors for TNBCs [40]. Moreover, 
previous researches showed that increasing the 
expression of Aging-associated and CD4 T cell-
dependent ectopic CXCL13 were correlated with 
immune-related adverse events (irAEs) incidence in 
ICB-treated patients [41]. FBP1, a gluconeogenesis 
regulatory enzyme, has been found modulate cell 
proliferation and chemosensitivity by targeting c-myc in 

breast cancer [42]. Further mechanism analysis showed 
that MYC-overexpressing TNBC relied on fatty acid 
oxidation (FAO), inhibition of FAO may as a potential 
treatment strategy for MYC-overexpressing TNBC. 
Other studies found that FBP1 deletion disrupted liver 
metabolic homeostasis and promotes tumorigenesis by 
inducing the senescence of hepatic stellate cell (HSCs), 
which established an essential crosstalk between 
metabolic reprograming and HSC senescence [43]. The 
interesting findings yielded several novel insights for the 
molecular drivers in creating subtype-specific FAM 
reprograming in TNBC. 
 
Our study also has important implications for clinical 
translations. First, novel therapeutic strategies targeting 
FAM vulnerabilities are warranted according to subtype-
specific features for individual TNBC patients. Second, 
although immune checkpoint inhibitors have been shown 
to be successful across multiple tumor types, including 
TNBC. However, the response to immunotherapy is still 
low in this tumor type [44, 45], highlighting other 
underlying mechanisms may influence the immune 
responsiveness. Mounting evidence have shown 
metabolites in the tumor micro-environment affecting the 
fate of immune cells, and therefore, modulate immune 
responses [46, 47]. On the basis of the FAM features in 
TNBC, we hypothesized that targeting FAM therapeutic 
strategies and anti-PD-1/PD-L1 immunotherapy could 
have a synergistic effect for TNBCs. 
 
Although we set a novel FAM-based classification for 
predicting immunotherapy efficiency and survival on 
TNBC, some limitations are needed to declare. First, the 
FS scheme was identified by bioinformatic analysis using 
retrospective data; thus, our findings should be validated 
by prospective studies with TNBC samples. Besides, 
owing to shortage of an appropriate ICI-based TNBC 
dataset, the effects of FS scheme on immunotherapy 
should be further verified to strengthen our conclusion. 
 
In conclusion, this work demonstrated the indispensable 
role of FAM in shaping tumor microenvironment and 
heterogeneous for TNBC. Evaluating the FAM features 
of individual TNBC patient will contribute to enhance 
our cognition of tumor heterogeneity and TME 
infiltration features in TNBC, then providing new 
potential therapeutic targets and steering more efficient 
immunotherapy strategies. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 

Supplementary Figure 1. The workflow of this study. 
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Supplementary Figure 2. (A, B) Survival analyses for DFS (A) and OS (B) between low- and high- FS groups in TCGA-TNBC cohort. (C) 
Multivariate Cox regression analysis confirmed that FS could serve as an independent prognostic biomarker for TCGA-TNBC samples. (D) 
ssGSEA showed three distinct immunity phenotypes were identified in TCGA cohort. (E) The rate of different immunity phenotypes between 
the low- and high FS groups. (F) Cibersort revealed the abundance of each TME infiltrating cells between the low- and high-FS groups. (G) 
MCPcounter revealed the abundance of each immune infiltrating cell types between the low- and high-FS groups. (H, I) ESTIMATE analysis 
exhibited the diversity of the immune (H) and stromal score (I) between the low- and high-FS groups. (J) The expression of immune profiles 
between the low- and high-FS groups in TCGA cohort. 
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Supplementary Figure 3. (A, B) Survival analyses for MFS (A) and OS (B) between low- and high- FS groups in GSE58812 cohort. (C) ssGSEA 
showed three distinct immunity phenotypes were identified in GSE58812 cohort. (D) The rate of different immunity phenotypes between 
the low- and high FS groups. (E) Cibersort revealed the abundance of each TME infiltrating cells between the low- and high-FS groups. (F) 
MCPcounter revealed the abundance of each immune infiltrating cell types between the low- and high-FS groups. (G, H) ESTIMATE analysis 
exhibited the diversity of the immune (G) and stromal score (H) between the low- and high-FS groups. (I) The expression of immune profiles 
between the low- and high-FS groups in GSE58812 cohort. 
 

 
 

Supplementary Figure 4. Identification of novel candidate compounds targeting the selected FS gene signatures. 
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Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Table 3. 
 
Supplementary Table 1. The primers used in this study. 

Gene  Sequence (5′ -> 3′) 

PLCL2 Forward Primer ATGACATGATGATTCAGTCCC 
Reverse Primer GCCTTCTGACAATGTACGA 

FBP1 Forward Primer GATGTTCATCGCACTCTGG 
Reverse Primer CAGTCTCAGCTTTCCATTGG 

DCAF4 Forward Primer AGTAGAAGACGACATGGGAG 
Reverse Primer GGAGTCAGACCTGTCTTCAG 

CXCL13 Forward Primer TCCAGTCCAAGGTGTTCTG 
Reverse Primer CTAGGGATAAAGACTGAGCTCTC 

DLL3 Forward Primer TTCAGAGTCTGCCTGAAGC 
Reverse Primer TGAAAGAGAAGGTGCCAGG 

IL18RAP Forward Primer CAGGAGAGCGAATTAAAGGA 
Reverse Primer CCTTGTAGAATATGTCCAAAGGAG 

SH2D1A Forward Primer CATTGTAATACCTCTGCAGTATCC 
Reverse Primer TCTTCTCTTATCCCTGTAGTACC 

RASGEF1A Forward Primer TGACTTCCAGGATGAGAAGG 
Reverse Primer GTGCCATTCTCCTCATCAC 

 
Supplementary Table 2. The prognostic values of FAM-related genes. 

Univariate-Cox analysis for FAM genes Lasso analysis for FAM  
genes 

Multivariate-Cox analysis for  
FAM genes 

Hugo_Symbol Hugo_Symbol Hugo_Symbol 
TBC1D19 TAOK2 DCAF4 
MYCN OPRM1 DEXI 
TAOK2 DCAF4 RASGEF1A 
OPRM1 LAGE3 OSBP 
SESTD1 CREBZF UTP20 
ATP2A2 DEXI C2CD2L 
DCAF4 TRIB2 TYW1 
SHCBP1 SLC12A1 SPAG6 
SCP2 ADH7  

TPCN1 APOL1  

MMP15 RBKS  

LAGE3 USP30  

MYH6 DMXL2  

XRN1 RASGEF1A  

B4GALT5 OSBP  

CREBZF ZNF599  

LHPP UTP20  
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CASP6 ZFAND6  

ZBTB10 TMEM190  

DEXI C2CD2L  

TRIB2 TYW1  

PGAP1 SPAG6  

FBXL8 PDCD2  

FOXP1 ARRB1  

SLC12A1 RPGRIP1  

SENP2 riskScore  

HDLBP risk  

ADH7 Gene  

TAS1R1 Coef  

C3orf52   

APOL1   

FXR1   

RBKS   

MAP3K1   

SNAP23   

CTNNB1   

SCCPDH   

USP30   

DMXL2   

RASGEF1A   

RNF121   

DYM   

HSPBP1   

ZNF524   

OSBP   

GTF2IRD2   

ZNF599   

UTP20   

ZFAND6   

TBCA   

TMEM190   

DYNLL1   

ACOT2   

PNMA1   

C2CD2L   

TYW1   

STAR   

KRR1   

SPAG6   
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PDCD2   

ARRB1   

ERI2   

DCTN3   

SF3B5   

RPGRIP1   

C12orf45   

C17orf100   

 
Supplementary Table 3. The potential FAM-related genes across three FAM clusters in METABRIC-TNBC samples. 

 
Supplementary Table 4. Correlation between FS-group and OS in TNBCs. 

Tag p value HR Low 95% CI High 95% CI 

Age 0.95 0.97 0.37 2.52 
AJCC_Tumor_Stage 2.40E-03 3.12 1.94 5.03 
T_stage 0.001 2.55 1.56 4.16 
N_stage 1.20E-02 1.87 1.08 3.29 
FS-group 0.007 3.23 1.32 4.37 

 


